
Journal of Insect Physiology 56 (2010) 447–454
Review

Tracheal remodelling in response to hypoxia

Lazaro Centanin a,*, Thomas A. Gorr b, Pablo Wappner c,*
a Institute of Zoology, Im Neuenheimer Feld University of Heidelberg, 69120 Heidelberg, Germany
b Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Wintherthurerstrasse 260,

CH-8057 Zurich, Switzerland
c Instituto Leloir and FBMC, FCEyN-Universidad de Buenos Aires, CONICET, Patricias Argentinas 435, Buenos Aires 1405, Argentina

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

2. The intrinsic plastic—nature of oxygen delivery systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

3. Development of the tracheal system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

3.1. FGFR pathway activation leads to the differentiation of one of the cells of the forming branch into a ‘‘terminal cell’’ fate. . . . . . . . 448

3.2. The FGFR pathway modulates the extent of ramification of tracheal terminal cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

4. Oxygen availability modulates the branching of tracheal terminal cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

5. The oxygen sensing pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

6. An autonomous role of the tracheal system in the branching response to low oxygen levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

A R T I C L E I N F O

Article history:

Received 31 January 2009

Received in revised form 14 May 2009

Accepted 18 May 2009

Keywords:

Tracheae

Plasticity

Hypoxia

HIF

Cell autonomy

A B S T R A C T

The insect tracheal system is a continuous tubular network that ramifies into progressively thinner

branches to provide air directly to every organ and tissue throughout the body. During embryogenesis

the basic architecture of the tracheal system develops in a stereotypical and genetically controlled

manner. Later, in larval stages, the tracheal system becomes plastic, and adapts to particular oxygen

needs of the different tissues of the body. Oxygen sensing is mediated by specific prolyl-4-hydroxylases

that regulate protein stability of the alpha subunit of oxygen-responsive transcription factors from the

HIF family. Tracheal cells are exquisitely sensitive to oxygen levels, modulating the expression of

hypoxia-inducible proteins that mediate sprouting of tracheal branches in direction to oxygen-deprived

tissues.
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1. Introduction

Life maintenance demands an enormous amount of energy, and
among the stable chemical elements existing on earth, oxygen
reduction provides the largest possible release of free energy.
Animals have developed during evolution relatively complex
systems to capture and deliver this precious molecule: Lungs and
blood vessels in mammals, and the tracheal system in insects
constitute two examples of these successful adaptations. On top of
transporting oxygen from the atmosphere to the cells, in order to
* Corresponding authors.
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cope with environmental variations, delivery systems have to
adapt to oxygen availability. We will review here how the tracheal
system of Drosophila melanogaster responds to hypoxia, focusing
on the ability of the tracheae, and particularly, of a specific cell type
called tracheal terminal cell (TTC), to respond autonomously to
variations of environmental oxygen tension. TTCs can sense
hypoxia and respond by producing extra-ramifications, and this
behavior shares many features of that of the ‘‘tip cell’’ of growing
blood vessels during mammalian angiogenesis.

2. The intrinsic plastic—nature of oxygen delivery systems

Metabolic rates increase with animal size. Since size is gained
more by volume (/ to r3; r is radius) than surface (/ to r2), the
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surface/volume ratio declines with larger body size and, thus,
bigger animals demand more efficient oxygen supply systems
(White et al., 2003). This simple rule seems to apply throughout
evolution. In fact, the geologic event known as ‘The Big Oxidation’,
during which a major rise in oxygen levels occurred at the early
Cambrian Period, has been the driving force for the appearance of
animals with more complex body plans (Valentine, 1994). An
atmosphere with high oxygen levels fostered the evolution of
efficient oxygen delivery systems. It also triggered the emergence
of mechanisms that allowed utilization of energy derived from
complete oxygen reduction, while parallel antioxidant reactions
were set in place to avert the accumulation of damaging reactive
oxygen species (ROS) stemming from incomplete reduction of O2.
These evolutionary acquisitions towards a safe and efficient
metabolization of oxygen contributed to a large extent to the
‘‘Cambrian Explosion’’, an inflexion point of our geological history
in which morphological body plans reached unparalleled rates of
diversification (Valentine, 1994). In addition to promoting
morphological diversification, oxygen delivery organs have been
essential for animals to attain bigger sizes during evolution. This is
clearly illustrated by the fact that severe or prolonged impairment
of the system responsible for oxygen supply leads to animal
developmental arrest and death (Carmeliet et al., 1996; Carmeliet
and Collen, 2000). In line with this, growth of solid tumors is tightly
related to oxygen supply through angiogenesis: The growing mass
of cells in a tumor generates local hypoxia, which, in turn, leads to
recruitment of new blood vessels. Newly formed blood vessels re-
supply blood born nutrients and oxygen to support further growth
of the tumor (Liao et al., 2007). Without angiogenesis, the growth
of many tumors will not exceed the size limit imposed by oxygen
diffusion from existing capillaries. A great deal of effort is being
currently invested to intend interfering with tumor-driven
angiogenesis.

