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Measuring self-steepening with the
photon-conserving nonlinear Schrödinger
equation
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We propose an original, simple, and direct method to meas-14
ure self-steepening (SS) in nonlinear waveguides. Our15
proposal is based on results derived from the recently intro-16
duced photon-conserving nonlinear Schrödinger equation17
(NLSE) and relies on the time shift experienced by soliton-18
like pulses due to SS upon propagation. In particular, a19
direct measurement of this time shift allows for a precise20
estimation of the SS parameter. Furthermore, we show that21
such an approach cannot be tackled by resorting to the22
NLSE. The proposed method is validated through numeri-23
cal simulations, in excellent agreement with the analytical24
model, and results are presented for relevant spectral regions25
in the near infrared, the telecommunication band, and the26
mid infrared, and for realistic parameters of available laser27
sources and waveguides. Finally, we demonstrate the robust-28
ness of the proposed scheme against deviations expected in29
real-life experimental conditions, such as pulse shape, pulse30
peak power, pulsewidth, and/or higher-order linear and31
nonlinear dispersion. ©2020Optical Society of America32

https://doi.org/10.1364/OL.40109633
34

Self-steepening (SS) is a nonlinear effect responsible for the35
optical shock of ultrashort pulses that acquires singular rel-36
evance when analyzing the dynamics of broadband spectra,37
such as in the case of supercontinuum generation [1,2], and38
with applications to optical front-induced transitions [3]. SS is39
customarily introduced in pulse propagation models through a40
first-order approximation of the frequency dependence of the41
medium nonlinear coefficient. Known also as the “shock term,”42
τsh, its relevance in the context of the modeling of supercontin-43
uum generation was noted by Kibler, Dudley, and Coen [4].44
As explained in this work (see also [5,6]), this shock term or SS45
parameter can be written as46

τsh =
1

ω0
+

1

n2

dn2

dω
−

1

neff

dneff

dω
−

1

Aeff

d Aeff

dω
, (1)

where the derivatives are evaluated at ω=ω0, n2 is the non- 47
linear refractive index, neff is the effective refractive index, and 48
Aeff is the effective mode area. In a first-order approximation, 49
the nonlinear coefficient of the waveguide is related to the SS 50
parameter by γ (�)= γ0(1+ τsh�), where � is the frequency 51
detuning with respect to a conveniently chosen reference fre- 52
quency ω0, and the SS parameter is usually given by τsh =ω

−1
0 , 53

an approximation that will become clearer in what follows. 54
In spite of its relevance, and to the extent of our knowledge, 55

there is not much work in the literature on the direct measure- 56
ment of the SS parameter. Indeed, most of the work has focused 57
on either the numerical estimation or the measurement of the 58
mode effective area, rather than on the direct measurement 59
of τsh. There are several reasons for this focus of literature on 60
Aeff. As Kibler and colleagues note [4], the nonlinear refractive 61
index n2 is approximately constant in many relevant materials. 62
Indeed, the frequency dependence of n2 is negligible far from 63
ultraviolet resonances in fused silica [7]. We must remark, how- 64
ever, that this observation does not hold, for instance, in the case 65
of plasmonic materials that incorporate metal nanoparticles 66
(MNPs), as waveguides doped with MNPs may exhibit a zero- 67
nonlinearity wavelength (ZNW), giving rise to interesting new 68
phenomena [8,9]. Moreover, the frequency dependence of the 69
effective mode index neff is usually neglected as, in general, it is 70
less relevant than that of the effective area. 71

Oftentimes, the estimation of the effective mode area dis- 72
persion is based on extensive numerical simulations or involved 73
analytical calculations (see, e.g., [4,10–16]). Nonetheless, the 74
mode area can also be measured (see, e.g., [17–19]). A typical 75
experimental procedure measures the spot size, either by reg- 76
istering the transverse mode with a camera or by some other 77
method (see, e.g., [20]), and the effective mode area is calculated 78
by fitting a Gaussian distribution [5,10,21], although such a fit 79
is not valid in general [22]. 80

