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Abstract 

 

The integration of surface observations and sub-surface data (wellbore and seismic) from 

the orogenic front of the Malargüe fold-and-thrust belt allows us to study its structural 

kinematics, and to interpret the local stress field and its control over fluid (magmatic and 

hydrocarbon) migration. Reverse faults correspond to inverted NNW-striking Mesozoic 

normal faults and N-S striking Cenozoic low-angle thrusts parallel to the orogen. Oblique 

structures with strike-slip movement are also present. The magmatic activity in the study 

area was strongly controlled by this structural framework and the in-situ stress field. Miocene 

dykes and sills were emplaced in relation to strike-slip and reverse faults, respectively. We 

propose an evolution of the study region from a foredeep sector, in the early-middle 

Miocene, to a peak in deformation in the late Miocene, and finally a waning of deformation 
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from the Pliocene to the present. Our structural model suggests that during the evolution of 

the thrust front, the in-situ stress field changed from a compressional to strike-

slip/compressional stress field, favouring the synchronous emplacement of sills and dykes. 

This alternation of stress regimes favours hydrocarbon migration through both thrusts and 

subvertical strike-slip faults. This exchange between both stress regimes is likely related to 

the similar values of the minimum (σ3) and intermediate (σ2) principal stress with an E-W 

oriented maximum principal stress (σ1) according to the plate convergence vector. 

 

Keywords: stress field; Southern Central Andes; fluid migration; Neuquén basin; fault 

reactivation; magma migration 

 

1. Introduction 

 

Fluid migration in fold-and-thrust belts is a complex process with implications for magmatic 

activity and the emplacement of mineral resources, including economic mineralization and 

hydrocarbon deposits (Aydin, 2000; Haney et al., 2005; Cox, 2005). The development of 

fluid migration paths is closely linked to active faults and open fractures, in turn, controlled by 

the stress conditions (Barton et al., 1995).  

The Southern Central Andes provide a natural laboratory for the study of fault reactivation 

and its relationship with fluid migration during the ongoing migration of the foreland fold-and-

thrust belts, due to the combination of inherited pre-Andean structures, magmatic arc activity 

and the development of the Mesozoic Neuquén basin where one of the main hydrocarbon 

systems in Argentina is located (Boll et al., 2014, and references therein).   

The Malargüe fold-and-thrust belt (Fig. 1) extends between 34º and 36ºS in the normal 

subduction (i.e. steeper subduction angle compared to subhorizontal or flat-slab zone) 

segment of the Southern Central Andes, where the Nazca plate subducts beneath the South 

American plate with an angle of 30° (Barazangi and Isacks, 1976). This area was part of the 

Neuquén basin, an extensional retroarc basin developed during the Mesozoic (Uliana and 
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Legarreta, 1993). The initial setup of the basin consisted on normal fault-bounded 

depocenters developed as a result of extension from the Late Triassic to the Early Jurassic 

(Vergani et al., 1995) during the synrift stage (Fig. 2). These depocenters, filled with clastic, 

volcaniclastic and volcanic deposits, were initially isolated and were linked as the extension 

progressed (Manceda and Figueroa, 1995). The master faults that bounded the depocenters 

have different polarities and orientations, with NNW and NNE strikes (Giambiagi et al., 

2009a).   

The Malargüe fold-and-thrust belt has a basement-involved structural style (Kozlowski et al., 

1993; Manceda and Figueroa, 1995; Giampaoli et al., 2002; Silvestro et al., 2005, Giambiagi 

et al., 2009b; Silvestro and Atencio, 2009; Turienzo et al., 2012). Different structural models 

have been proposed, some related to inversion of Mesozoic normal faults (Manceda and 

Figueroa 1995; Uliana et al., 1995; among others), others to the development of new thrusts 

during Andean contraction (Dimieri, 1997; Turienzo, 2010), and finally “hybrid” models which 

include both inversion and new faults (Yagupsky et al., 2008; Giambiagi et al., 2009b; Orts et 

al., 2012; Mescua et al., 2014; Branellec et al. 2015a, 2016; Fuentes et al., 2016; Seoane 

Borracer et al., 2018; Granado & Ruh, 2019).  

Here we present the results from a structural study in the orogenic front of the Southern 

Central Andes, between 35º30’ and 36ºS, where the Andean orogeny was superimposed to 

the previous structures developed during the opening of the Mesozoic Neuquén basin. We 

focus our analysis in the Agua Botada oil field (Fig. 1), where we integrate surface and 

subsurface information into a 3D structural model. 

From these observations, we address the subject of: (i) the tectonic inversion of pre-existing 

faults, (ii) the control by the local stress field and active structures over the emplacement of 

sills and dykes and over fluid migration, and (iii) how this control varies during the advance 

of the thrust front.  
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Figure 1: Location of the study area (white dashed rectangle) including the Agua Botada oil field 

(black continue polygon) and surroundings, with indication of the regional balanced cross-sections 

shown in Fig. 4. Base image is a LANDSAT7+ satellite image (RGB741 band combination). 

 

2. Geological setting 

Figure 1 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

5 

 

2.1 The northern Neuquén basin 

 

During the Late Triassic to Early Jurassic, extension along the western South American 

continental margin resulted in the opening of the Neuquén basin (Uliana et al., 1989; Vergani 

et al., 1995; Franzese and Spalletti, 2001). The basement of this basin, composed mainly of 

Permian to Triassic volcanic and plutonic rocks of the Choiyoi Group, was affected by 

structures inherited from previous tectonic stages (Mosquera and Ramos, 2006; Kleiman 

and Japas, 2009; Bechis et al., 2014). Northeast of the study area, structures related to the 

Permian San Rafael orogeny are NNW- to NW-striking faults (Kleiman and Japas, 2009). 

The Agua Botada area (Figs. 1, 2) is located in the northern part of this oil-bearing basin, 

which presents an almost continuous record of up to 7,000 m of Late Triassic to Paleocene 

marine and continental deposits representing different tectonic scenarios from a backarc 

extensional basin followed by a postextensional setting and finally a retroarc foreland basin 

(Fig. 3, Uliana et al., 1989; Legarreta and Gulisano, 1989; Vergani et al., 1995; Legarreta 

and Uliana, 1999). In this part, the basin is composed of several NNE- to NNW-trending 

depocenters, which are from north to south: Atuel, Malargüe, Valenciana, Río del Cobre, 

Palauco and Sierra Azul (Fig. 2B). The Agua Botada oil field (Figs.1, 2) is located between 

the Malargüe and Palauco depocenters (Fig. 2C).  

The Malargüe depocenter developed at the beginning of extension in the Neuquén basin, 

affecting the basement, and it is filled with synrift clastic and volcaniclastic, braided-river 

plain deposits interbedded with lacustrine black shales grouped in the Upper Triassic-Lower 

Jurassic Pre-Cuyo Cycle (Fig.3, Spalletti, 1997; Artabe et al., 1998; Buchanan et al., 2017). 

The depocenter was controlled by a NNW-striking, west dipping, master fault called 

Malargüe fault (Manceda and Figueroa, 1995; Silvestro et al., 2005; Giambiagi et al., 2009a; 

Fig. 2B). 
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Figure 2: A) Areal extension of the Neuquén basin (grey square shows the location of fig 2B). B) Map 

showing the master faults that bounded the Atuel, Río del Cobre, Valenciana, Malargüe, Palauco and 

Sierra Azul depocenters) of the Neuquén basin with indication of rift-related deposits (modified from 

Bechis et al., in press). C) Detailed map of the Valenciana (light blue area), Malargüe (pink area) and 

Palauco (green area) depocenters with the distribution of the Upper Triassic-Lower Jurassic synrift 

deposits and the main normal faults inferred from subsurface and surface data. The Agua Botada 

area corresponds to the blue dashed rectangle between Malargüe and Palauco depocenters 

(modified from Giambiagi et al., 2009a). 

 

The Palauco depocenter is filled up with volcaniclastic deposits of the Upper Triassic-Lower 

Jurassic Pre-Cuyo Cycle (Fig. 3, Gulisano, 1981; Legarreta and Gulisano, 1989) and it is 

Figure 2 
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affected by two master faults controlling the accommodation space, the NNW-striking, ENE-

dipping, previously proposed Palauco fault (Manceda and Figueroa, 1995; Giambiagi et al., 

2009a) and the Los Cerrillos fault (Fig. 2C).  

