
 

Logarithmic coefficient of the entanglement entropy of a Maxwell field
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We elucidate the mismatch between the A-anomaly coefficient and the coefficient of the logarithmic term
in the entanglement entropy of a Maxwell field. In contrast to the usual assumptions about the protection of
renormalization group charges at the infrared, the logarithmic term is different for a free Maxwell field and
a Maxwell field interacting with heavy charges. This is possible because of the presence of superselection
sectors in the IR theory. However, the correction due to the coupling with charged vacuum fluctuations, that
restores the anomaly coefficient, is independent of the precise UV dynamics. The problem is invariant
under electromagnetic duality, and the solution requires both the existence of electric charges and magnetic
monopoles. We use a real-time operator approach, but we also show how the results for the free and
interacting fields are translated into an effective correction to the four-sphere partition function.
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I. INTRODUCTION

Entanglement entropy (EE) is an unconventional and
useful theoretical quantity in the exploration of quantum
field theories (QFT). It has been especially important in
connection with holographic theories and the understand-
ing of the renormalization group (RG) irreversibility. In
extended quantum systems it has been a useful order
parameter determining different types of quantum behavior.
It is always important in this line of research to establish a
dictionary between entropic quantities and more conven-
tional field-theoretic ones. An important and accepted entry
in this dictionary is the identification of the coefficient of
the logarithmic term in the EE for a conformal field theory
in a sphere in even spacetime dimensions with the
coefficient A of the Euler term in the trace anomaly, [1–3]

SðRÞ ¼ � � � þ ð−1Þðd−2Þ=24A logðR=δÞ þ � � � ; ð1:1Þ

with R the radius of the sphere and δ a short distance cutoff.
This identification follows from quite general and simple

reasonings, and has been confirmed by direct computation
for free scalars and fermion fields [4–6] as well as holo-
graphically [7]. However, it was noted by Dowker [5] that a

direct thermodynamic computation in de Sitter space for a
free Maxwell field in d ¼ 4 fails to give the expected
anomaly coefficient −31=45, giving instead a smaller
coefficient −16=45, missing the anomaly by a correction
of −1=3 (see an analogous calculation in hyperbolic space
in [8]). A confirmation of this conflictive result follows
simply by decomposing the Maxwell field in spherical
modes [9]. There is a unitary mapping between the theory
of two independent massless scalar fields and the one of a
Maxwell field for all (decoupled) modes with angular
momentum l ≥ 1, and this unitary mapping is local in
the radial coordinate. The l ¼ 0 mode is absent for the
Maxwell field. This directly gives the logarithmic coef-
ficient of the Maxwell field as 2 × ð−1=90 − 1=6Þ ¼
−16=45, where −1=90 is the logarithmic coefficient for
a scalar and 1=6 is the one of the l ¼ 0 mode of the scalar,
which corresponds to a one-dimensional field with a
positive logarithmic coefficient, whose entropy that has
to be subtracted.
This straightforward identification of operator algebras

and states inside regions with spherical symmetry for the
two theories leaves us no other alternative than to conclude
that the anomaly does not match the logarithmic coefficient
for the Maxwell field. We can also entertain the idea that the
logarithmic term can be modified by the precise regulari-
zation procedure (or choice of algebra in a discretization of
the theory). In that case, the same ambiguities would
pollute the case of the scalar field modes for l > 0, though
the details of the choice of algebra for the two fields may be
related to each other nonlocally along the boundary.
The questions that we address in this paper are what is

special about the Maxwell field, why the proof of the
identification with the anomaly goes wrong in this case,
and under which circumstances the anomaly is recovered as
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the logarithmic coefficient of the EE. This last question
is relevant to the entropic irreversibility theorem in
d ¼ 4 [10,11].
A possible solution was suggested in [9] (see also [12]).

There, it was speculated that while the pure Maxwell field
has a specific coefficient that does not match the anomaly,
this result might change in the presence of charged fields,
which could, however, be very massive. The infrared (IR)
theory is still free Maxwell. It contains superselection
sectors for the different charges, and the constraints ∇E ¼
∇B ¼ 0 would be lifted by the charged fluctuations.
While this might appear a natural proposal, it poses

several important problems. The first one is that there are
general arguments implying that a universal term like the
one proportional to logðRÞ in the entropy for spheres of
large radius is protected at the IR; i.e., it cannot be changed
by changing the ultraviolet (UV) physics [13,14]. These
arguments are important for the assignation of this coef-
ficient (for large spheres) to the physics of the IR fixed
point of the theory. We address this question in the next
section. A similar failure of the universal terms to be
protected in the IR has been shown to happen in models
with global superselection sectors [15].
A related problem is how a correction that depends on

the details of the UV, such as the one associated with the
presence of massive charges, could affect the IR result
universally. This again is not restricted to the case of the
Maxwell field but also happens for other models with
superselection sectors [15]. The answer is that the main
effect of charges is to destroy nonlocal correlations in some
specific operators of the IR model. Hence, the result can be
read off from the IR model itself irrespective of the precise
UV physics. We will see how this happens in the Maxwell
field in detail in Sec. III.
In the literature, this problem is often blamed on the

nature of gauge fields and solved in a way that does not
subsist the continuum limit. In fact, as we have already
mentioned, this phenomenon is of much broader scope and
does not have a direct relation with the description of the
QFT in terms of gauge fields, which for some models may
be a matter of choice, but it occurs precisely when there are
(gauge or global) superselection sectors in the infrared that
are not present in the full theory. We will discuss in more
detail the differences from our approach and previous
works in the literature in Sec. III C.
Most of the confusion around this subject comes from

focusing on a bare entropy as the quantity of interest, which
however does not have a clear physical meaning for the
continuum model. The present problem is especially ill-
posed in terms of the bare entropy. For example, in the
context of our solution, one can ask how is it possible that a
free model has a different coefficient than an interacting
one independent of the size of the coupling constant. This
discontinuity makes no sense unless one describes a
physical quantity where the regulator ϵ is also physical.

This can be done using the mutual information between
two nonintersecting regions A and B, defined as

IðA; BÞ ¼ lim
δ→0

SδðAÞ þ SδðBÞ − SδðA ∪ BÞ: ð1:2Þ

This limit for the vanishing distance cutoff δ is finite and
well defined. One can define a regularized entropy using
the mutual information between a sphere of radius R − ϵ=2
and the complement of a sphere of radius Rþ ϵ=2 [16,17],

SregðR; ϵÞ ¼
1

2
IðRþ ϵ=2; R − ϵ=2Þ: ð1:3Þ

The short distance ϵ is now physical. In these terms, our
solution has the following form. For the pure Maxwell field
we have

Sreg ∼ 4πR2
k
ϵ2

−
16

45
logðR=ϵÞ þ subleading; ð1:4Þ

with the “incorrect” logarithmic coefficient. The same
result is expected for an interacting Maxwell field if ϵ is
greater than the effective distance scale Λ where the
charge fluctuations become relevant, and which is set by
the masses and couplings of the charged particles. In that
case, the correlations between the two regions measured
in the mutual information are the same as for the free field.
We are in the IR regime and always keep R ≫ Λ; ϵ.
Once we cross the scale of the charge fluctuations with

our regulating distance, ϵ ≪ Λ, we have a modified result,

Sreg ∼ 4πR2

�
k0

ϵ2
−m2

�
−
31

45
logðR=ϵÞ þ subleading;

ð1:5Þ

with the logarithmic term given by the anomaly, and where
the missing terms are subleading in the large R limit. The
area term gets renormalized too, as expected, and the
structure of the coefficient of the area term can have
variations depending on the precise content of the UV
theory. Here m is a typical scale of the RG flow.
Then, the question about the possible discontinuity of the

logarithmic coefficient with the coupling constant has a
natural explanation in terms of an order of limits. Whenever
we make the coupling constant go to zero first than ϵ, we
get the free result, and the opposite limit gives us the
anomaly. If we take the limit ϵ → 0 and R → ∞ to define
the logarithmic term in the IR (as required for the
irreversibility theorems) we get two different results for
interacting and exactly free fields, independently of the size
of the interactions.
One interesting and natural outcome of the calculation is

that a full recovery of the anomaly coefficient requires
magnetic monopoles along with electric charges.
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Finally, the last question is why the universal result for
the interacting model numerically coincides with the
anomaly. This question is addressed in Sec. IV, where
we discuss how to take into account the corrections for the
free Maxwell field in the calculation based on the con-
formal mapping to de Sitter space.

II. HOW CAN MASSIVE CHARGES CORRECT
THE IR LOGARITHMIC COEFFICIENT?

Let us recall the argument for the protection of RG
charges at the infrared [13,14]. If we have the EE of a large
region and change the UV physics keeping the IR theory
invariant, the change will affect only correlations and
entanglement at short distances across the boundary of
the region. The change in one piece of the boundary is
independent of the change in other pieces which are at an
IR distance from it. Hence the result of this change in EE
should be local and additive on the boundary. That is, it has
the same general structure as the divergent terms of the EE.
We expect it could be written for a general region as an
integral over the boundary surface of local and geometric
terms. The area term can then be modified by the UV
physics, but this is not the case of a logðRÞ term which
cannot be produced by integrating a curvature tensor on the
surface.1