In insects, the tracheal system – a network of air-filled tubes
that reaches virtually every cell in the organism – mediates
delivery of oxygen gas to organs and tissues throughout the body
(see below). Given that insect development typically involves
major changes of body general architecture and size, the tracheal
system faces a major challenge, as it has to be plastic enough to
adapt to such changes. Insect life cycle typically comprises an
embryonic development in the egg, followed by larval stages in
which the insect feeds very actively, and dramatic body growth
occurs. For example, in Drosophila melanogaster the larva
increases its volume more than 200 times in 3 days; in Manduca

sexta and Bombix mori body weight increase is even larger (1st
Instar larvae are around 1–2 mm long, and 5th Instar larvae can
reach up to 6 or 10 cm in length respectively). Thus, larvae need a
protein-rich diet together with an efficient oxygen delivery
system. In addition, the respiratory organ needs to rapidly adapt
and respond to increasing oxygen demands, derived from the
dramatic rate of growth of the larva. Whereas in hemimetabolous
insects the adult stage is attained after several larval molts
without substantial alteration of the general body plan, in
holometabolous insects, the overall body plan is greatly modified
during the pupal stage that follows larval development and
precedes the adult stage. Therefore, in holometabolous insects,
such as the fruit fly Drosophila melanogaster, the tracheal system
faces the extra-challenge of undergoing a profound remodeling to
cope with the change in body plan. Here in particular, the
plasticity of the tracheal system is critically important to sense
changing levels in oxygen partial pressure (pO2) in the tissues, and
respond by adjusting its extent of growth and ramification to
regulate oxygen supply. In the next sections we will briefly
describe some features of the development of the Drosophila

tracheal system, and focus on its ability to undergo morphological
adaptations in response to pO2.
3. Development of the tracheal system

Unlike vertebrates, which have developed two different but still
coupled systems for oxygen intake and distribution – i.e., lungs or
gills for oxygen intake, and a circulatory system for oxygen
delivery to tissues and organs – insects rely solely on the tracheal
system, an interconnected air-filled network of tubes that
transports oxygen in gas phase directly to tissues and cells
throughout the organism (Ghabrial et al., 2003).

Our understanding of the genetic control of insect tracheal
development is mainly based on the work carried out in Drosophila

melanogaster. The development of Drosophila tracheal system
begins around 4 h after oocyte fertilization, to form an inter-
connected network of tubes during embryogenesis. This network
becomes functional at the beginning of the first larval instar and
ramifies dramatically during the 2nd and 3rd larval stages to
accompany the increase in body size of the larva. Finally, it is
rebuilt at the pupal stage to acquire the ultimate pattern of the
adult (Ghabrial et al., 2003; Weaver and Krasnow, 2008).

The tracheal system arises at mid-embryogenesis as 10
independent ectodermal placodes of around 80 cells each at
either lateral side of the embryo (Samakovlis et al., 1996a). These
flat placodes can be initially identified by the expression of gene
trachealess, which encodes a basic Helix–Loop–Helix-Period Arnt
Single-minded (bHLH-PAS) transcription factor that controls
transcription of downstream genes that mediate tracheal devel-
opment (Isaac and Andrew, 1996; Wilk et al., 1996). Each placode
then invaginates to form a sac, and immediately afterwards,
tracheal cells migrate in highly stereotyped directions to give rise
to six tracheal branch primordial (Vincent et al., 1997; Wappner
et al., 1997). After tracheal branches have extended, most of them
meet and fuse to branches arising from the contralateral
hemisegment, or from the adjacent segments, to generate an
interconnected and continuous network of epithelial-like tubes
(Samakovlis et al., 1996b). The Fibroblast Growth Factor Receptor
(FGFR) pathway plays a cardinal role in the process of guided cell
migration that accounts for the initial branch formation and
extension (Reichman-Fried et al., 1994; Sutherland et al., 1996). All
tracheal cells express the FGFR homologue Breathless (Btl), via the
transcriptional control by Trachealess (Glazer and Shilo, 1991;
Klämbt et al., 1992; Reichman-Fried and Shilo, 1995). Outside the
tracheae, in the target tissues, the FGF homologue Branchless (Bnl)
acts as a chemo-attractant for migrating tracheal cells (Sutherland
et al., 1996). Budding tracheal branches that express Btl migrate
towards clusters of cells expressing the ligand Bnl. Once tracheal
cells have reached the Bnl-positive cluster, bnl expression shuts-off
in that cluster, and is immediately turned-on again a few cell
diameters away on the track of the forming branch. This process
repeats again and again throughout branch extension, promoting
the continuous elongation of the tracheal branches (Sutherland
et al., 1996).