These previously isolated depocenters were linked during the Middle Jurassic sag phase 

(Uliana and Biddle, 1988; Uliana and Legarreta, 1993; Vergani et al., 1995). During the 

Middle Jurassic and Early Cretaceous a thick pile of evaporitic, calcareous and clastic 

marine and continental sedimentary rocks belonging to the Cuyo, Lotena, Mendoza and 

Rayoso Groups were deposited (Fig. 3). A brief episode of extension occurred during the 

deposition of the Upper Jurassic Tordillo Formation red sandstones at this latitude, 

subsequently followed by another sag stage during the Early Cretaceous (Fig. 3, Mescua et 

al., 2014). In the Late Cretaceous, coarse continental deposits belonging to the Neuquén 

Group (Uliana and Legarreta, 1993; Vergani et al., 1995) represent the foreland basin stage 

related to the beginning of the Andean shortening. 

The Oxfordian Auquilco and Aptian-Albian Huitrín anhydrite units (Fig. 3) are the main 

detachment levels for thin-skinned thrust sheets (Kozlowski et al., 1993), and also act as 

seals for hydrocarbon accumulations (Cobbold and Rossello, 2003). The Neocomian black 

shales of the Vaca Muerta Formation, which are the main source-rock of the basin, are also 

an important detachment level for thrusts (Kozlowski et al., 1993). 
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Figure 3: Stratigraphic chart showing the main tectonic phases of the Neuquén Basin and Malargüe 

fold-and-thrust belt (based on Giampaoli et al., 2002; Giambiagi et al., 2008; Mescua et al., 2014; 

Horton et al., 2016).  

 

2.2. The Malargüe fold and thrust belt 

Figure 3 
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Deformation of the Malargüe fold-and-thrust belt started in the Late Cretaceous in its 

western sector (Tunik et al., 2010; Mescua et al., 2013; Balgord and Carrapa, 2016; Fennell 

et al., 2017). The study area is located in the foredeep sector of the Cretaceous foreland 

basin, filled with up to 1.5 km thick continental fluvial deposits of the Neuquén Group (Uliana 

and Legarreta, 1993; Balgord and Carrapa, 2016). The sedimentation rate diminished during 

the deposition of mudstones and sandstones of the Malargüe Group in the Paleocene-

Eocene, probably due to the cessation or reduction in shortening (Legarreta and Gulisano, 

1989; Horton et al., 2016), followed by a non-deposition period with a stratigraphical hiatus 

spanning between 40 and 20 Ma (Horton et al., 2016).  

Shortening and uplift resumed in the middle to late Miocene (Giambiagi et al., 2003a, b, 

2008, 2015; Spagnuolo et al., 2012; Orts et al., 2012, Boll et al., 2014; Fuentes et al., 2016; 

Horton et al., 2016). During this Miocene shortening phase, predominantly N-striking 

basement thrusts and reverse faults were active and transferred shortening to the Neuquén 

basin cover (Manceda and Figueroa, 1995; Uliana et al., 1995; Zapata et al., 1999; 

Giambiagi et al., 2003b, 2008). The foreland basin related to this orogenic event was filled 

with 1.5-2 km-thick, clastic rocks of the Agua de la Piedra and Butaló Formations (approx. 

16-10 Ma; Silvestro and Atencio, 2009) and volcaniclastic successions of the Loma Fiera 

Formation (approx. 11-8 Ma; Silvestro and Atencio, 2009). In the northern sector of the study 

area, a forelandward progression of the deformation has been determined, with deformation 

at the orogenic front represented by the Malargüe anticline (Figs. 4, 5) since 8-7 Ma 

(Silvestro et al., 2005). In contrast, in the southern part of the study area, the easternmost 

structures of the Sierra the Palauco (Fig. 4) were uplifted early in the history of the belt (17 

Ma, Silvestro and Atencio, 2009) and experienced a reactivation phase between 11-8 Ma, as 

recorded by angular unconformities in the synorogenic volcaniclastic deposits (Silvestro and 

Atencio, 2009).  
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Figure 4: Regional balanced cross-sections, modified from Giambiagi et al. (2009b). See location in 

figure 1. The northern section cuts the Agua Botada northern domain. In this domain, the Malargüe 

fault (and fault-related anticline) is the main basement structure. The southern section crosses close 

to (~5 km) the Agua Botada southern domain, characterized by the inversion of a Triassic-Jurassic 

normal fault, the Palauco west-directed fault. 

 

Furthermore, the northern and southern sectors are also differentiated by the vergence of 

the main structures (Fig. 4). The northern and southern sectors are characterized by eastern 

and western vergence, respectively, which seems to indicate that the Andean structure has 

been significantly controlled by the inherited geometry of the Late Triassic to Early Jurassic 

Neuquén extensional basin (Fig. 2C).  

Active (Pliocene-recent) N-striking reverse faults and oblique strike-slip faults (Spacapan et 

al., 2016; Stein et al., 2018; Mescua et al., in review) are documented in the orogenic front of 

the Malargüe fold-and-thrust belt.  

 

2.3. Magmatic activity 

 

Figure 4 
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The magmatic activity in the eastern Malargüe fold-and-thrust belt has been separated into 

two cycles: the late Oligocene to middle Miocene Molle Eruptive Cycle and the middle 

Miocene to Pliocene Huincán Eruptive Cycle (Fig. 3). The first one associated with retroarc 

volcanism and the latter to arc volcanism (Groeber, 1946; Bettini, 1982; Baldauf, 1997; Nullo 

et al., 2002; Sruoga et al., 2009; Combina and Nullo, 2011; Litvak et al., 2015). Both cycles 

correspond to predominantly basaltic and andesitic magmatism, represented by many lava 

flow sequences and subvolcanic bodies such as sills, dykes and laccoliths (Baldauf, 1997; 

Combina and Nullo, 2011; Spacapan et al., 2016, 2017). The Coyocho Basalt (Fig. 3), 

corresponding to the final part of the Huincán Cycle (6.7 to 2.3 Ma, Silvestro and Atencio, 

2009), unconformably covers the deformed Neogene strata, outcropping mainly to the west 

of our study area. The youngest volcanism is located towards the east, in the Quaternary 

Payenia Basaltic Province (Bermúdez et al., 1993; Ramos and Folguera, 2011). 

The Neogene intrusives emplaced in the Mesozoic source rocks are one of the main 

fractured reservoirs in the hydrocarbon fields in this sector of the basin (Schiuma, 1994; 

Rodriguez Monreal et al., 2009; Witte et al., 2012; Schiuma and Llambias, 2014; Spacapan 

et al., 2018). Furthermore, the source rock maturation due to the thermal impact of these 

intrusives in the Río Grande area, south of  Agua Botada, was modelled by Spacapan et al. 

(2018) suggesting that two pulses of hydrocarbon generation were triggered by the two 

magmatic cycles mentioned above.  

In the Agua Botada sector, Cenozoic intrusives correspond to sills, subvolcanic bodies and 

dykes with predominantly intermediate compositions (Schiuma, 1994). Available K/Ar ages 

on dykes in the study area provided early to middle Miocene ages (17.3±0.8 and 14.4±0.7 

Ma, Valencio et al., 1969).  

Andesitic and basaltic andesite sills are predominantly emplaced in units with fine grained 

intervals within the study area, particularly in the black shales of the Vaca Muerta and Agrio 

Formations (Schiuma, 1994; Rodriguez Monreal et al., 2009; Spacapan et al., 2016a, 2018). 

Scapacan et al. (2016a) studied the mechanism of intrusion of sills in this area, based on 

detailed observations at Cuesta del Chihuido (Fig. 5). They propose a two-stage intrusion 
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history, where magma fingers push away the host rock in the initial stage, followed by brittle 

and ductile inelastic deformation of the strata as the sill propagates. Their results are in 

agreement with the viscous indenter model (Donadieu and Merle, 1998; Mathieu et al., 

2008), and underscore the role of strength contrast between thin and thick layers in the Agrio 

Formation with intrusions confined to the thin and weak layers.  

Miocene to Quaternary andesitic and basaltic subvertical dykes are abundant in the 

easternmost Malargüe fold-and-thrust belt and in the Payenia volcanic province developed 

to the east, where volcano alignments of several tens of kms are interpreted as the surface 

expression of dykes in depth (Bermúdez and Delpino, 1989; Spacapan et al., 2016b). The 

most common orientation of dykes is NW; based on this, igneous intrusion in the area has 

been interpreted as controlled by the presence of pre-existing NW-striking Paleozoic 

lineaments (Bermúdez and Delpino, 1989; Llambías et al., 2010; Spacapan et al., 2016b), 

namely  strike-slip faults observed in the basement north of the study area (e.g. Kleiman and 

Japas, 2009). A secondary E-W dyke trend has been interpreted as opening parallel to the 

maximum horizontal stress (Hernando et al., 2014; Scapacan et al., 2016b). Two of the NW-

trending dykes within our study area, at Cuesta del Chihuido, were studied in detail by 

Spacapan et al. (2016b). The observations made by these authors underscore the 

association of the dykes with strike-slip faults, which they interpret as pre-existing structures 

without activity during or after dyke emplacement. We will discuss this interpretation in the 

light of our own observations below.   