This same argument can be translated in terms of the
mutual information [16]. The question is now if for large R
the logarithmic term can be changed by changing ϵ, where
we are already in the regime ϵ ≪ R, or, equivalently, if it
can be changed by altering the UV physics and keeping
ϵ ≪ R fixed. We see from (1.2) that as we change ϵ the
change in the mutual information can only come from the
entropy of the union of the two regions SðA;BÞ. This is
equal to the entropy of the complement, that here is a thin
spherical shell r ∈ ðR − ϵ=2; Rþ ϵ=2Þ.2 Then the argu-
ment is now that a thin shell should have an entropy that is
local and additive along its surface [16]. This would
guarantee the locality of the possible changes with ϵ and
the UV physics, and the protection of the RG charges.
Indeed, there is a simple reason why extensivity is

expected as a natural property for thin shells. Extensivity
can be partially rephrased as that mutual information
between different parts of the shell that vanishes in the
limit of a small width. This is because mutual information
measures exactly the degree of nonextensivity of the
entropy. But mutual information between two patches of

the shell separated by a fixed distance should tend to zero in
the limit of zero width for any theory [see Fig. 1(a)]. This is
because the algebras of these shell patches do not contain
any operator in the limit of ϵ → 0, and the correlations are
kept bounded as we take the limit. There are no bounded
operators that can be localized in a d − 2 dimensional patch
in QFT. In other words, when an operator becomes very
thin it will be much more correlated with itself than with
any other distant operator.
Given that, we can still identify a possible origin for

the violation of extensivity. For this, we consider the case
of two patches separated by a small distance ϵ of the
order of the shell width; see Fig. 1(b). In this scenario we
cannot use the same reasoning. We do not consider these
patches touching each other since we are not interested in
UV divergent pieces of this mutual information but in the
building up of long-distance correlations. These can
appear because of the presence of constraints. For
example, for the Maxwell field, the electric (or magnetic)
fluxes Φ1, Φ2, over the two half-shells are not con-
strained, while the flux over the full shell has to vanish in
absence of electric or magnetic charges, Φ1 þΦ2 ¼ 0.
This implies correlations across the shell that are long-
distance and nonextensive. Similar charge measuring
operators appear in topological models, and more gen-
erally, in all models containing superselection sectors.
Mutual information between nearby patches on the shell
will notice these correlations.
Hence, we have some nonextensivity of the shell

entropy related to constraints. These constraints are
modified when charges are added to the model and
we are in a situation where charge fluctuations become
important. This gives a physical explanation of the
origin of the change in extensivity of entropy of the
shell (and the change of the RG charges) when there is a
transition from ϵ ≫ Λ to ϵ ≪ Λ, with Λ a distance scale
where the charge fluctuations affect the flux operators in
the shell.
More concretely, the Gauss law for the electric flux

operator for the Maxwell field produces significant

FIG. 1. (a) Two regions of fixed angular span in the shell have
vanishing mutual information in the ϵ → 0 limit. (b) Global
constraints such as the vanishing of the electric flux may lead to
nontrivial correlations across the shell.

1Note the coefficient of logðδÞ can be changed and compen-
sated by the logarithm of another dimensionful quantity.

2The identification of entropies of complementary regions is
valid under the assumption of Haag duality, that is, that the
algebra of the complementary region coincides with the com-
mutant of the algebra of the region. This is valid for the Maxwell
field in the present geometry of two nearly complementary balls,
but this is not the case for theories with global superselection
sectors. See [15].
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correlations on the shell. For the pure Maxwell field, we
have for example eiΦ ¼ 1 for the total flux Φ across the
shell. But how does this change when there are charges?
The electric flux has to be smeared to become an operator
in the shell algebra. When the width ∼ϵ of the operator
smearing is much larger than the typical size separating
the charge-anti-charge fluctuations in vacuum, these
fluctuations will be averaged on the zone were the electric
flux operator changes smoothly, and then the total flux
will be zero as in the model without charges. See Fig. 2.
We would have heiΦi ¼ 1. However, in the limit of small
ϵ, the charge fluctuations on each side of the shell will
introduce large fluctuations to the flux operator seated on
the shell. The expectation value heiΦi ≃ 0 will vanish
eliminating the long-distance correlations in the shell. In
the presence of charges, the constraints become effective
only for wide enough flux operators.
Let us see this more quantitatively. We can compute the

vacuum fluctuations hΦ2
Σi of the electric flux ΦΣ ¼R

Σ Ēðx̄Þ · dS̄ across a patch Σ on the shell. The correlation
function of the electric field at equal time is

hEjð0; x̄ÞEkð0Þi ¼
1

ð2πÞ2 ð∂j∂k − δjk∇2Þ 1

jx̄j2 : ð2:1Þ

We should smear the flux of the radial electric field inside a
thin shell of width ϵ and compute the expectation value of
the square of this operator. Instead of smearing the electric
field along the radial direction, a simpler calculation that
shows the same essential features is to regularize the
correlator changing jx̄j2 → jx̄j2 þ ϵ2 in (2.1), such that
the regularized correlator is still divergenless. We get

hΦ2
Σi ¼

L∂Σ
4πϵ

þ � � � ; ð2:2Þ

where L∂Σ is the perimeter of the boundary of the surface Σ.
Therefore, the fluctuations satisfy a perimeter law. Indeed,
the result can only depend on the perimeter since the
normal fluxes across different surfaces sharing the same
boundary are the same operators. This result is very
peculiar of the conserved flux. It is not difficult to see
that the fluctuations of other operators formed by an
integral of a local field on the surface will have an area
law. This reduction in correlations to a perimeter law is
clearly a consequence of Gauss law.
Now, let us see what happens when the electromagnetic

field is coupled with electric charges. In this case, we
express the electric field Wightman correlator using its
Kallen-Lehmann representation,

hEjðxÞEkðyÞi ¼
Z þ∞

0

dq2ρðq2Þ
Z
R4

d4p
ð2πÞ4 2πΘðp

0Þ

× δðp2 − q2Þ½p2
0δjk − pjpk�e−ip·ðx−yÞ:

ð2:3Þ

The spectral density function for the fields is, to the lowest
order in QED perturbation theory [18],

ρðq2Þ ¼ Zδðq2Þ þ α

3π

1

q2

�
1 −

4m2
e

q2

�1
2

�
1þ 2m2

e

q2

�

× Θðq2 − 4m2
eÞ þOðα2Þ; ð2:4Þ

where α ¼ e2
4π is the fine-structure constant, me is the

electron mass, and Z is the field renormalization constant.
The first term with the delta function leads to the free field
result with a divergenceless correlator (2.3). The second
term will give a different leading contribution to the flux
fluctuations in the limit of small ϵ, i.e., proportional to the
area AΣ=ϵ2 instead of the perimeter L∂Σ=ϵ.
To compute the coefficient of the area term, we compute

the vacuum fluctuations of the total flux of the electric field
on a planar surface, or more precisely,

ΦΣ ¼
Z

d4xE1ðxÞfðxÞ; ð2:5Þ

where the smearing function is fðxÞ ¼ f0ðx0Þf1ðx1Þ. The
support of the smearing functions in x0 and x1 are restricted
to the interval ð− ϵ

2
; ϵ
2
Þ, and we normalize

Rþ∞
−∞ dx0 f0ðxÞ

¼ Rþ∞
−∞ dx1 f1ðx1Þ ¼ 1. Then, the vacuum fluctuations of

the flux for a large patch of area AΣ in the plane is

FIG. 2. For ϵ wide enough and a smooth smearing of the
electric flux charge anticharge fluctuations are averaged to zero
and do not affect the fluctuations of the electric flux. When the
width ϵ becomes small to allow for charge anticharge fluctuations
to occur on each side of the wall, fluctuations of the electric flux
will be large.
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hΦ2
Σi ¼

Z
d4x d4y hE1ðxÞE1ðyÞifðxÞfðyÞ

≃ AΣ

Z
dx0 dx1 d4y hE1ðx0; x1; 0; 0ÞE1ðyÞif0ðx0Þf0ðy0Þf1ðx1Þf1ðy1Þ

¼ AΣ

ð2πÞ2
Z

d2p
Z

∞

0

dq2 q2ρðq2Þθðp0Þδðp2 − q2Þjf̃0ðp0Þj2jf̃1ðp1Þj2: ð2:6Þ

In the second line we have neglected a perimeter term.
Since q2ρðq2Þ has support for q2 ≥ 4m2

e, when the
smearing functions are wide and smooth enough (and then
ϵme is large), their Fourier transform will be concentrated
for small momentum and the integral will vanish exponen-
tially in ϵ.
In the opposite limit of small ϵme we roughly get

hΦ2
Σi ∼

�Z
ϵ−2

0

dq2 ρðq2Þq2
�
AΣ; ð2:7Þ

which by unitarity [ρðq2Þ > 0] has a positive nonzero
coefficient. In the small distance limit the correlation of
the charge density operators, which follows by taking
divergences of (2.3), is3

hj0ð0Þj0ðxÞi ¼ h∇ · Eð0Þ∇ · EðxÞi ∼ ðR x−2
0 dq2 ρðq2Þq2Þ

x4
:

ð2:8Þ

If a scaling limit is reached for the current in the UVand the
correlator of charge densities goes as x−2Δ, then from the
positivity of ρ in (2.8) we must have Δ > 2 (see also [19]).
For a primary current in a CFT, Δ ¼ 3, which given the
asymptotic behavior of (2.4), corresponds to the case of the
QED to this order. Then, we have generically an area term
in (2.7) that is divergent with ϵ in the limit ϵ → 0.
A concrete result can be obtained for example using

Gaussian smear functions,

f0ðxÞ ¼ f1ðxÞ ¼
1ffiffiffi
π

p
ϵ
e−

x2

ϵ2 ; ð2:9Þ

that are essentially localized in a size ϵ. An straightforward
computation gives for (2.6) to the first order in α in QED,

hΦ2
Σi ¼ αgðmeϵÞ

AΣ

ϵ2
þOðL∂=ϵÞ; ð2:10Þ

where the dimensionless function g has an uninformative
expression in terms of Meijer functions. The limits of the
coefficient of the area term are

meϵ ≪ 1∶ gðmeϵÞ ∼
�
48

ffiffiffi
2

p
πΓ

�
3

4

�
Γ
�
5

4

��
−1
;

meϵ ≫ 1∶ gðmeϵÞ ∼
1

8
ffiffiffi
2

p ð2πÞ2
e−2ðmeϵÞ2

ðmeϵÞ2
:

It is interesting that the turn on of the area term happens at a
distance ϵ ∼m−1

e , independently of the value of α, since it is
given at this perturbative order by the statistics of charge
fluctuations of free electrons.
In conclusion, we have a rather sharp transition between

a perimeter law L∂Σ=ϵ for the fluctuations of the electric
flux for large ϵme (the limit of the pure Maxwell field) and
an area law ∼αAΣ=ϵ2 for ϵme small. This transition gives a
UV condition on the width of the smeared flux operator.
However, to have a transition in the flux fluctuations we
need also an IR condition on the size of the flux operators,

R ≫
ϵ

α
; ð2:11Þ

such that the area term dominates over the perimeter one in
(2.10). In the IR limit, this is always the case unless there
are no interactions. In this sense, the qualitative change in
the flux behavior is a nonperturbative effect that subsists for
small α.
To show how this change in expectation values should

lead to a change in the extensivity of the entropy, we can
take fluxes Φ1, Φ2, on two nearby patches on the shell,
separated by a distance ϵ of the same order as the with of
the shell. For Gaussian variables, the mutual information
between the Abelian algebras generated by these operators
is given by

I ¼ 1

2
loghΦ2

1i þ
1

2
loghΦ2

2i−
1

2
tr log

� hΦ2
1i hΦ1Φ2i

hΦ1Φ2i hΦ2
2i

�
:

ð2:12Þ

For the free case, when the perimeters of the two regions
are equal L1 ¼ L2 ¼ L, and the shared perimeter is L12,
we get

3The relation between charge density correlations and fluctu-
ations of the electric flux on the surface follows directly from
Gauss law. The flux over the surface is the charge on any side of
it. Then, the self-correlation is equal to the correlation between
total charges on each side of the surface.
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I ¼ 1

2
log

�
L2

L2 − L2
12

�
: ð2:13Þ

This is independent of ϵ and shows there are important
correlations along the surface that persist for any ϵ as long
as the theory does not have charges. For the case of
dominance of the area law, the flux operators are still
effectively Gaussian variables since the fluctuations of the
flux are produced by a large number of random indepen-
dent charge fluctuations near the surface, and we can apply
the central limit theorem (see [15]). Since the areas of the
nearby patches just add and hΦ1Φ2i is still given by∼L12=ϵ
we get

I ∼
ϵ2L2

12

α2A2
; ð2:14Þ

where A is the area of the patches. This is vanishing small if
we have (2.11).
The reason for this change is the large fluctuations

acquired by each of the two flux operators while the
correlation between them does not appreciably change.
The main change is the elimination of the surprisingly large
mutual information for the free Maxwell field (2.13) rather
than the actual value of the small one of the interacting field
(2.14). For small enough ϵ the difference just coincides
with the free result (2.13) independently of the coupling α.
Hence, this gives us the physical reason to expect univer-
sality for the correction, independently of the details of the
interactions, because the change is not due to some peculiar
effect of the charges but rather resides in the destruction of a
peculiar correlation present only for the free field. If there
are magnetic monopoles the same effect takes place for the
fluxes of the magnetic field. To find the form on which this
change in extensivity affects the mutual information
between the ball and its complement we need to take into
account the full quantum algebra of the operators in the
shell containing all flux operators in different patches at
the same time. This is better done in an expansion of the
operators in spherical variables as we do in the next section.

III. CALCULATION OF THE UNIVERSAL
VALUE OF THE CORRECTION

Now we describe how the physical effect of heavy
charges on the flux statistics across large surfaces described
in the previous section is responsible for the change of the
logarithmic coefficient of the entropy of a sphere. The
prescription is clear and precise, we have to compute
the mutual information for R ≫ m−1

e , α−1ϵ and evaluate
the change of the coefficient of logðRÞ as we move ϵme
from large to small values. Equivalently, we can evaluate
the change for R, ϵ, me fixed, R ≫ m−1

e ≫ ϵ, as we turn on
the interactions. The exact computation can be quite
difficult in an interacting theory. However, this should
not be an obstacle to isolate and understand the contribution

that produces the change in the logarithmic term since we
are expecting a universal behavior in these two limits. For
simplicity, we will think in terms of QED to the lowest
order in perturbation theory but, as it will become apparent
in the following, the change in the logarithmic term does
not depend on the details of the charged sector.
The technical details of the calculation, as well as the

final effective result, are in some aspects similar to the ones
presented by Donnelly and Wall [20,21], Soni and Trivedi
[22] (see also [23]), and Huang [24] to solve the same
problem. However, there are several important conceptual
and quantitative differences; our calculation is very differ-
ent in spirit from these works. We will discuss previous
results in the literature in comparison with the present paper
in Sec. III C. We start by reviewing the case of the free
Maxwell field in more detail.

A. Logarithmic coefficient for the
free Maxwell field

Let us briefly review the case of the free Maxwell field
on the sphere. See [9] for a detailed discussion. This is the
theory of electric and magnetic fields with equal time
commutation relations,

½Eiðx⃗Þ; Bjðy⃗Þ� ¼ iεijk∂kδ
3ðx⃗ − y⃗Þ; ð3:1Þ

constraint equations,

∇⃗ · E⃗ ¼ ∇⃗ · B⃗ ¼ 0; ð3:2Þ
and Hamiltonian,

H ¼
Z

d3x
1

2
ðE⃗2 þ B⃗2Þ: ð3:3Þ

The fields are Gaussian with two point correlators given by

hEjð0; x̄ÞEkð0Þi ¼ hBjð0; x̄ÞBkð0Þi

¼ ð2πÞ−2ð∂j∂k − δjk∇2Þ 1

jx̄j2

¼ 1

π2

�
2
xjxk
jx̄j6 −

δij
jx̄j4

�
: ð3:4Þ

Taking into account the spherical symmetry of the
problem, we expand the electric and magnetic fields in
vector spherical harmonics,

E⃗ ¼
X
l;m

Er
lmðr; tÞY⃗r

lmðθ;ϕÞ þ Ee
lmðr; tÞY⃗e

lmðθ;ϕÞ

þ Em
lmðr; tÞY⃗m

lmðθ;ϕÞ; ð3:5Þ
B⃗ ¼

X
l;m

Br
lmðr; tÞY⃗r

lmðθ;ϕÞ þ Be
lmðr; tÞY⃗e

lmðθ;ϕÞ

þ Bm
lmðr; tÞY⃗m

lmðθ;ϕÞ; ð3:6Þ
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with

Y⃗r
lm ¼ r̂Ylm; Y⃗e

lm ¼ ðlðlþ 1ÞÞ−1=2r∇⃗Ylm;

Y⃗m
lm ¼ r̂ × Y⃗e

lm; ð3:7Þ

and where Ylm are the ordinary spherical harmonics. The
vector spherical harmonics form a complete orthonormal
basis of vector fields on the sphere for a fixed radius. There
are three types of vector harmonics: Ys

lm, with s ¼ r, e, m,
the radial, “electric,” and “magnetic” components, and
there are 2lþ 1 values of m for each l ≥ 1. For l ¼ 0
there is only the radial component. For simplicity in what
follows we will use real vector harmonics such that the
coefficients in the expansion are Hermitian operators.
The constraint equations (3.2) tell the components

proportional to the “electric” vector harmonics Y⃗e
lm (for

l ≥ 1) are dependent variables,

Ee
lm ¼ ðlðlþ 1ÞÞ−1=2

�
2Er

lm þ r
dEr

lm

dr

�
; ð3:8Þ

Be
lm ¼ ðlðlþ 1ÞÞ−1=2

�
2Br

lm þ r
dBr

lm

dr

�
: ð3:9Þ

Therefore, the algebra is generated by the fields Er
lm, E

m
lm,

Br
lm, B

m
lm. These fields decouple for each l; m, l ≥ 1, and the

only components for l ¼ 0 are Er; Br which identically
vanish in this chargeless case. Writing the scaled variables,

ϕ1
lm ¼ r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp Er
lm; π1lm ¼ rBm

lm; ð3:10Þ

ϕ2
lm ¼ r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp Br
lm; π2lm ¼ rEm

lm; ð3:11Þ

it turns out we have two independent modes given by
canonical variables ðϕ1

lm; π
1
lmÞ and ðϕ2

lm; π
2
lmÞ. From the

commutation relation for the electromagnetic field (3.1), it
follows the two modes have equal time canonical commu-
tation relations as d ¼ 2 fields in the t; r coordinates,

½ϕi
lmðr; tÞ; πi

0
l0m0 ðr0; tÞ� ¼ iδii0δll0δmm0δðr − r0Þ: ð3:12Þ

The correlators of these Gaussian variables correspond to
the fundamental state of the Hamiltonian,

H ¼
X2
i¼1

X
l≥1;m

Z
∞

0

dr
1

2

×

�
ðπilmÞ2 þ ð∂rϕ

i
lmÞ2 þ

lðlþ 1Þ
r2

ðϕi
lmÞ2

�
; ð3:13Þ

which follows by expanding the electromagnetic
Hamiltonian (3.3).

An expansion of a free massless scalar ϕ̃ in spherical
coordinates gives exactly the same decomposition in radial
modes with the same algebra and Hamiltonian [9,25], and
hence the same correlators. The difference is that each
mode of the scalar is duplicated in the pair of variables
ðϕ1

lm; π
1
lmÞ, ðϕ2

lm; π
2
lmÞ for the Maxwell field, and that for the

Maxwell field the mode l ¼ 0 is missing. These features are
related to the helicity 1 of the Maxwell field. Concretely,
the identification is

ϕ1
lmðr; tÞ↔ ϕ2

lmðr; tÞ↔ ϕ̃lmðr; tÞ ¼ r
Z

dΩ ϕ̃ðxÞYlmðθ;φÞ;

l ≥ 1; ð3:14Þ

π1lmðr; tÞ↔ π2lmðr; tÞ↔ π̃lmðr; tÞ ¼ r
Z

dΩ π̃ðxÞYlmðθ;φÞ;

l ≥ 1: ð3:15Þ

This identification is a unitary transformation mapping
operators and states. It is nonlocal in space, but crucially, it
is local in the radial direction, identifying algebras deter-
mined by the same arbitrary radial regions in the two
theories.
Therefore, we have that the mutual information is given

by twice the one of the massless scalar in d ¼ 4 minus
twice the mutual information of the l ¼ 0 mode, which is a
d ¼ 2 dimensional scalar field with Hamiltonian,

H ¼
Z

∞

0

dr
1

2
ðπ2 þ ð∂rϕÞ2Þ; ð3:16Þ

on the half line r > 0, with ϕð0Þ ¼ 0 [9]. This gives

Sϵ ¼ 1=2Iϵ ¼ k
4πR2

ϵ2
−
16

45
logðR=ϵÞ

þ 1

2
logðlogðR=ϵÞÞ þ const: ð3:17Þ

The coefficient −16=45¼ 2× ð−1=90Þ− 2× ð1=6Þ, where
−1=90 is the logarithmic coefficient of the scalar field, and
1=6 the logarithmic coefficient for the l ¼ 0 mode (3.16).
The coefficient k is universal and corresponds to the one on
the mutual information between parallel planes for a scalar
[9]. The subleading logðlogðR=ϵÞÞ term comes from the
mutual information of the l ¼ 0 mode.