On top of accounting for tracheal cell migration, the FGFR
pathway plays two additional roles during tracheal development.

3.1. FGFR pathway activation leads to the differentiation of one

of the cells of the forming branch into a ‘‘terminal cell’’ fate

The tracheal terminal cell (TTC), also known as tracheolar cell
(Chapman, 1998), is the only tracheal cell that has the capacity to
produce cytoplasmic extensions (i.e. ‘‘terminal branches’’ or
‘‘tracheolar branches’’) to deliver oxygen to target tissues
(Harrison, 2003). Cells at the tip of each branch acquire a terminal
cell fate during tracheogenesis (Affolter et al., 1994; Guillemin
et al., 1996). Remarkably, experiments carried out in the dorsal
branch (which possesses just one terminal cell) revealed that the
cell with the highest level of FGFR pathway activation will



Fig. 1. Insect terminal tracheal cells ramify in response to hypoxia. (A) A tracheal

branch corresponding to one of the Rhodnius abdominal segments was surgically

severed (dotted line in the left panel). A few days later, tracheal branches arising

from neighbouring abdominal segments send tracheoles to the segment lacking its

own branch, compensating for the lack of oxygen in the affected area. (B) A

metabolically active ectopic organ (in red) was transplanted into the abdominal

segment deprived from its own tracheal branch. The ectopic organ was immediately

invaded by numerous tracheal projections, providing oxygen for metabolism of the

organ. (C) Rhodnius larvae were placed in hypoxia and tracheal sprouting increased

dramatically. (D) Local hypoxia was chemically created at a particular location of

the Rhodnius abdomen (area in blue), and, as a consequence, many tracheal

projections from nearby tracheal branches invade the hypoxic area. (E) In a

Drosophila 3rd instar larva, the FGF homologue Branchless (green) was ectopically

expressed in a single cell on the ectoderm. Tracheal terminal extensions projected

by tracheal branches in the proximity are attracted towards the Branchless-

expressing cell. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of the article.)
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outcompete the other cells of the branch with lower levels of FGFR
activation, to become ‘‘the’’ terminal cell (Ghabrial and Krasnow,
2006). When FGF signaling is artificially increased in the entire
tracheal tree, either by over-expression of Bnl or by expression of a
constitutively active form of Btl, multiple ectopic terminal cells
arise in each branch (Sutherland et al., 1996). TTC fate is usually
assayed either by morphology or by expression of the Serum
Response Factor (dSRF), a terminal cell marker and key molecule
regulating the cytoplasmic changes during TTC branching (Reich-
man-Fried and Shilo, 1995; Guillemin et al., 1996; Lee et al., 1996).

3.2. The FGFR pathway modulates the extent of ramification of

tracheal terminal cells

Augmented FGFR activation increases the ramification of
terminal tracheal cells, whereas reduction of FGFR activity, once
the tracheal branches have reached their final destination, leads to
reduction of terminal cell sprouting (Hacohen et al., 1998).

4. Oxygen availability modulates the branching of tracheal
terminal cells

Pioneering experiments carried out by Sir Vincent Wiggles-
worth in the 1950s revealed the hypoxia-mediated plasticity of
insect tracheal system (Wigglesworth, 1954, 1983). By using the
abdomen of Rhodnius prolixus as a model, Wigglesworth took
advantage of the fact that individual tracheal branches provide
oxygen to a particular abdominal hemisegment, and never cross
the boundary to the neighboring or contralateral segment, which
are supplied with oxygen by other tracheal branches. In a very
simple yet elegant series of experiments, he managed to surgically
severe the tracheal branch providing oxygen to half of the 4th
tergite of the Rhodnius abdomen. He observed that tracheae
coming from anterior and posterior segments, or from the
contralateral side of the 4th segment, migrated into the oxygen-
deprived hemisegment, (Fig. 1A) (Wigglesworth, 1954). Tracheoles
were evidently endowed with the capacity to invade hypoxic areas
of the body and, thereby, to compensate for the lack of oxygen.