 

3. Methods 

 

Our methodology consists of structural mapping of the Agua Botada area (Figs. 1, 2) based 

on fieldwork and satellite image interpretation, structural interpretation of 3D seismic data, 

analysis of oil-well logs, and collection of fault-slip kinematic data. All the data were 

integrated into a structural model, based on previous chronological constraints (Silvestro and 

Atencio, 2009, Arcila Gallego, 2010), results of the kinematic analysis of fault-slip data, 
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balanced cross-section forward modelling, pseudo-3D structural model construction, and 

interpretation of Miocene to Quaternary in-situ stress fields.  

Wellbore data available for the study area (Fig. 5) was analysed to determine thickness 

variations of units and to locate faults.  

Newly acquired 3D seismic data was provided by the company ROCH SA. The seismic 

vibroseis survey was carried out in 2017 covering 107 km2 with a bin size of 25 m x 25 m. 

The source-point intervals were of 50 m and source line distances of 400 m oriented N-S 

while the receiver array consisted of W-E oriented lines spaced at 400 m each with receiver 

point intervals of 50 m; this results in a nominal fold of 64. In each vibrator point (VP) three 

vibroseis were placed and the source density was 50 VP/km2. The data was migrated 

through pre-stack time migration.        

This 3D seismic data was interpreted using the free software OpendTect 6.4.2. Formation 

tops recognized in wellbore data were used to pick reflectors and trace unit contacts in the 

subsurface. The main faults were recognized in the seismic data through the structural 

interpretation of 2D lines and time slices. Finally, we interpolated these lines to create 3D 

surfaces which provided us the structural array of the area as a constraint for the kinematic 

modelling. The combination of fault geometries, thickness variations and stratal geometry of 

the Late Triassic-Early Jurassic synrift units was used to differentiate reactivated pre-Andean 

faults and Andean thrusts in the structural model.  

Selected cross-sections were forward-modelled using 2D area-balancing techniques with the 

algorithms provided by MOVE© to obtain the best geometric match between the natural 

example and the model. Fault-parallel-flow, inclined shear or trishear were used depending 

on the geometry of the fold-related-fault. The nine cross-sections were the base for the 

construction of a pseudo-3D model, built using the interpolation tools available in the 

MOVE© software. 

During fieldwork, the orientation of dykes and sills was measured, and their relationship with 

structures assessed. Fault-slip data of outcrop-scale faults affecting the intrusions were 

obtained from the measurement of mineral fibers on fault planes, Riedel structures, and 
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lineations coupled with marker bed displacements. In addition, Google Earth satellite images 

were used to determine the orientations and length of dykes. 

Fault-slip data was analysed using the FaultKinWin software (Allmendinger et al., 2012). 

This program determines shortening and extension axes for each fault datum and uses 

Linked Bingham statistics to define the main deformation axes for the whole fault population.  

 

4. Results 

4.1 Surface structural mapping 

 

The Agua Botada area (Fig. 5) is located in the backlimb of the Malargüe anticline, a fault-

related fold interpreted as the result of the inversion of a Mesozoic normal fault (Silvestro 

and Atencio, 2009; Giambiagi et al., 2009b; Branellec et al., 2016). This fault was bounding 

the Malargüe depocenter during the Late Triassic (Manceda and Figueroa, 1995). Fault 

inversion took place in the late Miocene (7 Ma to recent, Silvestro et al., 2005) with positive 

reactivation of the lower reaches of the listric normal fault and the development of a short-cut 

fault in the steeply-dipping upper reaches of the fault (Giambiagi et al., 2009b). The NNW-

striking anticline is an asymmetric fold with a steep to overturned forelimb and a subdued 

backlimb. Basement rocks of the Permian-Triassic Choiyoi Group are exposed in the core of 

this structure; while to the west, in the backlimb, Upper Triassic to Upper Cretaceous 

sedimentary and volcaniclastic deposits corresponding to the Pre-Cuyo, Cuyo, Mendoza, 

Rayoso and Neuquén Groups are cropping out and gently-dipping (i.e., 10º-20º) to the west . 
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Figure 5: Main geologic units and structures in the Agua Botada area. Based on YPF, 1976; Nullo et 

al., 2005; Arcila Gallego, 2010 and own data. 

 

The Loncoche fault (Figs. 5, 6) is a NS-trending and E-directed thrust developed in the 

Neuquén basin cover and probably detached along the Jurassic Auquilco Formation 

evaporites (Fig. 3). In the northern part of the study area (Fig. 6A), the Loncoche thrust folds 

the Upper Cretaceous Neuquén Group and the Neogene strata, including the approx. 10 Ma 

Loma Fiera deposits, in its hanging-wall. A sill intrudes a fault splay tapering towards the 

hinge of the fold (Fig. 6B). In the central zone (Fig. 6C), there is an old uranium mine site, 

Figure 5 
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called Mina Huemul, associated with the Loncoche fault zone. Here we report a sheet 

intrusion, parallel to and in contact with the fault plane. There are secondary copper and 

uranium minerals precipitated as patinas as well as hydrocarbon traces in fault-parallel 

fractures, (Fig. 6D, E). In the southern area, the Loncoche fault cuts the Upper Cretaceous 

Neuquén Group strata (Fig. 6F); further south its displacement decreases and the Loncoche 

fault is no longer recognized in the field nor in the seismic data. 

 

Figure 6: A) Aerial image with indication of the Loncoche, Casa de Piedra and Pampa Amarilla faults 

and the intrusion-related dome. Fault kinematic data displayed in equal area, lower hemisphere 

stereonets from stations 193, 208 and 223. The striae and sense of movement is represented by 

small arrows at the fault plane; the shortening axis is shown as blue arrows. B) Station gps 223 ( 

35°43'23.20"S  69°39'9.84"W) where a sheet intrusion probably intrudes a fault splay developed in the 

Figure 6 
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Neuquén Group rocks; an alternative is that the fault ramped up at the intrusion tip. C) Station gps 

193 (35°45'57.95"S 69°39'38.11"W) near the uranium mine site. Notice a sill intruded concordantly to 

the fault plane where patinas of secondary minerals of copper and uranium cover the fractures. D) 

Detail of patinas and striae from Fig. 6C. E) Oil-impregnated sandstones of the Neuquén Group with 

secondary copper and uranium minerals (e.g. malachite, covellite, autunite). F) Station gps 208 

(35°50'39.78"S 69°39'24.07"W), the Neuquén Group strata is tilted in the hanging-wall of the 

Loncoche fault. G) Photo (35°48’S 69°36’W) looking south from the core of the intrusion-related dome 

that probably causes the buttressing-related Casa de Piedra fault. Notice the radial dipping of the 

Neuquén Group redbeds and compare it with the dips plotted in the map (Fig. 5) that show the radial 

pattern. 

 

The Casa de Piedra (YPF, 1976) and Pampa Amarilla faults are minor N-striking,  E-directed 

thin-skinned structures recognized locally, with lengths <3 km (Figs. 5, 6). The Pampa 

Amarilla thrust is probably a splay of the Loncoche thrust that takes over part of the 

shortening lost by this structure in the south of the study area. The Casa de Piedra thrust is 

developed exclusively west of an intrusive body recognized in the seismic data (Figs. 7C, 8) 

and as a dome in the surface (Figs. 5, 6). We interpret that the fault is the result of 

buttressing against the intrusive (Figs. 7C, 8). 

 

4.2 Subsurface structure 

 

Interpretation of subsurface data (seismic and wells; Figs. 7, 8, 8 allowed us to determine 

the main structures at depth, linking them to surface geology.  
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Figure 7: A) Uninterpreted time slice at z=500 ms. B) Uninterpreted time slice at z=1100 ms. C) 

Interpreted time slice at z=500 ms, the reflectors in the highlighted area are concentric to a high-

noised core zone. This coincides in surface with the domed zone marked in the aerial image of Fig. 

6A and the outcrops shown in Fig. 6G that we interpret as caused by an igneous intrusive in 

subsurface. D) Interpreted time slice at z=1100 ms, where a NW structure, called here Huemul 

Figure 7 
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lineament and other oblique structures are shown. The cross-line and inline shown in Fig. 8 and the 

arbitrary line shown in Fig. 9 are marked.  