B. The effect of interactions

To see how the mutual information changes with ϵ in
presence of charges, as we have discussed in Sec. II, we
have to evaluate the change in the logarithmic term of the
entropy of a thin shell when the mass me gets smaller than
ϵ−1. This entropy requires the introduction of a cutoff, and
issues may arise, such as the precise definition of the
algebra associated with the region. In a lattice, the chosen

LOGARITHMIC COEFFICIENT OF THE ENTANGLEMENT … PHYS. REV. D 101, 065020 (2020)

065020-7



algebra might contain a center formed by operators in the
boundary [26]. This issue is however irrelevant for the
calculation we are performing because we are looking for a
change in the entropy with ϵ, and the possible operators
localized in the boundary have large correlations with
themselves in the continuum limit, such that their contri-
bution to the entropy, whatever it is, is independent of the
size of ϵ. See the discussion in Sec. III C.
Then, we expect the important physical effect of the

interactions to be the change in expectation values of the
smeared electric flux normal to the shell, and in turn a
change in the logarithmic coefficient. But these variables
form part of a larger algebra of operators in the shell, and
we have to understand the variation of the quantum entropy
of this algebra.
To lowest order in QED, the effective Lagrangian is

nonlocal but still quadratic,

L ¼ −
1

4
Fμνð1þ πð−∂2ÞÞFμν; ð3:18Þ

where πðq2Þ is the renormalized vacuum polarization
amplitude. Therefore, we can still think in terms of
Gaussian variables. This correction changes the equal time
electric and magnetic correlators in coordinate space as

hBjðxÞBkð0Þi ¼ ð∂j∂k − δjk∇2Þ
Z þ∞

0

dm2 ρðm2ÞC0ðx;mÞ;

ð3:19Þ

hEjðxÞEkð0Þi ¼ ð∂j∂k − δjk∇2Þ
Z þ∞

0

dm2 ρðm2ÞC0ðx;mÞ

þ δjk

Z þ∞

0

dm2 ρðm2Þm2C0ðx;mÞ;

ð3:20Þ

where ρðm2Þ is the spectral density (2.4), and C0ðx;mÞ is
the scalar correlator of mass m,

C0ðx;mÞ ¼
Z
R4

d4p
ð2πÞ3 Θðp0Þδðp2 −m2Þe−ip·x

¼ m
4π2x

K1ðmxÞ: ð3:21Þ

The equal time commutators are kept the same.
We see the electric correlator is not divergence-free any

more, due to the presence of the charge density operator,
and the electric-magnetic duality is broken in the absence
of monopoles. These effects are due to the last term of
(3.20), that we naturally expect to be responsible for the
nontrivial effects. This term vanishes in the decoupling
limit α → 0.
The constraint equation of the electric field (3.8) is

changed by the addition of the charge density operator.

However, the electric component Ee
lm is still a dependent

variable, now given in terms of the radial component and
the charge density. Then, in evaluating the entropy of the
electromagnetic field we can restrict our attention to the
generating fields of the algebra which are the same radial
and magnetic modes (3.10), (3.11).4 In particular, the
mode l ¼ 0 of the radial components is given in terms of
the total charge as a function of the radius. This can be
thought of as a variable belonging to the charged operator
algebra. Hence, for the algebra of the Maxwell field, we
can still ignore the l ¼ 0 mode, though there is an
important effect of this mode on the charged algebra that
will be discussed later on in the calculation.
The correlators of these radial variables can be readily

evaluated from (2.4), (3.5), (3.6), (3.7), (3.19) and (3.20).
As expected, we do not get relevant changes concerning the
free correlators except for the correlator hEr

lmðrÞEr
lmðr0Þi of

the radial electric variable, due to the last term in (3.20).
The perturbations for the other correlators are computed
in the Appendix A, where we also discuss why these
corrections are irrelevant for the present problem. In
particular, the second mode ϕ2

lm, π
2
lm or equivalently Br

lm,
Em
lm, corresponding to the radial magnetic variable does not

contribute to the change in the logarithmic term. However,
we expect this mode will produce a contribution in the
presence of magnetic monopoles.
Therefore, we will focus on the first mode ðϕ1; π1Þ, cor-

responding to the radial electric field Er and the magnetic
component of the magnetic field Bm (3.10). Let us first look
at the free correlators. The scalar correlator is

hϕ1
lmðrÞϕ1

lmðr0Þi0 ≡ r2r02

lðlþ 1Þ hE
r
lmðrÞEr

lmðr0Þi0

¼ rr0

ð2πÞ2
Z

dΩ dΩ0 YlmðΩÞYlmðΩ0Þ
r2 þ r02 − 2rr0Ω̂ · Ω̂0

¼ 1

4π

Z
dθ sinðθÞPlðcosðθÞÞ

z − cosðθÞ

¼ Γ½lþ 1�
21þ2

ffiffiffi
π

p
Γ½lþ 3=2�

1

zlþ1 2F1

×

�
lþ 1

2
;
lþ 2

2
; lþ 3

2
;
1

z2

�
; ð3:22Þ

where

z ¼ r2 þ r02

2rr0
> 1: ð3:23Þ

The step in the second line follows from the fact that the
integral is independent of m and that the spherical har-
monics are eigenvectors of any rotational invariant kernel.
Analogously, the momentum correlator reads

4In the same way, time derivatives of the fields are dependent
variables through the equations of motion.
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hπ1lmðrÞπ1lmðr0Þi0
¼ −

2rr0

ð2πÞ2
Z

dΩ dΩ0 YlmðΩÞYlmðΩ0Þ
ðr2 þ r02 − 2rr0Ω̂ · Ω̂0Þ2

¼ −
1

4πrr0

Z
dθ sinðθÞ PlðcosðθÞÞ

ðz − cosðθÞÞ2

¼ −
1

rr0
∂zhϕ1

lmðrÞϕ1
lmðr0Þi0: ð3:24Þ

In the thin shell r ∈ ðR − ϵ=2; Rþ ϵ=2Þ we have jr −
r0j=R ≪ 1 and the correlators behave as the one for a d ¼ 2
scalar,

hϕ1
lmðrÞϕ1

lmðr0Þi0 ∼ −
1

2π
logðjr − r0j=RÞ; ð3:25Þ

hπ1lmðrÞπ1lmðr0Þi0∼ − 1
2πjr−r0j2 :

These limits can be more simply understood by noting that
the integrals (3.22) and (3.24) are dominated for small
jr − r0j=R, z ∼ 1, by θ ∼ 0, where we can replace
PlðcosðθÞÞ ∼ Plð1Þ ¼ 1. This behavior, independent of l,
persists while l ≪ R=jr − r0j ∼ R=ϵ. For larger angular
momentum, the oscillatory dependence of the Legendre
function changes the result. The full tower of l in the
interval gives the scalar entropy in the shell, but we will
focus on the modes of low l which are the responsible for
the change in the logarithmic term.
Except for unimportant corrections discussed in

Appendix A, the only relevant one to these correlators is
for the radial electric field and is due to the last term in
(3.20). This term gives

Δhϕ1
lmðrÞϕ1

lmðr0Þi

≡ r2r02

lðlþ 1ÞΔhE
r
lmðrÞEr

lmðr0Þi

¼ r2r02

lðlþ 1Þ
Z

dΩ dΩ0 YlmðΩÞYlmðΩ0ÞðΩ̂ · Ω̂0Þ

ΔC
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ r02 − 2rr0Ω̂ · Ω̂0
p �

; ð3:27Þ

where

ΔCðxÞ ¼
Z þ∞

0

dm2 ρðm2Þm2C0ðx;mÞ: ð3:28Þ

This new term contains the effect on the normal fluxes and
will be the responsible of the change in the logarithmic
term. The function in (3.28) is exponentially small for
mex ≫ 1, and for mex ≪ 1 we have

ΔCðxÞ ∼
R 1=x2

4m2
e
dm2 m2ρðm2Þ

x2
: ð3:29Þ

Note the UV behavior depends on the spectral function. For
QED at the lowest order, it gives

ΔCðxÞ ∼ α

3π3x4
: ð3:30Þ

The precise behavior will not be relevant as far as it
dominates over the free contribution for small x. This
implies a spectral density falling slower than ρðq2Þ ∼ q−4

for large q2. This coincides with the condition that the
fluxes get an area term diverging for small ϵ, and the
unitarity bound for the current correlators in a scaling limit,
as discussed in Sec. II.
For (3.30) Eq. (3.27) gives

Δhϕ1
lmðrÞϕ1

lmðr0Þi ∼
α

3π2
ðlðlþ 1ÞÞ−1 R2

jr − r0j2 : ð3:31Þ

This again is valid for l ≪ R=ϵ, independently of the mass,
as far as we are in the regimemϵ ≪ 1. Notice that due to the
tensor structure of the second term in (3.20), as opposed to
the first term in the same equation, the lðlþ 1Þ dependence
coming from the normalization of the radial electric field
does not disappear for this correction. This factor encap-
sulates the main effect affecting the statistics of the modes
l≲ R=ϵ and displays the phenomenon of enlarged self
correlations for the smeared electric fluxes now written in
terms of the angular modes. There will be changes for large
angular momentum l ≥ R=ϵ too, but these are local, and
would not modify the mutual information. In fact, the
contribution to mutual information falls exponentially fast
for l > R=ϵ because l=R plays the role of a mass in a
picture of dimensional reduction with respect to the
directions parallel to the surface, and correlations between
the two regions on both sides of the shell are exponentially
suppressed for ϵ larger than the mass.
Now, let us recall the formula for the entropy of Gaussian

variables with correlation kernels X and P for the field and
the momentum variables,

S ¼ trðð
ffiffiffiffiffiffiffi
XP

p
þ 1=2Þ logð

ffiffiffiffiffiffiffi
XP

p
þ 1=2Þ

− ð
ffiffiffiffiffiffiffi
XP

p
− 1=2Þ logð

ffiffiffiffiffiffiffi
XP

p
− 1=2ÞÞ: ð3:32Þ

For the regime of low angular momentum l, the state in the
interval is very entropic because the product of correlation
functions is large. For example, trðXPÞ ∼ αR2=ϵ2=l2 ≫ 1.
Therefore we can safely discard the 1=2 inside the
logarithms in the above formula to approximate for each
mode,

ΔSl ¼ tr logð
ffiffiffiffiffiffiffiffiffiffi
XlPl

p
Þ ¼ −

1

2
logðlðlþ 1ÞR−2Þ þ const;