To further challenge the system, Wigglesworth transplanted
organs with a high rate of oxygen consumption, typically a corpora

allata or a corpora cardiaca, into the oxygen-deprived hemiseg-
ment. In line with the above findings, nearby tracheae invaded the
ectopic organ and supplied the extra-oxygen required for its high
metabolic rate (Fig. 1B) (Wigglesworth, 1954). These experiments
clearly showed the capacity of the tracheae to execute a
compensatory response to oxygen deprivation.

In another series of experiments, entire insects were subjected
to reduced oxygen tensions (typically between 5 and 10% O2).
Animals challenged that way exhibited a more complex pattern of
tracheal ramification (Fig. 1C), both in the thoracic and abdominal
ganglia, as well as in the wings of adult Rhodnius (Wigglesworth,
1954). Finally, Wigglesworth developed a method to chemically
induce strong local hypoxia in a small region of the larval abdomen.
A few days afterwards, tracheal density in the hypoxic area was
much higher than in the rest of the abdomen, which remained
exposed to normal oxygen levels (Fig. 1D) (Wigglesworth, 1954).
His discoveries on the adaptable nature of the tracheal system can
be summarized best by his own words ‘‘The tracheoles are by no

means inert structures. They are capable of active migration into

regions of deficient oxygenation’’. Among tracheal cells, he
emphasized the role of the tracheal terminal cell: ‘‘The reactive

structure is presumably the tip of the tracheole . . .’’. Tracheal
branches, therefore, possess the ability to read the oxygen
requirements of the surrounding tissues, and to respond appro-
priately for an ensuing oxygen starvation in the tissue to be
compensated (Wigglesworth, 1983).
Shortly after Wigglesworth’s first description of the plasticity of
the tracheal network in Rhodnius in response to diminished oxygen
availability in 1954, Locke reported an even larger response of
tracheal growth to varied oxygen tension in larvae of the hesperid
butterfly Calpodes and the mealworm Tenebrio (Locke, 1958). To
detect microscopical changes in tracheal growth, Wigglesworth
and Locke both utilized cobalt naphthenate and the subsequent
development of a red color compound upon reaction with 3,4-
dinitroso-resorcinol within permeabilized tracheae (Wiggles-
worth, 1954; Locke, 1958). Small Tenebrio larvae were reared in
hypoxia for up to 40 days. Even after one molt extra tracheation
could be seen in some larvae, and marked changes occurred after
three molts. Conversely, when Tenebrio larvae were raised in 50%
oxygen, existing tracheae had grown in length only after three
molts, while there was little, if any, growth of de novo formed
tracheae and tracheoles (Locke, 1958).
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Another leap forward came through the quantification of the
tracheal hypertrophy response in hypoxic Tenebrio larvae by
Loudon (1989). Similar to the observations of Locke, Loudon’s work
confirmed that some (dorsal, ventral, visceral), but not all (lateral
longitudinal), tracheae show a significant hypertrophy at reduced
oxygen level. This implied that tracheal plasticity is confined
within the main branches that actually supply oxygen to tissues,
whereas tracheae that primarily interconnect adjacent spiracles
are less affected by changing levels of ambient oxygen. More
recently, Henry and Harrison (2004) documented that, in addition
to the developmentally plastic adaptations, there are also heritable
changes in the dimensions of the dorsal tracheae (DT) of Drosophila

melanogaster in response to multigenerational exposure to hypoxia
and hyperoxia (Henry and Harrison, 2004). Rearing fruit flies for 5–
6 generations in atmospheres of 10, 21 or 40% oxygen produced
heritable effects in Dorsal Trunk diameters that were still
observable after two generations in 21% O2 (Henry and Harrison,
2004). While these findings emphasize the tight regulation
between tracheal morphology and physiology to ensure proper
tissue pO2, both on acute and long-term time scales, the heritable
components demand a more thorough analysis of the mechanistic
underpinnings leading to tracheal plasticity in response to falling
oxygen levels.