 

The reverse, NNW-striking, west-verging Los Cerrillos fault (Fig. 8) was already recognized 

by Giambiagi et al. (2009) as an inverted normal fault, which forms part of the Palauco fault 

system (Fig. 2). It affects the basement and the Mesozoic deposits (Fig. 8), but it is covered 

by Quaternary deposits at surface. Wellbore data indicates that the Neuquén synrift basin 

stratigraphy shows important changes in thickness across the Los Cerrillos fault. In more 

detail, drill holes LCe x-1, LCe x-1002 and well 20 (Figs. 5,  8 and Table 1) ended in the 

Upper Triassic-Lower Jurassic Pre-Cuyo synrift deposits after more than 400 m (reaching 

826 m in well 20) of these rocks, but immediately to the west the drill hole ABu x-1 (Table 1) 

ended in the Permian-Triassic Choiyoi Group which is overlain by ~200 m of the Pre-Cuyo 

rocks. The wedge geometry of synrift strata east of the Los Cerrillos fault (Fig. 8) suggests a 

half-graben controlled by this fault. We interpret that this fault was a synrift normal fault 

inverted during the Miocene. East of the Los Cerrillos fault, a minor blind structure, the Vega 

del Sol fault (Fig. 5), with similar attitude was recognized (YPF, 1995). 

The subsurface expression of the Loncoche, Casa de Piedra and Pampa Amarilla faults 

could be determined from the seismic data. The Loncoche fault affects the Neuquén Group 

in the surface and the shales of the Mendoza Group in subsurface, probably detaching along 

the evaporites of the Auquilco Formation towards the west. It is composed of a principal fault 

and a series of minor splays with moderate angles. The Pampa Amarilla and Casa de Piedra 

thrusts are affecting the upper section of the Mendoza Group and are probably detached 

along the shales of the Vaca Muerta Formation, though this is not clearly recognized in the 

seismic data. The dome located east of the Casa de Piedra fault is observed in the seismic 

data (Fig. 8) due to the outward radial dipping of the reflectors and a high-noise core. The 

PA x-2 wellbore, located in the eastern part of the dome, between Cerro Mirano and the 

Casa de Piedra fault (Fig. 5) cuts through more than 170 m of andesites from a depth of 416 

m to the end of hole. We interpret that intrusion (named here Pampa Amarilla intrusive) 
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produced doming of the Neuquén basin strata and that the Casa de Piedra fault is the result 

of buttressing against this rigid dome.      

 

Figure 8: A) In-line 400 uninterpreted. B) In-line 400 showing the Huemul lineament  (green dashed 

lines) and the intrusive (black dashed line). C) Cross-line 350 uninterpreted. D) Cross-line 350 

showing the intrusive and the deformation it causes to the host rock. In green dashed lines the 

Huemul lineament is marked.  

 

Time slices of the seismic data suggest that WNW- and NW-striking, subvertical structures 

are common in the northern sector of the study area, (Figs. 7, 8). The most important of 

these structures, named here Huemul lineament, is aligned with the Huemul mine and the 

Pampa Amarilla intrusive body (Figs. 5, 7). 

Figure 8 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

21 

 

Figure 9: A) Uninterpreted arbitrary line oriented NE-SW (see map Fig. 5 and Fig 7D for location). B) 

Interpreted arbitrary line showing Los Cerrillos inverted normal fault that controlled the synrift 

thickness of Upper Triassic-Lower Jurassic Pre-Cuyo rocks. We interpret the uppermost fault as a 

hanging wall bypass.   

 

 

Table 1: The stratigraphy cut through the drill-holes plotted in the arbitrary seismic line in Fig. 9 is 

shown with indication of the total apparent thickness of the Upper Triassic-Lower Jurassic Pre-Cuyo 

synrift deposits.  

Figure 9 

Fm top depth ABu.x-1 Fm top depth LCe.x-1 Fm top depth LCe.x-1002

922 Malargüe 1693 Huitrín 550 Rayoso

1160 Neuquén 1902 Agrio 659 Huitrín

2275 Huitrín 2191 Chachao 709 Agrio

2321 Agrio 2246 Vaca Muerta 1070 Chachao

2572 Vaca Muerta 2502 Auquilco 1112 Vaca Muerta

2888 Auquilco 2526 Pre-Cuyo 1296 Auquilco

2910 Pre-Cuyo 2944 Auquilco 1304 Lotena

3122 Choiyoi 3061 Pre-Cuyo 1330 Pre-Cuyo

3247 end of hole 3156 end of hole 1851 Choiyoi

1901 end of hole

212 418 521
thickness (m) 
of Pre-Cuyo

thickness (m) 
of Pre-Cuyo 
(minimum)

thickness (m) 
of Pre-Cuyo

Table 1 
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4.3 Pseudo-3D structural model 

 

Nine W-E cross sections were constructed, separated by approx. 2 km each (Figs. 5, 9), by 

integrating dip data, unit contacts and surface fault traces with well log data and the 

interpretation of the 3D seismic cube. We reconstructed the initial geometry of the units and 

pre-existing normal faults (Fig. 9), and used kinematic forward-modelling to build sequential 

cross-sections taking into account Neogene sedimentation and isostatic changes using the 

flexural method in MOVE ©. 
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Figure 10: A) Google Earth image with location of W-E cross-sections in the Agua Botada area. B) 

Perspective view of the nine W-E cross-sections. The northern domain is characterized by the 

Malargüe anticline formed as consequence of reverse movement along the pre-existing Malargüe 

basement fault, and thin-skinned, east-directed thrusts. The southern domain is controlled by the 

Figure 10 
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inversion of the Los Cerrillos fault. In the lowermost right corner the predeformation section is showed.  

 

The cross-sections were extrapolated into a pseudo-3D structural model (Fig. 11). This 

ensures that the proposed structural model is consistent along strike. Structures and 

formation tops were mapped throughout the study area producing 3D surfaces that permit 

the characterization of the main structural features, such as main faults with lateral variations 

in displacement, depth to formation tops, bedding attitude, etc.   

The northern domain (cross-sections 1 to 6, Fig. 9) is characterized by structures with 

eastern vergence. The thin-skinned Loncoche fault was modelled with a detachment level in 

the Upper Jurassic Auquilco evaporite. Two minor fault splays show variable geometries and 

displacement in the different cross-sections as constrained by wellbore, seismic and surface 

data. This fault system decreases its displacement southward and is absent south of cross-

section 7 (Fig. 9). The deep seated Malargüe fault generates the Malargüe anticline in the 

north (sections 1-4) and also decreases its displacement towards the south. In our models, 

the high angle of the Loncoche fault is the result of tilting during folding related to the 

Malargüe fault.  

The southern domain, in contrast, is characterized by a dominant western vergence (cross-

sections 7 to 9, Fig. 9). The Los Cerrillos fault shows increasing complexity towards the 

south, with the development of fault splays, shortcut, bypass faults and minor backthrusts 

(Fig. 9). The Vega del Sol basement fault is recognized due to the anticline it forms in the 

Mesozoic cover. This fault increases its displacement towards the south.   
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Figure 11: Different perspectives of the pseudo-3D model of the Agua Botada area. Upper green 

surfaces represent the top of the Chachao (dark green) and Agrio Formations (light green) of early 

Cretaceous age. Basement faults are the E-directed Malargüe fault, and W-directed Los Cerrillos and 

Vega del Sol faults. Thin-skinned E-directed faults are the Loncoche, Casa de Piedra and Pampa 

Amarilla faults. 

 

4.4 Cenozoic intrusives and their relationship with structures 

 

In order to study the relationship between the structural evolution of the Malargüe fold-and-

thrust belt orogenic front and the Cenozoic igneous intrusions, we analyzed the spatial 

distribution of sills and dykes at the surface, from Google Earth satellite images, and at 

subsurface based on wellbore data. During fieldwork, we described the relationship of 

intrusions with the host rock and with structures (Fig. 12A), and measured kinematic 

indicators on mesoscale faults affecting the intrusions and their wallrocks. The relative timing 

of intrusion of sills and dykes is not always clear throughout the study area: some dykes 

Figure 11 
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clearly post-date sills (e.g. Fig. 12B), while other dykes abut against sills (Fig. 12C). This 

latter could be the result of a pre-existing sill arresting the dyke or of synchronous 

emplacement with the dyke feeding the sill in the third dimension (Spacapan et al., 2016a). 

The similar composition of dykes and sills (Schiuma, 1994, Spacapan et al., 2016a, b) 

suggests that all belong to the middle Miocene to Pliocene Huincán magmatic cycle (Nullo et 

al., 2002). Our observations indicate that intrusions in the Agua Botada area are older than 

the Loma Fiera Formation (i.e. sills and dykes do not intrude this Formation), which has 

provided ages ~10 Ma (Baldauf, 1997; Horton et al., 2016), but intrude synorogenic beds 

from the Agua de la Piedra Formation (16-10 Ma, Silvestro and Atencio, 2009). This 

stratigraphical constraint indicates that sills and dykes were emplaced during the 16-10 Ma 

period, before the main phase of folding in the Malargüe anticline constrained to less than 7 

Ma by Silvestro et al. (2005). 