ð3:33Þ

where the constant is the entropy given by the correlators
(3.26) and (3.31) without the l and R dependent factors in
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this later formula, and subtracted from the one of the free
scalar. This later is an l independent entropy of a d ¼ 2
model in an interval. The important point is that it does not
have a dependence on l and its contribution summed over
the spherical modes is proportional to the trace of an
identity operator on the sphere, which will add a contri-
bution to the area term.
The entropy produced by the first term in (3.33) can then

be written as

ΔS ¼ −
1

2
tr logð−∇2

ΩÞ; ð3:34Þ

where the operator inside the logarithm is the Laplacian on
the sphere of radius R. The mode l ¼ 0 is absent in the
definition of the Laplacian. The size of the regularization
we have to impose on expression (3.34) is precise, we have
a distance cutoff ϵ in the sphere, corresponding to the limit
on the angular momentum, R=l > ϵ.
This calculation can be done by standard methods, for

example using the heat kernel. The heat kernel is defined as

KðτÞ ¼ tr e−τð−∇2
ΩÞ ¼

X
l≥0

ð2lþ 1Þe− τ
R2
lðlþ1Þ − 1; ð3:35Þ

where we have subtracted the mode l ¼ 0. For small τ,
using Euler MacLaurin formula (see for example [24]),
we have

KðτÞ ∼ R2

τ
þ 1

3
− 1þOðτÞ: ð3:36Þ

The trace in (3.34) follows from the formula,5

−
1

2
tr logð−∇2

ΩÞ ¼
1

2

Z
∞

ϵ2

dτ
τ
KðτÞ ¼ area term

þ 1

3
logðR=ϵÞ − logðR=ϵÞ þ const: ð3:37Þ

We have kept separated the contribution of the (absent)
mode l ¼ 0 because it will soon be canceled by a differ-
ent term.
Equation (3.37) gives the change in the logarithmic term

of the entropy of the shell. It goes with a negative sign in the
mutual information, that changes as

ΔIMaxwell ¼ Iinteracting − Ifree ∼ � � � − 1

3
logðR=ϵÞ

þ logðR=ϵÞ þ � � � ð3:38Þ

There is also a contribution to the mutual information of
the charged fields. As they are very massive again the naive
expectation is that there is no logR term coming from this
sector. However, there is a constraint in the algebra of the
charged fields in the sphere or its complement. Only neutral
operators appear in these algebras because they are the only
operators that are local when interacting with the Maxwell
field. Then, the algebra of the charged fields is, in fact, a
Uð1Þ orbifold. See [12,27] for previous discussions where
this contribution of charged particles to the Maxwell field
entropy was recognized. As discussed in [15], there is a
universal logarithmic correction to the mutual information
for these orbifolds that shows up, even for very massive
fields, once ϵme ≪ 1. This is given by

Iorbifold − Ifull ¼ −
d − 2

2
logðR=ϵÞ þ � � � ð3:39Þ

Here Ifull is the mutual information for the algebra of the
full charged massive fields, which does not contain any
logarithmic term.We review this result from the perspective
of the replica calculation of the entropy in Appendix B. For
d ¼ 4, this exactly cancels the contribution of eliminating
the l ¼ 0 mode in (3.38). This is no coincidence. The
contribution in (3.39) comes from the entropy of total
charge (Gaussian) fluctuations in the sphere (which are
compensated in the complement). This entropy is sub-
tracted in the orbifold [15]. This entropy is equal through
Gauss law to the one associated with the total electric flux
fluctuations in the shell, corresponding to the l ¼ 0 mode.
This contribution could then be used to complete the
Laplacian on the sphere with the mode l ¼ 0with a specific
infrared cutoff ∼R. If we have kept this contribution in the
above calculation of the shell entropy of the electromag-
netic field it would also be subtracted in the mutual
information, as it is subtracted in the orbifold mutual
information. Hence, alternatively, we could have consid-
ered the radial l ¼ 0 flux as part of the Maxwell field
algebra and not correct for the zero mode in (3.35), while at
the same time disregard the fluctuations of the total charge
operator in the charged field algebra, which is the one that
makes a difference for the orbifold.
In conclusion, we have a −1=3 logðR=ϵÞ correction for

the mutual information, that goes into the regularized
entropy with an additional factor of 1=2. Therefore, for
the Maxwell field interacting with electric charges,

Sintreg ¼ � � � −
�
16

45
þ 1

6

�
logðR=ϵÞ þ � � � ; ð3:40Þ

which still does not match the anomaly.

5This formula tells us the log ϵ coefficient, which gives us also
the logR coefficient because of scale invariance. If we have kept
the zero mode we would need an infrared regulator, for example a
small mass μ. Then there would be an additional contribution
− logðμϵÞ to (3.37). We would have obtained −1=3 for the
coefficient of logðϵÞ compensated by different coefficients for
logR and log μ.
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Interestingly, to get the anomaly one has to consider the
effect of monopoles. They will affect the dual modes
Em; Br, containing the radial magnetic fluxes. The correc-
tion is thus duplicated

Sintreg ¼ � � � −
�
16

45
þ 1

6
þ 1

6

�
logðR=ϵÞ þ � � �

¼ � � � − 31

45
logðR=ϵÞ þ � � � ð3:41Þ

having the right anomaly coefficient.
The necessity to invoke monopoles might be surprising.

However, it is completely natural from the fact that the
problem to solve was for the free Maxwell field in the IR
and this is a duality invariant problem. It is also necessary
when considering RG flows. One starts with the mutual
information for the Maxwell field in the IR with the hope
that decreasing ϵ one would get the right anomaly by
adding the effect of charges. If the electric charges at some
scale would solve the problem and provide the right
anomaly, we would be into another problem. This is
because in the deep UV the theory might contain also
monopoles which would then spoil the matching with the
anomaly when crossing that new scale. The existence of
monopoles seems necessary to have a complete theory with
quantized electric charges.

C. Comments on the literature

The subject of EE in gauge theories has attracted much
attention in the literature. One issue that was much
discussed is how to split the Hilbert space as a tensor
product for complementary regions. In a lattice gauge
theory, gauge dependent variables are assigned to links.
A tensor product decomposition across a boundary can be
implemented by the construction of an extended lattice with
new special vertices, not associated to gauge transforma-
tions, at the points where the boundary cuts a link [28–30].
Another implementation, an “extended Hilbert space”
approach, defines an enlarged Hilbert space for nongauge
invariant fields, while keeping the state gauge invariant
[31,32]. However, the EE in lattice gauge theory has a
natural definition as the entropy of a state in an algebra of
local gauge invariant operators [26]. This definition is in
fact the same as for any other model; entropy in quantum
mechanics is the entropy of a state in a particular algebra,
and the entropy of a region is the one of an algebra of
operators attached to it. Issues may arise in a lattice
concerning the precise algebra assigned to a region. The
entropy for both the extended lattice and the extended
Hilbert space approaches corresponds to a particular choice
of local algebra called the electric center choice in [26].
This consists on all gauge invariant operators in the region
plus the electric field normal to the boundary. This electric
field commutes with the rest of the algebra and forms a
center for it. The entropy contains a classical Shannon piece

due the presence of this center. There are infinitely many
other possible choices of local algebras that differ by details
on the boundary; in particular there are many choices
without a center, and hence defining a tensor product
decomposition. The entropies of all these choices differ in
the same way that entropies for different regularizations
differ to each other. In the continuum limit, the quantities
that are well defined and finite for QFT such as the relative
entropy and mutual information, are independent of these
particular choices [26]. See [20–23,33–39] for further
developments.
In [20–22] it was argued that for a free Maxwell field it is

precisely the electric center (or “edge modes”) classical
term that produces a contribution to the logarithmic term
that restores the anomaly coefficient.6 This contribution
is given by the classical entropy of the electric field normal
to the sphere on the boundary. See also [24] where this
same contribution is attributed to gauge modes at the
boundary. The solution discussed in this paper also depends
on the statistics of the normal electric (and magnetic)
fluxes near the boundary, and both calculations end up with
the partition function of a scalar on the surface of the
sphere, Eq. (3.34). In a certain sense, our paper gives a
justification for the technical result of these previous
calculations. However, we want to highlight several impor-
tant differences.
The problems posed by the idea of the contribution of a

center term in QFT have not been much appreciated. In
general local algebras in the continuum theory do not
contain a center. To commute with the rest of the algebra an
operator has to be localized in the boundary, and it is not
possible to localize an operator in a surface of d − 2
dimensions. Such an operator would be too singular to
be an operator in Hilbert space, in the same way field
operators at a point are not Hilbert space operators but
operator valued distributions. In terms of a lattice model,
this means these operators will tend to have very large self-
correlations and decouple from the rest in the continuum
limit. That is why they do not affect the mutual information.
In this sense, the results of [20–22] highlight that the
ambiguities in the entropy also reach to the logarithmic
term for some regularizations. This emphasizes the impor-
tance to use a quantity that remains physical in the
continuum to settle this issue. This is the case of the
mutual information. For the bare entropy, the electric center
is a particular choice, and other choices will produce
different results. As we have shown, exactly the same
electric center choice for the Maxwell field can be mapped
to a center choice for a scalar theory giving ambiguities
also in this case. The correlators for the radial electric field
Er
lm coincide with the ones of the scalar modes

R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

ϕlm. It is interesting to notice that the effect

6Negative contributions to the area term have also been
discussed; see for example [40–42].
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on the logarithmic term will appear in the scalar repre-
sentation due to the factor depending on l, and this is only
relevant because of the classical entropy of continuum
variables is not well defined and is not invariant under
changes of normalization. This emphasizes the ill defined
nature of these contributions. If we include in the algebra
the conjugate momentum along with the radial electric
field, the normalization is automatically irrelevant, and
the result for the free Maxwell field is equivalent to the
scalar one (minus the l ¼ 0 mode), with no additional
logarithmic contribution. There is also an important point
in the calculation of the contribution of the electric center
for the free field. The total flux for the free field is zero,
and then the mode l ¼ 0 should be absent in evaluating
the spectral quantity (3.34). This gives a correction to the
entropy 2=3 logðR=ϵÞ instead of −1=3 logðR=ϵÞ, and the
result does not match the anomaly.
Our results for the mutual information, which are free

from ambiguities, also rely on a surface effect, but the
charges are crucially necessary for this effect to take
place, and the mass of these charges sets the scale of the
surface width. The importance of taking into account
charges when computing the entropy of a Maxwell field
was also emphasized in [12,33]. The result for a free
Maxwell field is not the anomaly coefficient. We compute
quantum entropies, and the effect given by Eq. (3.34) is
not a classical entropy but the result of an approximation
in which the state is in the classical regime of large
entropy because of the large electric (and magnetic) flux
fluctuations.
Another important conceptual remark that underlies the

present work is that there is nothing intrinsically different
for models described by gauge fields in QFT that requires a
special treatment for the EE. As we have argued, the
particular problem for the Maxwell field is due to the fact
that in the IR it possess certain constraints that are relaxed
by the UV physics. A somewhat simpler realization of an
unprotected RG charge in the IR occurs for orbifolds [15].
As we have seen, this is also relevant to get the right
anomaly coefficient for the interacting Maxwell field. The
same phenomenon also happens for topological models.
There are some works in the literature that link the
supposed existence of a center entropy for gauge fields
with the origin of the area term of holographic EE in the
bulk [43–45]. In the holographic case, what seems again to
be going on is rather a macroscopic physical phenomenon
which connects the UV with the IR as in models with
superselection sectors [15].
As we understand, the numerical result of the calcu-

lations in [20–22] would not match the anomaly if the
absence of the mode l ¼ 0 for the free field would have
been properly taken into account. Disregarding this point,
we also find that the correction giving the anomaly is
related to a partition function of a Laplacian on the S2

sphere. See also [24]. However, our result comes from a

very different computation. The differences at the technical
level can be summarized by the equation,