Let us emphasize once more that the SS parameter is deter- 81
mined not only by the frequency dependence of the mode 82
effective area, but also by the frequency dependence of the 83
nonlinear refractive index. An interesting example of this type 84
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of dependence is found in the work of Panoiu, Liu, and Osgood85
on silicon photonic nanowires [23,24]. These authors show that86
τsh can be more than 20 times greater than ω−1

0 for some wave-87
lengths. Moreover, they prove that the frequency dependence of88
the third-order susceptibility leads to significant changes in the89
SS parameter, even to the extent of making τsh <ω

−1
0 .90

Besides the lack of experimental schemes allowing for the91
direct measurement of the SS parameter, a problem arises with92
the modeling of its influence. Propagation of light pulses in93
waveguides is usually modeled by the nonlinear Schrödinger94
equation (NLSE) [5]95

∂z Ã= iβ(�) Ã+ iγ (�)F{|A|2 A}, (2)

where A= A(z, t) is the complex envelope of the electric field96
in the time domain, normalized such that |A|2 is the optical97

power, and Ã= Ã(z, �)=F[A(z, t)] where F stands for98
the Fourier transform. Coefficients β(�) and γ (�) are the99
linear and nonlinear dispersion profiles, respectively, and it is100
customary to express these profiles as Taylor expansions. It is101
worth noting that although the NLSE has proved to be adequate102
to model pulse propagation in a wide variety of cases, it is well103
known that it does not necessarily conserve some basic physi-104
cal quantities such as the number of photons and the energy105
[6,25,26]. In particular, the photon number is preserved only106
if τsh =ω

−1
0 , a fact often overlooked in the literature, which107

poses a severe limitation when applying the NLSE to arbitrary108
nonlinear profiles γ (�). Let us define s such that τsh = sω−1

0 ,109
i.e., s is a measure of the deviation from the photon-conserving110
situation in the NLSE.111

In order to overcome the aforementioned limitation of the112
NLSE, we have recently introduced a modified NLSE, the113
photon-conserving NLSE (pcNLSE) [27], that preserves both114
the energy and the number of photons in lossless waveguides.115
The pcNLSE reads116

∂z Ã= iβ(�) Ã+ i
ωr (�)

2
F
{
C∗B2}

+ i
ωr ∗(�)

2
F
{

B∗C 2} ,
(3)

where r (�)= 4
√
γ (�)

ω
, B̃ = r (�) Ã, and C̃ = r ∗(�) Ã.117

It can be easily verified that the pcNLSE reduces to the118
NLSE when τsh =ω

−1
0 (s = 1), i.e., in the only case where119

the NLSE preserves physical quantities. For all other values120
of the SS parameter, however, the pcNLSE predicts different121
results. For instance, Fig. 1 shows results of the propagation of122
a short pulse, in a waveguide with s =−1, modeled with the123
pcNLSE (solid line) and the NLSE (dashed line). Not only is124
the predicted evolution markedly different, but also, the NLSE125
predicts an unphysical increase of the number of photons upon126
propagation, as shown in the bottom panel.127

It is interesting to revisit work dealing with the influence of128
SS on soliton propagation in fibers [28,29]. It is found that the129
soliton experiences a time shift due to SS but, most remarkably,130
no shock occurs (in agreement with [5]). Based on this resilience131
of a soliton to SS, one may ponder whether such a unique feature132
could be used to measure the SS parameter itself. Since the133
NLSE will conserve the photon number only when s = 1, we134
turn to explore the effect of SS on soliton propagation under the135
much less restrictive context of the pcNLSE, keeping in mind136
that by “soliton,” we are referring to the fundamental soliton137
solution of the NLSE with no SS.138

Fig. 1. Effect of self-steepening on the propagation of a short pulse
in a waveguide with s =−1. Results with the NLSE (dashed line) and
the pcNLSE (solid line). The pcNLSE preserves the photon number
while the NLSE does not (bottom panel).