Most previous works focused on sills emplaced in the Vaca Muerta and Agrio Formations 

(Schiuma, 1994; Rodriguez Monreal et al., 2009; Spacapan et al., 2016a, 2018). In addition 

to these, we surveyed those emplaced in the red shales of the Rayoso and Neuquén Groups 

(Fig. 6). Our observations are mostly consistent with those reported in the referenced works. 

Most sills have sharp contacts with the wallrock, with borders subparallel to stratification of 

the wallrock (Fig. 12C). Most sill terminations are straight and abrupt (Fig. 12D), although 

wedge terminations were also observed (Fig. 6B). Sills are strongly controlled by rheological 

contrast, intruding shales but without affecting the more competent limestone, sandstone 

and conglomerate beds (Fig. 12B), as described in previous works (Spacapan et al., 2016a). 

The maximum observed thickness of sills is 70 m, while the maximum lengths reach 3000 m. 

Subvertical dykes with andesitic to basaltic andesite composition and porphyritic textures  

intrude all Mesozoic units. Most dykes radiate from two subvolcanic centers located in the 

Mirano and Tronquimalal peaks (Figs. 5, 12E, 12F). These two centers have an ellipsoidal 

shape, elongated along the WNW trend. The measurement of the orientation of 37 dykes 

from satellite images shows a predominant WNW trend, with ENE-, E- and NW-striking 

dykes also frequent (Fig. 13). Thickness and length are highly variable, but show a linear 
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relationship between both features and the dyke strikes. Dykes with ENE to WNW strikes 

are much longer and thicker than NW- to NE-striking dykes (Fig. 13). 

To understand the relative timing between the Malargüe anticline and dyke and sill intrusion 

located at its backlimb, we unfolded and horizontalized the beds, taking the dykes as 

passive elements. By doing this, the dykes take a vertical to subvertical attitude (Fig. 13), 

suggesting that the intrusion occurred before the development of the anticline. This is 

consistent with the age constraints discussed at the beginning of this section. 

We studied the available oil-well logs of the area (Fig. 5) to determine the intervals where 

igneous rocks were cut through. These rocks correspond to andesites of aphanitic to 

porphyritic texture with different alteration degrees and hydrocarbon traces. The apparent 

thickness reaches a maximum of 40 m and the thickest intervals are hosted in the shales of 

the Vaca Muerta Formation and the evaporites of the Auquilco Formation. We compared the 

thickness of igneous rocks in the drill-holes with the distance to the two volcanic centers 

identified, Tronquimalal and Mirano peaks (Supplementary Material). In the northern area 

(AB e-4, AB x-2, AB x-1, AB e-5; Fig. 5) there is a good correlation between the thickness of 

intrusives and the distance to the Tronquimalal neck, as well as in the central zone related to 

the Mirano neck; both necks show an associated swarm of dykes. In the southern area we 

did not recognize dykes outcropping in surface or necks, but there are some drill-holes (ABu 

x-1, LCe x-2 and well 18) that show high values of accumulated thickness of igneous rocks, 

such as the ABu x-1 accounting for more than 200 m (Supplementary Material). We interpret 

that this is probably related to subhorizontal intrusives, sills, which are covered by the 

Cenozoic deposits.   

Observations at the Agua Botada area show that the Loncoche fault (Fig. 5) acted as a 

magmatic conduit allowing the emplacement of a sill that grades to an inclined sheet 

intrusion along the fault (Fig. 6). Furthermore, uranium and copper minerals precipitated 

along the contact of the sill and the fault, and the sill as well as the sandstones of the 

Neuquén Group wallrock are impregnated with hydrocarbons (Fig. 6E), indicating a link 

between reverse faulting, intrusion and fluid flow. On the other hand, subvertical strike-slip 
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faults locally control the emplacement of dykes, as already described by Spacapan (2016b). 

These dykes are heavily altered by hydrothermal fluids, with precipitation of fibers of 

hematite and calcite and hydrocarbon impregnation, which shows that fluid migration 

occurred during movement of these fractures. This suggests that the Loncoche reverse fault 

and the subvertical strike-slip faults have controlled magmatic emplacement and fluid and 

hydrocarbon migration. We will discuss this subject further in section 5.2.  

 

 

 

Figure 12: A) Aerial image (Google Earth) showing the location and orientation of the pictures 

described next. B) The dyke crosscuts a sill which is sheared with NNE dextral strike-slip faults 

subparallel to the dyke strike (GPS point AB dyke 24: 35°44'54.29"S 69°34'47.99"W). C) Dyke and sill 

intruding the Agrio Formation. The sill intrudes the pelitic layers of this unit due to low strength 

compared to the limestone beds. Apparently the dyke abuts against the sill (GPS point AB dyke 21: 

Figure 12 
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35°44'55.48"S 69°35'16.80"W). This same outcrop was studied in detail by Spacapan et al. (2016a). 

D) Sharp contact between a sill and the Vaca Muerta Formation wallrock (GPS point AB sill 15 

35°44'52.68"S 69°34'28.99"W). E) Photo looking eastward to the Mirano peak, the southernmost 

subvolcanic center, with radial dykes (GPS 35°48’S 69°36’W). F) Photo looking to the E pointing to 

the Tronquimalal peak with a dyke in the foreground which is radiated from the peak interpreted as 

subvolcanic center (GPS point AB dyke 34: 35°43'8.49"S 69°38'30.86"W). G) Subhorizontal striae 

and slip plane affecting a dyke, indicating strike-slip faulting (GPS point AB dyke 21: 35°44'55.48"S 

69°35'16.80"W). H) Highly sheared and altered dyke intruding the Agrio Formation (GPS 

35°45'1.19"S 69°34'53.89"W).  

 

4.5. Kinematic analysis 

  

Many intrusions in the Agua Botada area are affected by mesoscale faults with 

displacements less than 1 m. We measured fault slip data on 37 dykes and 22 sills and on 

Mesozoic rocks at 7 localities (Figs. 12, 13). A total of 87 fault plane-striation pairs with 

reliable sense of shear were measured. A dominant E- to ENE-directed shortening axis and 

subvertical extension axis is observed at sites close to the Loncoche fault (Fig. 6). In other 

sites, faults affect the interior of sills and dykes (Fig. 12G, H), as well as the contacts 

between dykes and wallrock. Overall, the NNE- to NE-trending faults show dextral 

movements, while the WNW- to NW-striking faults show sinistral movements (Fig. 13). Most 

data are consistent, indicating a strike-slip regime with E- to NE-directed shortening and N- 

to SE-directed extension.  

An exception to this is the dextral movement of two of the NW-striking dykes (7 and 20 in 

Fig. 13) in the western flank of the Malargüe anticline, indicating a ENE-directed extension 

axis perpendicular to the trend of the anticline, and NNW-directed shortening axis.  Here we 

propose that the ENE extension and NNW contraction may be due to local deviations of the 

contractional direction maybe related to previous structres, similar to what is observed 

nowadays from wellbore breakouts (Guzman et al., 2007). Other explanation is the dextral 
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movement of NW-striking faults preceded the intrusion of the dykes, as suggested by 

Spacapan et al. (2016). 

 

 

Figure 13: Kinematic data (green dots: striae  data, blue dots: individual P-axes (contraction), red 

dots: individual T-axes (tension) obtained from the dykes in the area, showing that they are affected 

by strike-slip faulting. The unfolding performed in the dykes intruding the Mendoza Group in the 

backlimb of Malargüe anticline shows a better mechanical orientation when the data is restored to the 

horizontal position, indicating the dykes where intruded previous to the folding of Malargüe anticline, 

in agreement with geological data. The rose diagram includes both measured on field and mapped 

dykes, unweighted and weighted on length, showing a horizontal WNW oriented contraction (black 

arrows) and a NNE oriented extension (red arrows) at the time of intrusion. When compared the dyke 

length and width versus the strike, there is a correlation between the dimension of the intrusive and a 

Figure 13 
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roughly W to WNW strike.        

 

5. Discussion 

 

5.1. Controls on intrusions 

The geometry and connectivity of magmatic intrusions is the result of the combination of 

tectonic and magmatic processes and the lithology and pre-existing structures of the host 

rock (Magee et al., 2016). Tectonic processes include the influence of active structures 

during magma intrusion, that act as magma conduits (Kalakay et al., 2001; Galland et al., 

2007 a, b; Ferré et al., 2012; Martínez et al., 2018; van Wyk de Vries and van Wyk de Vries, 

2018) and the role of the stress field (Nakamura, 1977; Takada, 1989; Kavanagh, 2018). 