2 ×
1

2
½ð−Þð−Þð−1=3þ 1Þ − 1� ¼ −1=3: ð3:42Þ

The electric center for the free Maxwell field is supposed to
give an entropy which is added with positive sign to the
entropy of the sphere and gives a −1=3 logarithmic
coefficient. We claim the l ¼ 0 mode is not present in
the description of the independent variables of the free
Maxwell field, what adds 1 to the coefficient, and this
should be the correct result of an electric center correction
to the free field. In our setup, the effect appears for the full
quantum algebra of the interacting field in the shell rather
than the classical algebra of the free electric field, and is a
destruction of correlations with respect to the free Maxwell
field, what gives minus sign, getting ð−Þð−1=3þ 1Þ.
However, we have found the effect in the shell entropy,
which appears with a minus sign in the mutual information,
hence the second minus sign in (3.42). The additional term
−1 inside the square brackets in (3.42) comes from the
logarithmic contribution of the charged fields. The algebra
of charged fields is restricted to contain only neutral
operators in the sphere. These are the only operators that
can be localized due to the coupling with the Maxwell field,
disregarding the size of the coupling. This constraint
produces the logarithmic term for the charged field sector.
There is also a global factor 1=2 that comes from the
regularized entropy in terms of the mutual information.
This is overcome by the effect of magnetic monopoles,
which is identical to the one of electric charges, and gives a
factor 2. Therefore, the solution is explicitly electromag-
netic duality invariant, and the use of mutual information is
very important to clarify that.

IV. WHY SHOULD THE COEFFICIENT FOR
THE INTERACTING FIELD COINCIDE

WITH THE ANOMALY?

In the previous section we started from the knowledge of
the logarithmic coefficient for the free Maxwell field and
followed the changes in the mutual information as the
parameter ϵ crosses the scale of electric and magnetic
charge fluctuations. In this way, we arrived at a coefficient
−31=45, coinciding with the anomaly, for a Maxwell field
interacting with heavy electric and magnetic charges. In
this section, we follow the inverse direction: we will first
argue that the logarithmic coefficient should be the
anomaly for a complete theory, and from there we will
attempt to arrive at the result for the free Maxwell field.
Let us first review the derivation of the coefficient of the

logarithmic term in the entropy for a CFT by mapping
the sphere to de Sitter space. This is straightforward [2].
We conformally map the causal domain of dependence of
the sphere of radius R to the static patch in de Sitter space of
the curvature scale R. The vacuum state is mapped into the
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de Sitter symmetric vacuum state which has a specific
temperature T ¼ ð2πRÞ−1 associated with the de Sitter
Hamiltonian. The EE of the sphere in Minkowski space is
mapped to the thermodynamic entropy in de Sitter space.
This is given by

S ¼ βEþ logðZÞ: ð4:1Þ
The energy density is finite, and, as the volume of the static
patch is finite, the expectation value of the energy E does
not contribute to the divergent logarithmic term. The
logarithmic term is then just given by the logarithmic term
in logZ, that, for de Sitter space at this particular temper-
ature, is the free energy in the Euclidean sphere Sd. This
gives the standard result,

SF ¼ � � � þ ð−1Þd2−14A logðR=ϵÞ: ð4:2Þ
This derivation involves the bare entropy. It is supposed

that with a local and geometric cutoff this result cannot be
modified. However, as we have explained above, this can
be challenged if we can modify the content of the
regularized algebra with operators in the boundary such
that these operators have sufficiently nonlocal correlations
along the surface. Any change in regularization along the
surface introduces boundary objects in the partition func-
tion on de Sitter space, breaking the de Sitter invariance of
the calculation. The question is when these changes can
modify the RG charge.7

To clarify the situation we use the mutual information for
small ϵ. We can think in two cases where the shell entropy
contains nonlocal contributions. The first is a model with
global SS. This corresponds to a subalgebra of a complete
theory with a global symmetry group G. The subalgebra
contains all operators that are invariant under the symmetry
(an orbifold). In that case, the shell algebra contains the
twist operators, that implement the symmetry only inside
the sphere and not outside of it. The twist operators are
nonlocal since they cannot be generated locally by field
operators in the shell. The second case is when there are
gauge SS. In this case, there are charge measuring
operators, fluxes of electric and magnetic fields, or more
generally Wilson loops and t’Hooft loops. These are locally
generated in the shell but must have perimeter law
fluctuations because of the absence of charges.
In a complete model, the twist operators cannot belong to

the algebra of the shell since they do not commute with the
charged operators in the sphere. For the case of a complete
gauge theory, the sharp electric and magnetic fluxes inside

the shell have area law expectation values. Then, we expect
that for complete models no local changes in the regulari-
zation could challenge the result for the logarithmic term in
the smooth sphere partition function, and this should
coincide with the anomaly for the Maxwell field [46–48].
For noncomplete models, the proof using the mapping to

de Sitter space should be essentially correct, but the result
can change depending on the detail of the objects we insert
at the boundary or the possible nonlocal correlations of
these objects. This implies there are ambiguities in the
entropy which go beyond the usual local UV ambiguities
and have a more physical origin. The mutual information
resolves these ambiguities.
To understand how these nonlocal contributions appear

for incomplete models in the mutual information let us
think in the replica twist operators. The Renyi entropy of
the shell for integer n is given by the logarithm of an
expectation value,

Sn ¼ ð1 − nÞ−1 loghτnð0Þτ†nðϵÞi; ð4:3Þ
where the theory is now the n replicated model, and the
Renyi twist operators are seated at the two boundaries of the
shell, implementing the cyclic gluing of copies [49]. An
operator product expansion (OPE) of the product of twists in
(4.3) should contain a combination of all possible operators
in the shell with the quantum numbers of the vacuum. In the
short ϵ limit, the OPE should be dominated by products of
operators acting on each copy of the replicamanifold.8 In the
limit n → 1 this leaves us with expectation values of
operators in the single copy theory. But these operators
must belong to the shell algebra and, generally, they should
not pose a problem for the RG charges.
However, in an orbifold, the OPE contains and an

additional factor of the twists operators averaged over
the group. This is allowed in the shell since they commute
with the uncharged operators in the ball. We show this in
more detail in Appendix B. The result is

Sorbifold ¼ Sfull þ
1

2
log

�
jGj−1

X
g∈G

hτgi
�
: ð4:4Þ

The τg are twist operators seated in the shell, with typical
smearing of size ϵ, and the 1=2 factor comes from the
mutual information regularization. Taking into account the
statistics of the expectation values of sharp twists, this
gives, for example, the contribution (3.39) for a Uð1Þ
orbifold [15]. This is a zero (modular) temperature con-
tribution to the entropy since the correction does not
depend on the Renyi index; see Appendix B. However,
for a massive field, it comes from correlations at a distance
∼m−1 at both sides of the boundary.
Notice that the correction is just an average over the

possible nonlocal operators on the shell. Other operators

7Note that a regularized version of the electric center for the
Maxwell field would contain exponentials eiλnΦE of smeared
electric fluxes ΦE on different patches with coefficients propor-
tional to integers n, such that these operators close an algebra.
The entropy of this classical discrete subalgebra is well defined.
The scalar version of this algebra is very nonlocal along the
surface. 8See [50–53] for other uses of OPE of replica twist operators.
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may contribute but do not give a nonlocal contribution
that changes the RG charge. In this scenario with global
symmetries, we have two models, where the algebras
contain or not charged operators, and this leads to two
different results. Let us now think in the case of the com-
plete theory of a Maxwell field with charges. We again
expect to have an analogous contribution to the entropy
given by sums over operators on the shell. The important
part of the contribution that would contain the nonlocal
correlations should be, in analogy with (4.4),

Slog ¼ logZðS4Þ þ 1

2
log

�
N−1

X
Γ;Γ0;q;g

heiðg
R
Γ
Erþq

R
Γ0 Bri

�
:

ð4:5Þ

Here Γ, Γ0 are patches on the shell, q, g are arbitrary
charges, and N is a normalization factor.
This should not produce corrections to the logarithmic

term as far as the flux operators have an area law. Once we
have increase ϵ enough to have free field expectation values
for the smeared loop operators the situation changes. These
fluxes can then be written as Wilson and t’Hooft loops on
the shell having perimeter law expectation values,

Slog ¼ logZðS4Þ þ 1

2
log

�
N−1

X
Γ;Γ0;q;g

hWq
ΓT

g
Γ0 i

�
: ð4:6Þ

We can write in an effective way the new contribution as a
path integral on the boundary Σ,

1

2
log

�Z
DαDβ ei

R
Σ
dσðαðxÞErðxÞþβðxÞBrðxÞÞ

�

¼ 1

2
log

Z
DαDβ e−

1
2

R
dσ1dσ2ðαðx1ÞhErðx1ÞErðx2Þiαðx2Þþβðx1ÞhBrðx1ÞBrðx2Þiβðx2ÞÞ; ð4:7Þ

where the regularization scale is set to ϵ, and the integrals
are normalized

R
Dα ¼ R

Dβ ¼ 1. This gives the contri-
bution,

−
1

4
tr logðGEÞ −

1

4
tr logðGBÞ; ð4:8Þ

where GE and GB are the radial electric and magnetic
correlator kernels on the surface. The calculation of this
type of contributions was done [22] in the context of the
electric center contribution to the entropy.9 The result for
the universal piece is 1

3
logðR=ϵÞ. Therefore, starting from

the logarithmic coefficient −31=45 for short ϵ in the
complete theory we again arrive to −16=45 for larger ϵ,
which corresponds to the pure free Maxwell field.