The availability of mutants and genetic tools that allow for gene
manipulation in Drosophila melanogaster turned the fruit fly into an
ideal model to take the early findings onto the genetic level. In fact,
almost 50 years after Wigglesworth’s hallmark discoveries in this
field, Mark Krasnow and co-workers carried out a series of elegant
experiments to investigate the genetic basis by which tracheae are
attracted towards hypoxic areas (Jarecki et al., 1999). They showed
that the expression of Branchless, the same FGF molecule that
patterns Drosophila early tracheal development during embry-
ogenesis (Sutherland et al., 1996), is regulated by oxygen levels
during larval stages. Bnl protein levels rise when the larvae are
exposed to 5% O2 (Jarecki et al., 1999), and accumulate in hypoxic
tissues. These authors also managed to create a series of Drosophila

strains with different levels of Bnl expression, and found a tight
correlation between Bnl levels and the extent of tracheal
ramification. Strikingly, they demonstrated that Bnl over-expres-
sion in an ectopic location of the larva is necessary and sufficient to
direct the outgrowth of tracheal terminal branches towards that
particular location (Fig. 1E) (Jarecki et al., 1999). In salivary glands,
normally devoid of tracheae, miss-expression of Bnl led to the
colonization of the target tissue by tracheal branches. In another
series of experiments, they showed the striking capacity of Bnl to
act as a tracheal chemo-attractant by expressing Bnl in individual
cells; this was enough to attract tracheal extensions from terminal
cells located at a distance of several cell diameters (Fig. 1E) (Jarecki
et al., 1999).

From these studies, the immanent question was, where and how

the sensing of dropping pO2 takes place to allow for changes in
gene expression that result in tracheole extension in insects.
Elucidation of this cellular oxygen sensing pathway required
several more years. It was first unraveled in nematodes and
mammals, and soon afterwards, also in Drosophila.

5. The oxygen sensing pathway

During the early 1970s, historical experiments by Judah
Folkman and colleagues led to the conclusion that growing
tumours are capable of inducing an angiogenic response from
pre-existing blood vessels (Folkman, 1974). Subsequently, an
abundance of efforts was dedicated to understand the nature of
this induction. Progress of this work culminated in the identifica-
tion of the Vascular Endothelial Growth Factor (VEGF) as a potent
secreted angiogenic signal in vivo (Leung et al., 1989). Soon
afterwards, it was revealed that VEGF was strongly induced by
oxygen deprivation, a typical feature of many growing tumors
(Shweiki et al., 1992). The anticipated master regulator of the
transcriptional response to hypoxia (Maxwell et al., 1993) was
eventually isolated as the so-called Hypoxia Inducible Factor 1
(HIF-1) by Wang and Semenza in 1995 (Wang et al., 1995; Wang
and Semenza, 1995). The discovery of HIF-1, and the identification
of VEGF as one of its transcriptional targets (Maxwell et al., 1997),
ultimately allowed building the current model for tumor
angiogenesis: (i) A massive cell growth in a tumor rapidly
provokes hypoxia, (ii) HIF induces the expression of VEGF by
tumor cells, and (iii) VEGF is the angiogenic signal that allows the
recruitment of new blood vessels by the tumor.

HIF proteins are bHLH-PAS a/b heterodimers (Wang et al.,
1995), thus belonging to the same protein family (bHLH-PAS
transcription factors) that also includes Trachealess in Drosophila

(Isaac and Andrew, 1996; Wilk et al., 1996). While the b-subunit of
HIF-1 is constitutively present, the stability and transcriptional
activity of the a-subunit is regulated by oxygen levels. HIF-1a is
rapidly degraded when oxygen is available (‘‘normoxia’’) (Fig. 2A)
(Pugh et al., 1997; Huang et al., 1998). In contrast, minutes-to-
hours of low oxygen stabilize the HIF-1a protein and render it
transcriptionally competent. Now, the factor translocates into the
nucleus where it heterodimerizes with HIF-1b. The a/b complex
binds to specific DNA recognition motifs, so-called hypoxia
response elements (HREs) (Maxwell et al., 1993; Firth et al.,
1995), from where it induces the expression of target genes that
mediate cellular and physiological adaptations to hypoxia (Fig. 2B).