Magmatic processes refer to size, depth and shape of the magma source, magma injection 

rate, buoyancy and viscosity (Galland et al. 2007 a, b, 2018). Lithology controls the rheology 

of the host rock (Kavanagh et al., 2017; Galland et al., 2018) and pre-existing structures are 

weak zones that can also act as preferential pathways for magma (Ferré et al., 2012). 

Dyke intrusion is strongly influenced by stress and crustal heterogeneities (Kavanagh, 2018). 

It is well established that the opening direction of dykes is perpendicular to the local 

minimum principal stress σ3 (Anderson, 1951; Fossen, 2010; Kavanagh, 2018). This local 

stress is determined by the interaction of magma pressure and tectonic stress. In radial dyke 

systems emplaced under neutral stress conditions, magmatic pressure is similar in all 

direction and dykes of all orientations are similar in length. In contrast, radial dyke systems 

emplaced under a regional tectonic stress are elongated in the direction of the maximum 

horizontal stress σHmax and dykes of the same orientation are more abundant than dykes of 

other trends (Odé, 1957; Nakamura, 1977). Pre-existing structures in the host rock are weak 

planes that can be used for magma migration and emplacement in dykes, depending on the 

orientations of fractures with respect to the tectonic stress and on magmatic overpressure 

(Delaney et al., 1986). 

The emplacement of sills is the result of the interaction of tectonic stress and mechanical 
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layering of the host rock. Traditionally, opening perpendicular to σ3 implying a vertical 

direction for the minimum stress has been proposed (Anderson, 1951; Hubbert and Willis, 

1959). A recent review of sill complexes has shown that these are found in layered rocks 

under all stress regimes (Magee et al., 2016), which suggests that the presence of interfaces 

between rocks with different mechanical properties is the key factor (Galland et al., 2018). 

However, in some cases, sills have been documented in rocks with strong vertical 

mechanical discontinuities (bedding and foliation), where they were emplaced under local 

compressional conditions, which shows that the stress state controlled sill emplacement 

(Stephens et al., 2017). It seems that both mechanical layering of rocks and stress state can 

control sill emplacement, with one of these factors prevailing in some cases. 

Magma supply for sills can be fed by a variety of structures, from dykes (Eide et al., 2016; 

Kavanagh et al., 2017) to inclined sheets connecting sills at different stratigraphic levels 

(Muirhead et al., 2012; Magee et al., 2016) to inclined sheets taking advantage of faults 

(Magee et al., 2013; Galland et al., 2007 a, b; Ferré et al., 2012).  

Magmatic migration under contraction has been modeled by means of analogue modeling 

and compared with real examples in the Southern Central (Galland et al., 2007 a, b) and 

Northern Central Andes (Martínez et al., 2016; 2018) showing that thrusts and inverted faults 

could act as magma pathways even with considerably lateral migration in the shortening 

direction. In northern Chile basin inversion under Andean contraction is coeval with magma 

migration and this latter process influenced the geometry of the inverted faults and also the 

amount of shortening accommodate by the fault due to the role of igneous fluids as 

lubricants (Martínez et al., 2017; 2018). On the other hand these authors showed that 

magma migration, under shortening, is controlled by its viscosity; when higher the viscosity, 

the magma migrates shorter distances laterally and it is confined provoking uplift (Martínez 

et al., 2018). 

In the study area, previous works have emphasized the role of layering and rheology of host 

rocks on sill intrusions, with intrusion favored in shale-dominated units and within these, in 

weak shale beds vs. strong sandstone beds (Spacapan et al., 2016a). Both within the study 
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area and throughout the Malargüe fold-and-thrust belt, it has been proposed that sills and 

laccoliths were fed by inclined sheet magma migration along thrusts (Araujo et al., 2013; 

Schiuma and Llambías, 2014), with thrusts acting as magma conduits and feeding sills in 

favorable stratigraphic intervals. No conclusive evidence of sill feeding by dykes has been 

reported in the area (Spacapan et al., 2016a). Our observations in the Loncoche fault 

support the role of active thrusts as magma conduits. Fault planes of the Loncoche fault are 

intruded by inclined sheets and mineral fibers on minor faults developed on the intrusions 

(Fig. 6) indicate fault movement once the inclined sheets were emplaced, showing that the 

fault was active during this period and not a pre-existing weakness. This is consistent with 

the age constraints for intrusions and activity of the Loncoche fault which suggest that both 

were coetaneous (see sections 4 and 5). On the other hand, the analysis of well data 

(section 4.4) suggests that sills were also fed by the intrusive centers of the Cerros Mirano 

and Tronquimalal, in which case some of the sills could be fed by these cylindrical intrusions.   

Dykes in the study area are radial systems developed from the magmatic centers of the 

Cerros Mirano and Tronquimalal, displaying a preferential E-W to ESE orientation, 

consistent with roughly E-W maximum horizontal stress σHmax (Fig. 13), which indicates a 

control of the regional tectonic stress on their emplacement. Previous works have proposed 

that NW-trending pre-existing strike-slip faults controlled dyke intrusions (Spacapan et al., 

2016b). We observed that some of the outcrop-scale faults are developed within the dykes 

indicating that strike-slip fault movement took place after intrusion (Fig. 13). Field 

observations alone do not allow us to determine if these faults moved shortly after dyke 

emplacement or if they are largely posterior. We will discuss this issue further in the 

following section. 

 

5.2 Stress state during the magmatic intrusion and relation with fluid migration 

Recent works have documented that the state of stress can be complex in orogenic fronts 

and depart from the expected compressional stress field, with the minimum principal stress 

σ3 horizontal leading to the development of normal and strike-slip faults (Lacombe et al., 
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2012; Tavani et al., 2015). Without neglecting other factors that influence the shape and 

mechanism of igneous intrusions, we propose that stress changes in the study area were an 

important factor determining the intrusion of dykes vs. sills.  

The stress state and its changes in time in the study area are not well constrained. Guzmán 

et al. (2011) have studied the σHmax directions in the Eocene to Oligocene from dyke trends, 

south of the study area, proposing a NE σHmax for this period. During the Miocene, a change 

to E-W σHmax  took place and this remained until the present (Guzmán et al., 2007). The 

dominant contractional stress regime that led to crustal shortening and uplift of the Andes 

implies that σHmax =  σ1, and the E-W direction was determined by the direction of plate 

convergence along the Argentina-Chile subduction zone (Pardo Casas and Molnar, 1987; 

Somoza, 1998; Norabuena et al., 1999). Local fluctuations to WNW or ESE σHmax 

orientations have been suggested as the result of strain partitioning due to previous 

basement anisotropies (Branellec et al., 2015b) and topographic variations (Guzman et al., 

2007; Mescua et al., 2014). 

Our observations and previous works in nearby areas (Galland et al., 2007a, b; Araujo et al., 

2013; Schiuma and Llambías, 2014) indicate that sill intrusions were fed by inclined sheets 

using thrusts as magmatic conduits. We documented continued activity of thrusts after 

magmatic intrusion at the Loncoche fault (Fig. 6). This suggests that sill intrusions took place 

in a compressive regime, where σ1 was horizontal with E-W trend and the vertical minimum 

principal stress favoured horizontal fracture opening.  This indicates that in the study area, 

both stress state and mechanical layering acted as main factors that conditioned sill 

intrusion.  

The plan-view elongated shape of the radial dykes is the result of an E-W σHmax, which is 

most likely the unchanged σ1 determined by plate convergence. The NW- to WNW-striking 

dykes are emplaced in strike-slip faults, that may be pre-existing faults as suggested by 

Spacapan et al. (2016b); however, fault slip data from small scale faults affecting the contact 

between dykes and wallrock, as well as the interior of the dykes, indicate that faults were 

reactivated after intrusion. Mechanical analysis shows that subvertical faults display low slip 
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and dilation tendencies under horizontal compression, while in a vertical radial extension 

stress regime (σ2 = σ3), vertical fractures subparallel to σ1 are likely to open, and vertical 

fractures oblique at low angles to σ1 can open and shear (Stephens et al., 2017). This stress 

state has been indicated as one of the possible origins of the “σ2 paradox” that produces 

strike-slip and normal faults in the frontal region of thrust wedges (Tavani et al., 2015) and 

can explain (i) the reactivation of pre-existing strike-slip faults with a dilation component to 

allow dyke emplacement, and (ii) the continued movement of the faults that produced small 

scale strike-slip faults. Field observations, as cross-cutting relationships between dykes and 

sills, similar composition, and that both are not intruding units younger than 10 Ma (Loma 

Fiera Fm.)  suggest that dykes and sills were emplaced during the same time period (16-10 

Ma, see section 4.4). We propose that during this period, the region was subjected to a 

stress regime with  σ1>> σ2 ~ σ3. In this scenario, σ2 and σ3 could be interchanged producing 

alternating compression and strike-slip regimes (Zoback, 2010). Furthermore, this stress 

state has been recognized during the Pliocene-present in the orogenic front of the Malargüe 

fold-and-thrust belt (Mescua et al., in review), which suggests that the stress state in the 

region was constant since the early Miocene to the present in the study area. 