V. FINAL REMARKS

We have shown the mismatch of the logarithmic coef-
ficient of a free Maxwell field is solved by the presence of

electric and magnetic charges, as far as the regulating
distance is set to be smaller than the typical mass scale of
the charge fluctuations.
The reason for the mismatch for the free Maxwell field is

the existence of certain operators, electric and magnetic
fluxes, with peculiar long-distance correlations. This leads
to some degree of nonprotection of the infrared RG charge.
However, this is not relevant for the irreversibility theorems
since the coefficient for a complete model is always the
same in the limit of vanishing regulator and large radius.
The phenomenon does not have a relation with gauge
symmetries, but with the existence of superselection sectors
in the IR theory. A similar phenomenon exists for other
models with SS sectors. Models without IR superselection
sectors do not display these types of alternatives.
The effect of the IR SS on the entropy cannot be

described as a pure UV nor a pure IR phenomenon. It is
rather an effect on the IR entropy facilitated by UV physics.
The main witnesses of this physics are the smeared flux
operators (Wilson and t’Hooft loops) that sense both the
UVand the IR by having a large size along the surface and a
short one in the perpendicular direction.
Through this paper, we have analyzed the case of an IR

free Maxwell field interacting with heavy charges. The
matching with the anomaly will also hold for asymptoti-
cally free gauge theories and regions of size R in the UV
regime, where the theory is complete in the sense that it
contains charges for all representations. The full anomaly
(without orbifold corrections) has to be assigned to the
charged fields. In this regime, we do not have the constraint
that ϵ should be smaller than a mass scale, but ϵ should be

9As discussed in the previous section, with respect to the
calculation in [22], we have a difference in an additional factor
1=2 because of the mutual information regularization, compen-
sated by the addition of the magnetic fluctuations on top of the
electric ones. There is also a global sign −1 since we are not
computing the entropy of the electric fluctuations but just the
partition function (4.7), and this contribution is not part of the full
coefficient −31=45 but an additional piece that is added for
large ϵ. We also have to make the same comments as in the
previous section about the mode l ¼ 0. This flux is set to zero
with no fluctuations in the free Maxwell field, but is compensated
by the loss of the contribution of the orbifold of the charged sector
as we move to large ϵ.

CASINI, HUERTA, MAGÁN, and PONTELLO PHYS. REV. D 101, 065020 (2020)

065020-14



small enough to satisfy (2.11). This is achieved with
ϵ ≪ αðMÞR=j logðRMÞj, with M the confinement scale.
Previous discussions in the literature about this subject

give the correction in the entropy as a classical entropy of a
center in the algebra, and this piece is supposed not to
quantify entanglement but just classical correlations. We
can wonder if our results describe the correction to the
entropy as a quantum or a classical contribution. Our
discussion was in terms of mutual information, to deal with
well-defined quantities. This does not allow us to discern if
there are classical correlations or, for example, distillable
entanglement. An answer to this question in any QFT
requires to look at different measures of entanglement
instead of the mutual information [54]. At present, this
seems very hard in QFT. For a finite system in a pure state,
all the natural measures of entanglement agree (for algebras
without center) with the entanglement entropy. In a general
QFT, we do not know if the expansions of the different
entanglement measures with the separation distance agree
all the way to the universal coefficient. But given that the
anomaly is obtained for the complete model, we can expect
that the answer to the question about the amount of the
entropy that can be considered classical or quantum would
not differ qualitatively from the one for simpler models
such as a free scalar.
A final important remark is that we have found an

interesting and simple effective way of describing the
contribution of IR superselection sectors to the entropy,
that applies to both global and local superselection charges.
The formula consists of the logarithm of the average
of expectation values of operators that contribute to the
nonlocal correlations along the surface. Recently [15], we
have proposed that holographic theories should be thought
of as theories having a large number of effective super-
selection sectors. The contribution of these sectors to the
entropy should give the dominant bulk area term to the

holographic entropy. This results in an interesting perspec-
tive that the Ryu-Takayanagi formula may correspond in
the boundary QFT to an average of expectation values over
a large set of surface operators of the theory.
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APPENDIX A: OTHER CORRECTIONS
TO CORRELATION FUNCTIONS OF

SPHERICAL NODES

In this Appendix, we analyze the corrections for the
correlators of the radial variables other than the radial
electric mode (in the absence of monopoles).
Let us analyze first the second mode ϕ2

lm, π2lm or
equivalently Br

lm, E
m
lm. The nontrivial spectral density in

(3.19) will affect the correlations of Br at short distance but
will not introduce important qualitative differences since
these corrections keep the correlators divergenless. To
convince ourselves of this statement we can again look
at the fields decomposed in vector spherical harmonics and
compare the theory in the sphere with a scalar one. Writing
a new two point function for a scalar ϕ̃ as

hϕ̃ðxÞϕ̃ð0Þi ¼ CðxÞ ¼
Z þ∞

0

dm2 ρðm2ÞC0ðx;mÞ; ðA1Þ

we get for the correlator of the scalar spherical modes
(see (3.14)),

hϕ̃lmðrÞϕ̃lmðr0Þi ¼ rr0
Z

dΩ dΩ0 Ylmðθ;φÞYlmðθ0;φ0ÞCðjx − x0jÞ

¼ rr0

Yl0ð0Þ
Z

dΩYl0ðθÞC
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ r02 − 2rr0 cosðθÞ
q �

¼ −
rr0

lðlþ 1ÞYl0ð0Þ
Z

dΩ ð∇2
ΩYl0ðθÞÞC

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 − 2rr0 cosðθÞ

q �

¼ −
rr0

lðlþ 1ÞYl0ð0Þ
Z

dΩYl0ðθÞð∂2
θ þ cotðθÞ∂θÞC

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 − 2rr0 cosðθÞ

q �

¼ r2r02

lðlþ 1Þ
Z

dΩ dΩ0 Ylmðθ;φÞYlmðθ0;φ0Þx̂ix̂0jð∂i∂j − δij∇2ÞCðjx − x0jÞ

¼ r2r02

lðlþ 1Þ hB
r
lmðrÞBr

lmðr0Þi ¼ hϕ2
lmðrÞϕ2

lmðr0Þi: ðA2Þ
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The first and last steps follow from the fact that the
spherical harmonics are eigenvectors of any rotational
invariant kernel in the sphere, and the eigenvalues do
not depend on m. For the free case, this identification is of
course the same discussed in Sec. III A in terms of radial
Hamiltonians. An analogous calculation gives for the
correlators of the magnetic components of the electric field,

rr0hEm
lmðrÞEm

lmðr0Þi ¼ h _̃ϕlmðrÞ _̃ϕlmðr0Þi ¼ hπ̃lmðrÞπ̃lmðr0Þi:
ðA3Þ

This shows the identification (3.11) of the mode Br
lm; E

m
lm

with a scalar modeϕ2; π2 for l ≥ 1 persists. The entropy and
mutual information of thismode is then equivalent to the one
of a scalar interacting with heavy particles with correlator
(A1). We do not expect this to produce a change in the IR
logarithmic coefficient. The possible nonlocal changes in the
entropy of the shell are determined by the low angular
momentum modes l ≪ R=ϵ for which the change in the
correlation function is independent of l and, as we have
discussed in the main text, will lead to changes in the area
term. In QED this correction for small l is a logarithmic
correctionΔhϕ2

lmðrÞϕ2
lmðr0Þi ∼ α log2ðjr − r0j=RÞwhichhas

to be resumed with the RG for very small jr − r0j.
The correction for the magnetic component Bm

lm which
acts as a conjugate momentum of Er is again independent
of l. A direct calculation similar to (A2) gives

hπ1lmðrÞπ1lmðr0Þi
¼ rr0hBm

lmðrÞBm
lmðr0Þi

¼ −∇2

Z
dΩ dΩ0 YlmðΩÞYlmðΩ0ÞCðjx − x0jÞ: ðA4Þ

For small jr − r0j we get an unimportant logarithmic
perturbative correction to (3.26)

Δhπ1lmðrÞπ1lmðr0Þi ∼ −
α

6π2
log

				 r − r0

R

				 R2

jr − r0j2 : ðA5Þ

APPENDIX B: REPLICA TRICK
FOR ORBIFOLDS

The EE for neutral subalgebras under the action of a
global symmetry group was treated in detail with an
operator algebra approach in [15]. Here, we explicitly do
the calculation of the mutual information in the coincidence
limit using the replica method.
Consider a QFT F of a fundamental field (or fields) ψ

that has some unbroken global symmetry given by a group
G. We can obtain a path integral representation of the
reduced density matrix ρ in a regionW in the usual form. It
is given by the functional matrix,

ρðψþ;ψ−Þ ¼ Zð1Þ−1
Z

ψðWþi0þÞ¼ψþ

ψðW−i0−Þ¼ψ−

Dψe−S½ψ �; ðB1Þ

with Zð1Þ ¼ R
Dψe−S½ψ � the partition function in the plane

without boundary conditions on the two sides of the cutW.
If we are interested in the “orbifold” theory O of the
operators invariant under the symmetry, we have to project
this density matrix into the neutral sector. IfW ¼∪m

i¼1 Wi is
the union of m disjoint regions this projection has to be
done in each connected component independently [15].
This is done by computing

ρ̃ðψþ;ψ−Þ ¼ jGj−m
X

g1;…gm∈G
ρðg1 � � � gmψþ;ψ−g−1m � � � g−11 Þ;

ðB2Þ

where gi is a twist operator that implements the symmetry
group in the region Wi alone and jGj is the number of
elements in the group. In this way,

trðρ̃XÞ ¼ tr

�
ρjGj−m

X
g1;…gm∈G

g−1m � � � g−11 Xg1 � � � gm
�

ðB3Þ

gives the state on the neutral additive algebra on W.10

The replica trick then proceeds as usual by computing
trρ̃n by gluing n replicas of the cut plane along the different
cuts in cyclic order. The difference with the usual replica
trick is that now there are several different partition
functions that are added to obtain trρ̃n due to the sums
in (B2). We get for the Renyi entropy,

SOn ðWÞ
¼ ð1 − nÞ−1trρ̃n

¼ ð1 − nÞ−1
�
log

�
jGj−mn

X
gki

Zfgki gðnÞ
�
− n logZð1Þ

�
:

ðB4Þ

The last term in the brackets corresponds to the normali-
zation of the density matrix where Zð1Þ is the partition
function of the plane without cuts. For n ¼ 1 the trace
eliminates the insertion of group elements, and the average
is trivial.
These sums are written in terms of group twists operators

τgki , where i ¼ 1;…; m denotes a connected component
and k ¼ 1;…; n is the copy of the plane. Due to the
cyclic gluing of the copies the partition function depends
on the products g̃1i ¼ g1i ðg2i Þ−1;…; g̃ni ¼ gni ðg1i Þ−1 for each
connected component i. The product of these group
elements is the identity,11

10The additive algebra in a region is the one generated by all
the algebras of balls included in the region.