The stability and transcriptional activity of HIF-a factors
depends on the action of oxygen-dependent prolyl hydroxylases,
known as PHDs (‘‘Prolyl Hydroxylase Domain’’ containing poly-
petides) (Bruick and McKnight, 2001; Epstein et al., 2001), and an
asparaginyl hydroxylase (FIH-1) (Lando et al., 2002, 2003),
respectively. These enzymes (in mammals: PDH-1 to PDH-
3 + FIH-1) utilize molecular oxygen as a co-substrate to catalyze
either the hydroxylation of key prolyl residues, located in the
central Oxygen Dependent Degradation (ODDD) domain of HIF-a
proteins (i.e. PHDs) (Ivan et al., 2001; Jaakkola et al., 2001), or of a
single asparaginyl residue housed within the C-terminal transac-
tivation domain (C-TAD) of the factor (i.e. FIH-1) (Lando et al.,
2002). Upon hydroxylation of the prolyl residues of the ODDD by
PHD1-3, HIF-a subunits are efficiently recognized by the Von
Hippel Lindau (VHL) tumor suppressor factor, a component of an
E3 ubiquitin ligase complex that targets them to proteasomal
destruction (Fig. 2) (Maxwell et al., 1999). Hydroxylation of the
single C-TAD asparagine by FIH-1, on the other hand, inhibits the
interaction of HIF-a subunits with co-activating factors (e.g. p300)
(Lando et al., 2002). While this asparagine hydroxylation is still
permissive for the factor’s binding to DNA, it effectively shuts
down any HIF-driven transactivation of HRE-flanked target genes,
since the co-activator is crucial to link the HIF complex with the
RNA polymerase II driven basal transcription machinery. Given
that PHDs and FIH-1 have an absolute requirement of dioxygen for
their catalytic activity, and, based on the fact that their Km for
oxygen is around the physiological range of oxygen tension, these
hydroxlyases are considered bonafide oxygen sensors of the cell
(Kaelin and Ratcliffe, 2008).

In Drosophila melanogaster, the basic machinery for sensing and
responding to hypoxia is very similar to the one of mammalian
species, although with less redundancy (Gorr et al., 2006; Romero
et al., 2007). Whereas three HIF-a subunits occur in mammals,
there is just one HIF-a in the fruit fly, which is encoded by the gene
similar (sima) (Nambu et al., 1996; Bacon et al., 1998). Likewise,
there is just one PDH oxygen sensor in the fly, encoded by the gene
fatiga (fga), that controls Sima half-life as a function of pO2 (Fig. 2)
(Lavista-Llanos et al., 2002; Centanin et al., 2005; Dekanty et al.,



Fig. 2. Oxygen-dependent regulation of the stability of HIF-a proteins. Sima (in

Drosophila) or HIF-a (in mammals) are hydroxylated at specific prolyl residues in an

oxygen-dependent manner, in a reaction catalyzed by specific prolyl hydroxylases

(‘‘Fatiga’’ in Drosophila; PHDs in mammals). (A) Hydroxylation of specific prolines of

HIF-a proteins in normoxia enables interaction with the Von Hippel Lindau (VHL)

tumor suppressor factor, which is the substrate recognition subunit of an E3

ubiquitin ligase enzyme. Interaction with VHL leads to HIF-a proteasomal

degradation. (B) In hypoxia, VHL fails to interact with HIF-a due to the inhibited

prolyl hydroxylation, resulting in stabilization of the protein, subsequent

dimerization with the HIF-b subunit (‘‘Tango’’ in Drosophila), and induction of

HIF-dependent gene expression.
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2005). Interestingly, the fruit fly genome does neither seem to
contain a structural (functional?) FIH-1 homologue, nor are there
conserved asparagine residues present near the Sima C-terminus
in the fly. The branchiopod crustacean Daphnia magna or the
nematode C. elegans also seem to lack the asparagine hydroxyla-
tion control feature, it therefore appears that prolyl-hydroxylation
and a-subunit degradation phylogenetically preceded the tran-
scriptional inactivation of HIF under high pO2 via FIH-homologous
catalysis (our unpublished observations).

Drosophila embryos homozygous for any of the fga mutant
alleles exhibit constitutive accumulation of Sima protein, even in
normoxia (Centanin et al., 2005). Sima levels in embryos exposed
to hypoxia are actually much lower than those of fga mutants.
Interestingly, all fga mutant alleles are lethal at different
developmental stages. The availability of a series of mutants for
both fatiga and sima, together with the lack of genetic redundancy
of the hypoxia-responsive machinery in the fruit fly, provided a
good opportunity to address whether Sima/HIFa represents the
only hydroxylation target of Fatiga/PHD. By generating fatiga sima
double mutant flies, the two phenotypes – constitutive response to
hypoxia and lethality – were rescued, and individuals were now
able to reach adult stages (Centanin et al., 2005). The fact that fga

sima double mutants are able to develop to adulthood suggests
that the oxygen sensing machinery is a dispensable function under
favorable environmental conditions.

However, Drosophila fatiga mutants exhibit a striking extra-
sprouting phenotype of the tracheal system, which was even more
pronounced than that of larvae grown in hypoxia (Centanin et al.,
2008; Moberg and Mortimer, 2009). When fatiga sima double
mutants were analyzed, tracheal ramification remained at levels of
control larvae, suggesting that tracheal extra-sprouting in fga

mutants results from the over-accumulation of Sima (Centanin
et al., 2008).