The circulation of hydrothermal fluids and hydrocarbons in the faults of the study area is 

demonstrated by (i) copper and uranium mineralizations associated to the sill emplaced in 

the Loncoche fault; (ii) hydrothermal alteration in dykes that present strike-slip shearing with 

growth of hydrothermal mineral fibers; (iii) hydrocarbon impregnations in both kinds of 

structures. These observations imply that active thrusts and strike-slip faults, including major 

structures and outcrop-scale faults, acted as fluid carriers. Hydrothermal fluids migrated 

through these fault zones, leading to alteration of igneous intrusions and host rock and to the 

precipitation of mineralizations, locally with economic interest such as in the Huemul mine. 

Hydrocarbons also migrated through the faults. Strike-slip faults affect sills that are 

hydrocarbon reservoirs in many oilfields in the region (Comeron et al., 2002; Witte et al., 

2012; Schiuma and Llambías, 2014; Spacapan et al., 2016, 2017), suggesting that the 

development of strike-slip faults can enhance fracture connectivity and be an important 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

36 

factor in the migration of hydrocarbons into these reservoirs. 

 

5.3 Tectonic and magmatic evolution of the study area 

 

During the emplacement of dykes and sills, between 16 and 10 Ma, a foredeep area 

developed in the northern domain (Silvestro et al., 2005). The active structure during that 

period is interpreted by Silvestro et al. (2005) to be the Chacaico basement fault, located 

approx. 30 km toward the west (Fig. 4). Crosscutting relationships between dykes and sills, 

intruded during this period, indicate that they were synchronically emplaced. This suggests, 

a priori, that the magma intrusion was controlled by either a strike-slip/compression (σv=σ2 

and σ2~σ3) or a compression/strike-slip (σv=σ3 and σ2~σ3) stress regime (Fig. 14A). We 

postulate that under this stress field regime pre-existing WNW- to E-striking structures were 

prone to dilate and were used as magma conduits. 

After the deposition of the synorogenic deposits of the Loma Fiera Formation (approx 10 Ma, 

Fuentes et al., 2016), movement along the Doña Juana basement structure and associated 

thin-skinned thrusts and backthrusts generates the Sierra de la Ventana syncline (Fig. 4), as 

suggested by the lack of angular unconformities in the synorogenic units in the syncline and 

U/Th-He (AHe) thermochronological studies on apatite indicating a 8.9 to 7 Ma exhumation 

time for the Valenciana anticline (Bande et al., in press). During this period (10-7 Ma), a 

wedge-top depocenter is developed in the western sector of the Agua Botada area (Fig. 

14B). The Loncoche fault represented the thrust front for that time. The eastward advance of 

the thrust system, suggest that the stress regime was a compressional one. This also 

correlates with the absence of dykes intruded during this period (10 -7 Ma) which may be 

influenced by this stress field. Under this stress field, at approx. 8 Ma, the Malargüe anticline 

started to develop, and continued its activity at least up to 1 Ma (Silvestro et al. 2005; Bande 

et al., in press). The Coyocho basalts (6.7-2.7 Ma) unconformably cover Cenozoic strata 

folded into the Sierra de la Ventana syncline, indicating the fossilization of the Loncoche fault 

after 7 Ma (Fig. 14C). 
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In the southern domain, during the first Miocene compressional period (16-10 Ma; Fig. 14D), 

active structures were localized in the inner sector of the Malargüe fold-and-thrust belt and in 

the Palauco fault system (Silvestro and Atencio, 2009). One of the faults of this system 

corresponds to the Los Cerrillos fault. Our model proposes that during this period and under 

a compressional stress regime, sills cut by the oil exploration wells were emplaced. The pre-

existing Palauco system experienced a reactivation during the 11-8 Ma period (Fig. 14E)  

(Silvestro and Atencio, 2009) and during the last stage, since 7 Ma, the stress regime 

changed to a strike-slip one (Fig. 14F), as proposed by Mescua et al. (in review). 

 

 

 

   

 

Figure 14: Structural evolution of the northern (A-C) and southern (D-F) domains of the Agua Botada 

(AB) area. A) At the beginning of contraction in the Malargüe fold-and-thrust belt, the AB area was 

subjected to a strike-slip/compression stress regime. Under this regime, sills and dykes intruded the 

Figure 14 
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Mesozoic beds and Neogene synorogenic strata of the Agua de la Piedra Formation. B) With the 

advance of the thrust front, at 10-7 Ma, the AB area was under compression, and few sills intruded 

the sedimentary sequences feeded from the active thrusts. C) The thrust front reached the Malargüe 

anticline area at approx 8-7 Ma. The western AB area was unconformably covered by the Coyocho 

basalts. D) In the southern domain, the thrust front was located at the Los Cerrillos fault, during the 

16-10 Ma period. The AB area was under a compressional stress field, and sills intruded the 

Mesozoic units, feeded from the Los Cerrillos fault. E) During the 10-7 Ma period, the area was under 

compression, and the Sierra Azul fault developed. F) During the last stage, the stress field in the AB 

area changed to a strike-slip one, as documented by Mescua et al. (in review). 

 

 

All these observations indicate that, in the study area: (i) sills are syn- or post-tectonic with 

respect to deformation of the western part of the study area, which started at 16 Ma 

(Silvestro and Atencio, 2009), (ii) sills and dykes were likely emplaced contemporaneously in 

the northern domain, with dykes emplaced shortly after sills and vice versa, but most 

intrusions predate the Loma Fiera Formation dated at 10 Ma; (iii) shearing of well-oriented 

dykes occurred before thin-skinned thrusting event (>10 Ma) under a strike-slip regime; (iv) 

the contraction and folding in the area, related to the Malargüe fault, took place after the 

main pulse of intrusion emplacement, coincident with the proposal of Silvestro and Atencio 

(2009) that indicates that the Malargüe anticline started to form at 7 Ma; and (V) there is no 

evidence of emplacement of dykes in the southern domain; instead, well logs indicate the 

presence of many igneous bodies, interpreted here as sills. 

Taking into account that sill and dyke intrusion are favoured by the different stress fields 

acting in the region, this suggests that in the northern domain, between 16 and 10 Ma, the 

stress state fluctuated between compression/strike-slip and strike-slip/compression, in a way 

similar to that proposed at present for the orogenic front of the Malargüe fold-and-thrust belt  

to the north and south of the study area (Mescua et al., in review). This is in accordance with 

tensile joint analysis carried out by Branellec et al. (2015b) indicating a N-S subhorizontal 
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extensional direction during the pre-folding event. On the other hand, during that period, the 

southern domain was under pure compression and it is marked by the intrusion of sills. 

 

6. Conclusions 

 

Based on the structural characterization of dykes and sills in the framework of the evolution 

of the thrust front of the Malargüe fold-and-thrust belt, during the Miocene to Present, we 

infer the in-situ stress field acting at the time of intrusion. We propose that during the 

evolution of the thrust front, the local stress field changed from a compressional to a strike-

slip/compressional one, favouring during this last stress field the synchronous emplacement 

of sills and dykes. We propose that the alternation of these stress regimes allowed 

hydrocarbon migration through thrusts and subvertical strike-slip faults as well. Previous 

NW-striking structures were not amenable to be inverted due to its high obliquity to the 

maximum principal stress in a compressional regime, but instead, they were prone to slip 

under a strike-slip/compressional regime; while WNW oriented previous structures were 

prone to dilate and acted as feeders from a magmatic source.  

This interchange between both stress regimes is likely related to the similar values of the 

minimum (σ3) and intermediate principal stress (σ2) with an E-W oriented maximum 

principal stress (σ1) according to the plate convergence vector.   
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Figure captions 
 
Figure 1: Location of the study area (white dashed rectangle) including the Agua Botada oil 
field (black continue polygon) and surroundings, with indication of the regional balanced 
cross-sections shown in Fig. 4. Base image is a LANDSAT7+ satellite image (RGB741 band 
combination). 
 