11While this is not the case of the corresponding twist
operators that act on different copies of the space.
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g̃1i � � � g̃ni ¼ 1; ðB5Þ

and hence there are only mðn − 1Þ independent sums.
Another simplification follows from the invariance of the
theory under the symmetry group. This is the freedom of
changing variables ψ → gψ in each copy. This can be used
to eliminate n sums, imposing, for example, that there are
no group transformations in one of the connected compo-
nents and leaving ðm − 1Þðn − 1Þ independent sums over
the group elements.12

To avoid undefined quantities we compute the mutual
information for nearly complementary regions A and B.
Boundary issues are automatically eliminated. If A; B are
single component, we have for the Renyi mutual informa-
tion,

IOn ðA; BÞ
¼ SOn;δðAÞ þ SOn;δðBÞ − SOn;δðABÞ
¼ SOn;δðAÞ þ SOn;δðBÞ

− ð1 − nÞ−1


log

�
jGj−ðn−1Þ

X
fg̃kAg

Zfg̃kAgðnÞ
�
− n logZð1Þ

�
;

ðB6Þ

where the entropies are computed with a cutoff δ, we have
chosen to keep the group transformations only for the
region A, and the group elements satisfy the con-
straint (B5).
The partition function ZðnÞ (for the region AB) without

group twist insertions is the expectation value of two
replica twist operators τnA; ðτnBÞ† seated at the boundaries
of A and B. When these boundaries are near to each other
we have an OPE that is dominated by the identity,

τnAðτnBÞ† ∼ ZðnÞ þ � � � ¼ e−ðn−1Þðc0
AAþAB
δd−2

−κ A
ϵd−2

þ���Þ þ � � � ;
ðB7Þ

where δ is a cutoff and ϵ the separation of the boundaries.
This gives the area law (and subleading terms) for Renyi
mutual information in the model F .

The group elements g̃kA in the boundary conditions for the
partition function for the different copies can be imple-
mented as the insertion of an additional operator

Q
k τg̃kA in

the vacuum expectation value in the replicated model.
These group twists are of cutoff smearing size δ. The OPE
of the full twist operator should give

τnA
Yn
k¼1

τg̃kAðτnBÞ† ∼ ZðnÞ
Yn
k¼1

τϵ
g̃k
þ � � � ; ðB8Þ

where τϵg is some group twist operator over the region
seated on the shell with smearing size ϵ. This is because
inside A, on each copy, the group operation is equivalent to
g̃kA and to the identity in B; the new twist also obey group
rules, and for the identity element g̃kA ¼ 1 we obtain the
OPE of the Renyi twist operators.
Therefore, we get in the limit of small ϵ,

jGj−ðn−1Þ
X
fg̃kAg

Zfg̃kAgðnÞ ∼ ZðnÞjGj−ðn−1Þ
X
fg̃kAg

�Yn
k¼1

τϵ
g̃kA

�
: ðB9Þ

Replacing this into (B6) we get the leading correction to the
Renyi mutual information for small ϵ,

IOn ðA;BÞ ¼ IFn ðA;BÞ þ log

�
jGj−1

X
g

hτϵgi
�
: ðB10Þ

Therefore, for the entropies of SOn ðAÞ regularized with the
mutual information we have the usual replica trick calcu-
lation corrected by half this quantity,

SOn ðAÞ ¼ SFn ðAÞ þ
1

2
log

�
jGj−1

X
g

hτϵgi
�
: ðB11Þ

On each copy, the expectation value of the group of sharp
twists,

hτϵgi ∼ δg;1 þ e−c
A

ϵd−2
þ���; ðB12Þ

where only the identity has expectation value that is not
suppressed exponentially. Then we get

SOn ðAÞ ¼ SFn ðAÞ −
1

2
log jGj: ðB13Þ

Note the Renyi mutual information difference is indepen-
dent of n in this coincidence limit.13 A similar behavior
(called the flat spectrum) has been found in other contexts,
for example the boundary entropy [55], and in hologra-
phy [56].

12According to this counting it may then seem that for a single
connected component m ¼ 1 the Renyi entropies of the sym-
metrized modelO should coincide with the ones of the full model
F . However, this is a regularization dependent statement. In a
lattice, one can see the entropies do not coincide if the algebra of
the region is chosen such that the corresponding invariant algebra
does not have the same trace dimension [15]. In a regularization
imposed directly in the continuum, such as the one proposed in
[55], where small holes are cut off from the manifold around the
boundary of the region and conformal boundary conditions are
imposed, the equality will depend on the boundary states at this
holes to be invariant under the symmetry.

13The mutual information difference is in fact a particular
relative entropy for any disjoint A and B [15].
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For a Uð1Þ symmetry an analogous calculation can be
done where the averaging is replaced by an integration over
the group. If we call θ ∈ ð−π; πÞ to the group parameter
(θ ¼ 0 corresponds to the identity), we get

SOn ðAÞ ¼ SFn ðAÞ þ
1

2
log

�
ð2πÞ−1

Z
dθhτϵθi

�
: ðB14Þ

Considering that the sharp twists have a Gaussian expect-
ation value, [15]

hτϵθi ∼ e−cθ
2 A
ϵd−2 ; ðB15Þ

we get to leading order,

IOn ðA;BÞ ¼ IFn ðA;BÞ −
1

2
log

A
ϵd−2

: ðB16Þ

This corrects the logarithmic coefficient in any dimensions
by ð− d−2

2
Þ in the mutual information, and half of it for the

regularized entropy. The non-Abelian case is analogous and
the result has an additional factor given by the dimension of
the Lie algebra [15].14

We make a few remarks. We can think in terms of
an effective density matrix description with modular
Hamiltonian H and a thermal interpretation of the entropy
for this modular energy. Call the thermal partition function
ZðnÞ ¼ tre−nH. We have the identification of the Renyi
entropies,

Sn ¼ ð1 − nÞ−1ðlogZðnÞ − nZð1ÞÞ: ðB17Þ

Since we have an effective difference,

SFn − SOn ¼ −
1

2
log

Z
dg hτgi; ðB18Þ

independent of n, the difference is assimilated to a constant
term in the free energy,

logZF ðnÞ − log ZOðnÞ ¼ −
1

2
log

Z
dg hτgi: ðB19Þ

This can be interpreted as the partition function of a
decoupled system which will not contribute to the expect-
ation value of the energy and will contribute to the zero
temperature entropy of the system. On the other hand, in
this effective description, as the statistics of this decoupled
system does not depend on the temperature, it would

completely degenerate. Note however that this decoupling
interpretation needs the limit of small ϵ and then, in a sense,
is also a high-temperature effect on the boundary, which we
could interpret as an additional degeneracy of the system of
the boundary that it is always in the limit of infinite
temperature.
In this sense, the effect has some similarity to the

constant contributions of boundary entropy due to boun-
dary conditions in a CFT. Here there is no change between
the models F and O in the correlation functions of neutral
operators inside the region because there is an average over
group twisted boundary conditions.
Another interpretation follows by thinking the system B

as a purification of the system A. Then, the difference
in models is because charge fluctuations in A and B
compensate each other since the global state is charge
neutral, but the entropy inO does not take into account the
entropy in the fluctuations of charged operators. In this
sense, the difference is between the entropies of a density
matrix ρ ∼ e−H in O where we are in the microcanonical
ensemble with respect to the charges (not energies),
while the charges are allowed to fluctuate freely (with
an expectation value zero) in F , a canonical ensemble.
Similar effects were studied in black hole partition
functions (see for example [57]). In the usual thermody-
namical limit, the difference of ensembles is a vanishing
small effect that is usually neglected, but for the vacuum
EE this difference can be important.
As a final observation, let us consider the case where F

is a CFT and the group is Uð1Þ. For d ¼ 4 the logarithmic
coefficient in the entropy for O in a sphere will differ from
the anomaly by−1=2. Wewant to elaborate on the failure of
the usual proof of the matching of the logarithmic term with
the anomaly by mapping the sphere to de Sitter space.
The orbifold theory O will also be a CFT, with the same

correlation functions but where only the neutral operators
are retained. The stress tensor in both theories is the same
operator, and, in even dimensions, the anomaly will be the
same. In particular, the expectation value in a conformally
flat euclidean space will be

hTμ
μðxÞi ¼ −2ð−Þd=2AEðxÞ; ðB20Þ

with EðxÞ the Euler density (which integrated gives the
Euler characteristic of the manifold). Hence, the anomaly A
will be the same in both models. The same conclusion can
be reached using the definition of the A anomaly in terms of
three-point functions of the stress tensor [58].
Therefore, we have a situation where two models have

the same A anomaly coefficient and different logarithmic
terms in the entropy of a sphere. The usual calculation of
the logarithmic term by mapping to de Sitter space [2]
depends only on the anomaly though a partition function in
a sphere Sd and will erroneously give the same answer to
both models,

14This follows from the generalization of the Gaussian expect-
ation values (B15) to twist operators near the identity in the
general Lie group. Interestingly, for a Uð1Þ group the for-
mula (B10) of the correction agrees with the entropy in the
algebra of group twists, but this is not the case for non-Abelian
groups where there is an additional correction to the entropy [15].
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SF ¼ � � � þ ð−1Þd2−14A logðR=ϵÞ: ðB21Þ

For the theory F this is the correct result, but this is not the
case for O. The mutual information picks up a new term
represented in the replica partition function as an average of
expectation values of twist operators. The new term with
the twist expectation values can be thought of as an
insertion at the boundary of the region which will be
mapped to insertions at the horizon in de Sitter space, with
the same results. Then, the partition function has an average
over defects (sharp, unitary) on a Sd−2 surface and is not the
smooth partition function of the fields in Sd.

The off shell computation of the entropy [5] follows the
thermodynamical formula,

S ¼
Z ð2πRÞ−1

0

dT
dE
dT

; ðB22Þ

by computing the expectation values of the energy density
in de Sitter space for different deficit angles. These energy
expectation values are the same for the two models, and the
formula (B22) is not able to distinguish between them. The
reason is that there is a zero temperature contribution that
has to be added to SO that is not contained in this formula
which assumes zero entropy for zero temperature.
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