Results obtained with the pcNLSE are shown in Fig. 2 for dif- 139
ferent values of s , where we observe that not only does the soli- 140
ton preserve its shape, but it is time shifted depending upon the 141
value of the SS parameter. For clearness, the time shift1T is nor- 142
malized to the pulse 1/e half-width, T0. 143

In order to find an analytical expression for the time shift, we 144
must proceed in two steps. First, an approximation of Eq. (3) for 145
narrowband pulses is developed and written in the time domain. 146
Second, the method of moments [30–32] is applied assuming 147
a hyperbolic secant pulse. As a result, it can be shown that (see 148
Supplement 1 for details) 149

1T(z)=
s + 2

3

γ0 P0z
ω0
=

s + 2

3

β2z

ω0T2
0

, (4)

Fig. 2. Time shift experienced by a soliton due to self-steepening
as predicted by the pcNLSE, and for different SS parameters: s =−1
(dotted line), s = 0 (dashed line), s = 1 (solid line); input pulse
(dashed-dotted line). The time shift1T is normalized to T0 = 100 fs.

https://osapublishing.figshare.com/s/9c233c64970980689581
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Fig. 3. Time shift experienced by a soliton, at λ= 1550 nm, versus
peak power and for different SS parameters: s =−1 (circles), s =−2
(squares), and s =−3 (triangles). Results from Eq. (4) are shown in
dotted lines. Since T0 = 100 fs, 1T ≈±1 ps for s =±1 and a peak
power of 8 kW.

where γ0 is the zeroth-order nonlinear coefficient, β2 is the150
group velocity dispersion, and we have neglected higher-order151
dispersion. This equation is valid as long as the pulse remains152
unchirped along propagation, a condition that was verified, by153
means of extensive numerical simulations, when the input was a154
fundamental soliton for the NLSE, i.e.,γ0 P0T2

0 /|β2| = 1.155
Equation (4) suggests a direct and simple way to estimate the156

SS parameter, based on measuring the delay experienced by a157
soliton upon propagation in a nonlinear waveguide. Note also158
that this expression is in agreement with the delay obtained with159
the NLSE and from self-phase modulation (SPM) considera-160
tions, and for s = 1, given by 1T ≈ γ0 P0z/ω0 = φmax/ω0,161
where φmax is the maximum phase induced by SPM [5].162
Although the delay estimated with the NLSE can be gener-163
alized for an arbitrary s as 1T ≈ s γ0 P0z/ω0, only the case of164
s = 1 corresponds to a physically sound photon-conserving165
situation, and thus the derived SS parameter will not be reliable166
for any other value of s .167

Following this line of thought, in Fig. 3, we show simula-168
tion results on the propagation of solitons with peak powers169
ranging from 2 to 8 kW, T0 = 100 fs, and central wavelength170
λ= 1550 nm (all parameters entirely consistent with those171
of a femtosecond fiber laser) along a 500 m long fiber with172
β2 =−20 ps2 km−1 and γ0 = 1 W−1 km−1, both coefficients173
typical of a standard single-mode fiber at 1550 nm. Also shown174
in the figure is the linear dependence of the time shift as obtained175
from Eq. (4). As we can see, there is an excellent agreement176
between numerical simulations and results obtained with the177
pcNLSE.178

In a practical experimental setup, one may envision a scheme179
where the time shift 1T is measured by launching two pulses180
into the waveguide: a large amplitude pulse that is time shifted181
due to SS and a small amplitude pulse that is not, and thus pro-182
vides a convenient reference. The delay between pulses can then183
be measured by techniques such as GRENOUILLE [33] and/or184
modern devices based on two-photon absorption detectors [34].185

It is interesting to compare results on the time shift obtained186
with the pcNLSE with those from the NLSE. This is shown in187
Fig. 4, where the case of s =−1 from Fig. 3 is compared to its188
NLSE counterpart. The NLSE predicts a time shift of signifi-189
cantly different magnitude than that obtained with the pcNLSE190
and of opposite sign. This highlights the necessity of resorting to191
the latter equation in order to have a reliable estimate of the SS192

Fig. 4. Time shift versus soliton peak power for s =−1 and same
simulation parameters as in Fig. 3. (Circles) pcNLSE and (squares)
NLSE. Results from Eq. (4) for the pcNLSE are shown in dotted
line. The dashed line (NLSE) is a guide to the eye. Since T0 = 100 fs,
1T ≈ 1 ps for a peak power of 8 kW, in the case of the pcNLSE.