 
Figure 2: A) Areal extension of the Neuquén basin (grey square shows the location of fig 
2B). B) Map showing the master faults that bounded the Atuel, Río del Cobre, Valenciana, 
Malargüe, Palauco and Sierra Azul depocenters) of the Neuquén basin with indication of rift-
related deposits (modified from Bechis et al., in press). C) Detailed map of the Valenciana 
(light blue area), Malargüe (pink area) and Palauco (green area) depocenters with the 
distribution of the Upper Triassic-Lower Jurassic synrift deposits and the main normal faults 
inferred from subsurface and surface data. The Agua Botada area corresponds to the blue 
dashed rectangle between Malargüe and Palauco depocenters (modified from Giambiagi et 
al., 2009a). 
 
 
Figure 3: Stratigraphic chart showing the main tectonic phases of the Neuquén Basin and 
Malargüe fold-and-thrust belt (based on Giampaoli et al., 2002; Giambiagi et al., 2008; 
Mescua et al., 2014; Horton et al., 2016).  
 
Figure 4: Regional balanced cross-sections, modified from Giambiagi et al. (2009b). See 
location in figure 1. The northern section cuts the Agua Botada northern domain. In this 
domain, the Malargüe fault (and fault-related anticline) is the main basement structure. The 
southern section crosses close to (~5 km) the Agua Botada southern domain, characterized 
by the inversion of a Triassic-Jurassic normal fault, the Palauco west-directed fault. 
 
Figure 5: Main geologic units and structures in the Agua Botada area. Based on YPF, 1976; 
Nullo et al., 2005; Arcila Gallego, 2010 and own data. 
 
Figure 6: A) Aerial image with indication of the Loncoche, Casa de Piedra and Pampa 
Amarilla faults and the intrusion-related dome. Fault kinematic data displayed in equal area, 
lower hemisphere stereonets from stations 193, 208 and 223. The striae and sense of 
movement is represented by small arrows at the fault plane; the shortening axis is shown as 
blue arrows. B) Station gps 223 ( 35°43'23.20"S  69°39'9.84"W) where a sheet intrusion 
probably intrudes a fault splay developed in the Neuquén Group rocks; an alternative is that 
the fault ramped up at the intrusion tip. C) Station gps 193 (35°45'57.95"S 69°39'38.11"W) 
near the uranium mine site. Notice a sill intruded concordantly to the fault plane where 
patinas of secondary minerals of copper and uranium cover the fractures. D) Detail of 
patinas and striae from Fig. 6C. E) Oil-impregnated sandstones of the Neuquén Group with 
secondary copper and uranium minerals (e.g. malachite, covellite, autunite). F) Station gps 
208 (35°50'39.78"S 69°39'24.07"W), the Neuquén Group strata is tilted in the hanging-wall 
of the Loncoche fault. G) Photo (35°48’S 69°36’W) looking south from the core of the 
intrusion-related dome that probably causes the buttressing-related Casa de Piedra fault. 
Notice the radial dipping of the Neuquén Group redbeds and compare it with the dips plotted 
in the map (Fig. 5) that show the radial pattern. 
 
Figure 7: A) Uninterpreted time slice at z=500 ms. B) Uninterpreted time slice at z=1100 ms. 
C) Interpreted time slice at z=500 ms, the reflectors in the highlighted area are concentric to 
a high-noised core zone. This coincides in surface with the domed zone marked in the aerial 
image of Fig. 6A and the outcrops shown in Fig. 6G that we interpret as caused by an 
igneous intrusive in subsurface. D) Interpreted time slice at z=1100 ms, where a NW 
structure, called here Huemul lineament and other oblique structures are shown. The cross-
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line and inline shown in Fig. 8 and the arbitrary line shown in Fig. 9 are marked.  
 
Figure 8: A) In-line 400 uninterpreted. B) In-line 400 showing the Huemul lineament  (green 
dashed lines) and the intrusive (black dashed line). C) Cross-line 350 uninterpreted. D) 
Cross-line 350 showing the intrusive and the deformation it causes to the host rock. In green 
dashed lines the Huemul lineament is marked.  
 
 
 
Figure 9: A) Uninterpreted arbitrary line oriented NE-SW (see map Fig. 5 and Fig 7D for 
location). B) Interpreted arbitrary line showing Los Cerrillos inverted normal fault that 
controlled the synrift thickness of Upper Triassic-Lower Jurassic Pre-Cuyo rocks. We 
interpret the uppermost fault as a hanging wall bypass.   
 
 
Table 1: The stratigraphy cut through the drill-holes plotted in the arbitrary seismic line in Fig. 
9 is shown with indication of the total apparent thickness of the Upper Triassic-Lower 
Jurassic Pre-Cuyo synrift deposits.  
 
 
Figure 10: A) Google Earth image with location of W-E cross-sections in the Agua Botada 
area. B) Perspective view of the nine W-E cross-sections. The northern domain is 
characterized by the Malargüe anticline formed as consequence of reverse movement along 
the pre-existing Malargüe basement fault, and thin-skinned, east-directed thrusts. The 
southern domain is controlled by the inversion of the Los Cerrillos fault. In the lowermost 
right corner the predeformation section is showed. 
 
 
 
Figure 11: Different perspectives of the pseudo-3D model of the Agua Botada area. Upper 
green surfaces represent the top of the Chachao (dark green) and Agrio Formations (light 
green) of early Cretaceous age. Basement faults are the E-directed Malargüe fault, and W-
directed Los Cerrillos and Vega del Sol faults. Thin-skinned E-directed faults are the 
Loncoche, Casa de Piedra and Pampa Amarilla faults. 
 
Figure 12: A) Aerial image (Google Earth) showing the location and orientation of the 
pictures described next. B) The dyke crosscuts a sill which is sheared with NNE dextral 
strike-slip faults subparallel to the dyke strike (GPS point AB dyke 24: 35°44'54.29"S 
69°34'47.99"W). C) Dyke and sill intruding the Agrio Formation. The sill intrudes the pelitic 
layers of this unit due to low strength compared to the limestone beds. Apparently the dyke 
abuts against the sill (GPS point AB dyke 21: 35°44'55.48"S 69°35'16.80"W). This same 
outcrop was studied in detail by Spacapan et al. (2016a). D) Sharp contact between a sill 
and the Vaca Muerta Formation wallrock (GPS point AB sill 15 35°44'52.68"S 
69°34'28.99"W). E) Photo looking eastward to the Mirano peak, the southernmost 
subvolcanic center, with radial dykes (GPS 35°48’S 69°36’W). F) Photo looking to the E 
pointing to the Tronquimalal peak with a dyke in the foreground which is radiated from the 
peak interpreted as subvolcanic center (GPS point AB dyke 34: 35°43'8.49"S 
69°38'30.86"W). G) Subhorizontal striae and slip plane affecting a dyke, indicating strike-slip 
faulting (GPS point AB dyke 21: 35°44'55.48"S 69°35'16.80"W). H) Highly sheared and 
altered dyke intruding the Agrio Formation (GPS 35°45'1.19"S 69°34'53.89"W). 
 
Figure 13: Kinematic data (green dots: striae  data, blue dots: individual P-axes 
(contraction), red dots: individual T-axes (tension) obtained from the dykes in the area, 
showing that they are affected by strike-slip faulting. The unfolding performed in the dykes 
intruding the Mendoza Group in the backlimb of Malargüe anticline shows a better 
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mechanical orientation when the data is restored to the horizontal position, indicating the 
dykes where intruded previous to the folding of Malargüe anticline, in agreement with 
geological data. The rose diagram includes both measured on field and mapped dykes, 
unweighted and weighted on length, showing a horizontal WNW oriented contraction (black 
arrows) and a NNE oriented extension (red arrows) at the time of intrusion. When compared 
the dyke length and width versus the strike, there is a correlation between the dimension of 
the intrusive and a roughly W to WNW strike.     
 
 
Figure 14: Structural evolution of the northern (A-C) and southern (D-F) domains of the Agua 

Botada (AB) area. A) At the beginning of contraction in the Malargüe fold-and-thrust belt, the 

AB area was subjected to a strike-slip/compression stress regime. Under this regime, sills 

and dykes intruded the Mesozoic beds and Neogene synorogenic strata of the Agua de la 

Piedra Formation. B) With the advance of the thrust front, at 10-7 Ma, the AB area was 

under compression, and few sills intruded the sedimentary sequences feeded from the 

active thrusts. C) The thrust front reached the Malargüe anticline area at approx 8-7 Ma. The 

western AB area was unconformably covered by the Coyocho basalts. D) In the southern 

domain, the thrust front was located at the Los Cerrillos fault, during the 16-10 Ma period. 

The AB area was under a compressional stress field, and sills intruded the Mesozoic units, 

feeded from the Los Cerrillos fault. E) During the 10-7 Ma period, the area was under 

compression, and the Sierra Azul fault developed. F) During the last stage, the stress field in 

the AB area changed to a strike-slip one, as documented by Mescua et al. (in review). 
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