6. An autonomous role of the tracheal system in the branching
response to low oxygen levels

Since the above experiments clearly implicated the prolyl-
hydroxylase Fatiga and the HIF-a protein Sima in controlling
tracheal extra-sprouting during hypoxia, we generated a series of
hypoxia-responsive transgenic reporters to further analyse the
tracheal response to low oxygen levels in the fruit fly (Lavista-
Llanos et al., 2002). Typically, the HRE-studded promoter of the
murine lactate dehydrogenase (ldh) gene, a gene known to be
induced by HIF at low oxygen levels, was used to drive the
expression of GFP or other reporter proteins, such as LacZ. This
useful tool contributed to analyzing the dynamics of the hypoxic
response in vivo (Lavista-Llanos et al., 2002). Based on the
expression of the transgenic reporter in graded hypoxia, assess-
ment of organs or cell types that induce hypoxia-dependent gene
expression with high sensitivity was made possible. The expected
scenario, according to the models that account for angiogenesis,
predicted that hypoxia is first sensed in target tissues (Fig. 3A),
which would then turn-on Sima-dependent induction of branch-

less, leading to tracheal extra-sprouting. Surprisingly, this was not
the case (Lavista-Llanos et al., 2002; Centanin et al., 2008). Tracheal
cells actually express the hypoxia-responsive reporter with higher
sensitivity than any other cell type in the body (Fig. 3A). More
precisely, the tracheal terminal cells (TTCs) are, within the tracheal
system, the ones most sensitive to hypoxia (Centanin et al., 2008).
Therefore, TTCs (those ‘‘cells at the tip of each tracheal branch’’
described by Wigglesworth) (Wigglesworth, 1954) possess three
main and inter-related properties which enable them to function
as cellular O2 sensors: (a) They are the only cells of the tracheal
system with a capacity to deliver oxygen to target tissues. (b) They
are the only ones with a capacity to sprout-out cytoplasmic
projections under conditions of low oxygen availability, and (c)
They induce hypoxia-dependent gene expression with higher
sensitivity than any other cell in the organism.

Several questions are immediately inspired by the above
findings: How do oxygen-sensing genes mediate TTC sprouting?
Is TTC sprouting a cell autonomous response or does it rather
reflect a response to stimuli generated by surrounding tissues?

Since the hypoxic reporter was first induced in tracheal cells
rather than in target tissues (Fig. 3A) (Centanin et al., 2008),
induction of tracheal specific genes in hypoxia likely reflects a
primary transcriptional response of the organism. We determined
that the FGFR homologue Btl is a key target of Sima in response to
hypoxia. Moreover, forced over-expression of either Sima or
Breathless in TTCs provoked a tracheal sprouting phenotype highly
reminiscent to that observed in hypoxia, (Fig. 3D and E) (Centanin
et al., 2008). Thus, up-regulation of Sima or Btl in TTCs is sufficient
to induce tracheal sprouting, whereas, suppression of the
expression of Sima specifically in TTCs totally prevented tracheal
sprouting (Fig. 3B and C). Thus, up-regulation of Sima in TTCs is



Fig. 3. Transcriptional cell-autonomous response to hypoxia of Drosophila tracheal cells. (A) Left panel: Photograph of a Drosophila normoxic embryo transgenic for a GFP

hypoxia-inducible transcriptional reporter. The GFP reporter is not expressed in conditions of oxygen availability; the green dots indicate the position in which the reporter is

expected to be expressed in hypoxia, according to the models that account for mammalian angiogenesis (i.e. in target tissues). Right panel: In embryos exposed to hypoxia, the

HIF-dependent reporter is induced in tracheal cells, and not in target tissues, as would predict by the angiogenesis-born model. (B) In Drosophila larvae exposed to hypoxia,

tracheal terminal cells (TTCs) generate extra-ramifications. (C) In larvae exposed to hypoxia, the sprouting response schematized in (A) does not occur in TTCs that are mutant

for Sima. (D) Over-expression of Sima, specifically in tracheal cells, is sufficient to induce tracheal terminal cell (TTC) sprouting in a normoxic larva. (E) Tracheal over-

expression of the FGF receptor Breathless is also sufficient to promote tracheal extra-sprouting in normoxia.
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necessary and sufficient for promoting tracheal sprouting in
response to hypoxia (Fig. 3C and D) (Centanin et al., 2008).