parameter. Note that when s = 1, both equations will yield the 193
same results, as this is the only case where the NLSE preserves 194
the photon number. 195

Next, we are interested in validating our proposal in different 196
spectral bands of particular relevance, namely, the near-infrared 197
(NIR) and mid-infrared (MIR) bands. In Fig. 5, we show results 198
of the propagation of femtosecond pulses at λ= 800 nm (top) 199
and λ= 2400 nm (bottom), in both cases along a 10 m long 200
fiber with a negative SS slope s =−1. In the NIR, the chosen 201
fiber parameters are those typical of a photonic-crystal fiber 202
(PCF) with D= 40 ps nm−1 km−1 and γ0 = 95 W−1 km−1; in 203
the MIR, the chosen parameters are those of a typical ZBLAN 204
fiber with D= 10 ps nm−1k m−1 and γ0 = 1 W−1 km−1 [35]. 205
As it can be readily observed, Eq. (4) makes correct predictions 206
in both cases. 207

We also explore the robustness of the proposed method 208
against deviations expected in real-life experimental conditions, 209
such as pulse shape, peak power, and pulsewidth. In the top 210
panel of Fig. 5, we show results obtained when considering a 211
Gaussian-shaped pulse instead of a sech. We observe a power- 212
dependent departure from the time shift as given by Eq. (4), 213
but as the linear trend holds, it still allows for an estimation of 214
the SS parameter. In the bottom panel of Fig. 5, we show results 215
when considering deviations from the fundamental soliton con- 216
dition, N = 1; in practical terms, these could be due to either 217
peak-power and/or pulsewidth uncertainties in an experimental 218
setup. As apparent from the figure, results are still in excellent 219
agreement with the model, thus supporting the applicability of 220
the proposed method. 221

It is worthwhile pointing out that there could be intrinsic 222
sources of deviations arising from effects such as waveguide 223
losses, higher-order linear (β3) and nonlinear (γ2) dispersion, 224
and/or the Raman-induced soliton self-frequency shift (SSFS) 225
[5]. The effect of loss can be neglected by using a waveguide 226
shorter than its corresponding effective length. The additional 227
delays produced by β3 and/or SSFS have been calculated ana- 228
lytically by using the NLSE [5,32] and these results can be 229
shown to apply to the pcNLSE as well. As such, these contri- 230
butions can be subtracted in a straightforward fashion from 231
the total time delay, leaving only the SS contribution needed to 232
obtain the SS parameter. 233

Finally, to assess the applicability of the proposed method 234
to more general (higher-order) nonlinear profiles, Fig. 6 shows 235
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Fig. 5. Time shift versus peak power with s =−1 as modeled
with the pcNLSE in the NIR (top) and the MIR (bottom). Results
from Eq. (4) are also shown (dotted lines). Effect of a Gaussian pulse
shape (top, the dashed line is a guide to the eye). (Bottom) Effect of
the deviation from the fundamental soliton condition N = 1. Since
T0 = 30 fs,1T ≈ 0.5 ps for a peak power of 130 kW, in the MIR case.

Fig. 6. (Top) Nonlinear profiles. (Bottom) Time shift experienced
by a soliton, at λ= 1550 nm, versus peak power in a fiber with γ2, s =
1 (solid line) and s =−3 (dotted line). T0 = 200 fs at 500 W.

results for the propagation of solitons along a 500 m long236
fiber with s = 1 (solid line) and s =−3 (dotted line), and237
γ2 =−30γ0/ω

2
0 W−1 km−1. The higher-order nonlinear pro-238

files are shown in the top panel of Fig. 6. Results for the time239
delay shown in Fig. 6 are still in excellent agreement with the240
model.241

In conclusion, we proposed an original, simple, and direct242
method to measure SS in nonlinear waveguides based on results243
derived from the recently introduced pcNLSE. Numerical244

results, in excellent agreement with the analytical model, were 245
presented for relevant spectral regions in the NIR, MIR, and 246
telecommunication bands. Finally, we showed the robustness 247
of the proposed method against deviations expected in real-life 248
experimental conditions, such as pulse peak power, shape, and 249
width.1 250
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