Each Drosophila tracheal dorsal branch has only one TTC (there
is one dorsal tracheal branch per hemisegment), and ramifications
coming from TTCs neither cross the dorsal midline nor invade
neighbouring segments (Fig. 4A). Sporadically, as a random
developmental event, one or more TTCs fail to differentiate in
Drosophila larvae. In response to the lack of a given dorsal branch
TTC, the TTC corresponding to the contralateral dorsal branch of
the same segment sprouts-out ramifications that invade the
oxygen-starved area, thereby compensating for the lack of oxygen
at the hemisegment lacking its own TTC (Fig. 4B) (Jarecki et al.,
1999; Centanin et al., 2008). This developmental response to
hypoxia of Drosophila 3rd instar larval tracheae is equivalent to the
compensatory response observed by Wigglesworth in the tracheal
system of Rhodnius abdomens, after surgical elimination of the
tracheal branch of the 4th tergite (see Fig. 1A) (Wigglesworth,
1954). Interestingly enough, this compensatory response to a
missing TTC in the Drosophila larva fails to occur when the
remaining (contralateral) TTC is mutant for Sima. In this case, wild
type TTCs coming from neighbouring segments project cytoplas-
mic extensions to alleviate the oxygen starvation in the affected
hemisegment (Fig. 4C) (Centanin et al., 2008). Altogether, these
experiments reveal that TTCs respond to hypoxia in an autono-
mous manner by sending cytoplasmic projections to tissues with
poor oxygen supply. This autonomous response depends on the



Fig. 4. Compensatory response of the Drosophila tracheal system in response to a

missing tracheal terminal cell (TTC). (A) One tracheal terminal cell (TTC) occurs in

each dorsal branch. There are two dorsal branches per segment (one on the left; the

other one on the right). (B) TTCs are stochastically lost in Drosophila larvae; in the

example depicted in the scheme, the TTC corresponding to the dorsal branch of the

4th segment is missing. The TTC from the contralateral hemisegment extends

cytoplasmic projections that cross the dorsal midline, invading the region lacking

its own dorsal branch. (C) If the TTC contralateral to the missing branch is mutant

for Sima, it fails to execute the compensatory response (i.e. it does not invade the

hypoxic contralateral hemisegment). Instead, a TTC from the adjacent segment (the

3rd segment in the example) extends projections that provide oxygen to the region

lacking its own tracheal branch.
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accumulation of Sima protein in the TTC, which in turn induces
transcriptional up-regulation of the FGFR Btl in this cell. Up-
regulation of the Breathless receptor probably increases sensitivity
of TTCs to available levels of the FGF homologue Bnl, which is
transcriptionally induced locally in target tissues with poor
oxygenation (Centanin et al., 2008). Accumulation of the Bnl cue
in the target tissues provides the necessary directionality to the
outgrowth of tracheal branches (Fig. 1E) (Jarecki et al., 1999).

Regarding these characteristics, insect TTCs are analogous to
the ‘‘Tip cells’’ of the mammalian vascular system. These cells too
are located at the tip of a growing blood capillary and can sense
gradients of different guidance molecules. Through the expression
of VEGF receptors (among others), they are responsible for guiding
new blood vessels towards a source of VEGF. Therefore, tip cells
play a crucial role during angiogenesis, leading the sprouting
vessels directly towards the hypoxic interior of the growing tumor
(Holderfield and Hughes, 2008; Sainson et al., 2008).

Do mammalian endothelial cells undergo a cell-autonomous
response during angiogenesis, analogous to the one of TTCs during
tracheal sprouting? Recent studies in mice suggest that this may
well be the case. Randall Johnson and colleagues reported in a
mouse model that the endothelial cell-selective knockdown of HIF-
1a markedly impairs tumor angiogenesis (Tang et al., 2004). This
clearly demonstrates a requirement for oxygen responsive genes
within the vascular system and not just in the target tissues.
Analogies between TTCs and endothelial tip cells seem to extend
even further: Differentiation of TTCs during Drosophila embryonic
development is induced by the localized expression of the
Drosophila Serum Response Factor (dSRF) (Affolter et al., 1994;
Guillemin et al., 1996). Likewise, we now know that the
differentiation of mammalian tip cells during angiogenesis
depends on mammalian SRF (Franco et al., 2008). Further detailed
research of the physiology of mammalian tip cells will reveal to
what extent the cell autonomous behaviour of these cells is
relevant to angiogenesis, and to what extent these cells are mere
responders to guidance cues emanating from surrounding tissues.
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