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The use of FORC diagrams is becoming increasingly popular among researchers devoted to magnetism
and magnetic materials. However, a thorough interpretation of this kind of diagrams, in order to achieve
quantitative information, requires an appropriate model of the studied system. For that reason most of
the FORC studies are used for a qualitative analysis. In magnetic systems thermal fluctuations "blur" the
signatures of the anisotropy, volume and particle interactions distributions, therefore thermal effects in
nanoparticles systems conspire against a proper interpretation and analysis of these diagrams. Motivated
by this fact, we have quantitatively studied the degree of accuracy of the information extracted from
FORC diagrams for the special case of single-domain thermal corrected Stoner– Wohlfarth (easy axes
along the external field orientation) nanoparticles systems. In this work, the starting point is an analy-
tical model that describes the behavior of a magnetic nanoparticles system as a function of field, ani-
sotropy, temperature and measurement time. In order to study the quantitative degree of accuracy of our
model, we built FORC diagrams for different archetypical cases of magnetic nanoparticles. Our results
show that from the quantitative information obtained from the diagrams, under the hypotheses of the
proposed model, is possible to recover the features of the original system with accuracy above 95%. This
accuracy is improved at low temperatures and also it is possible to access to the anisotropy distribution
directly from the FORC coercive field profile. Indeed, our simulations predict that the volume distribution
plays a secondary role being the mean value and its deviation the only important parameters. Therefore
it is possible to obtain an accurate result for the inversion and interaction fields despite the features of
the volume distribution.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The use of FORC diagrams became a frequently used tool to
study different kind of magnetic systems [1–12]. As this method
provides more information than conventional hysteresis cycles
from the same type of experiment, its use has been increased
considerably in recent years. However, its analysis and inter-
pretation in order to obtain quantitative information is not
straightforward and requires, in many cases, the use of models to
understand the results [13]. The nanoparticles "universe" does not
escape to this reality, and the difficulty increases due to the fact
that the experimental results usually strongly depend on tem-
perature [14].

The need to know the magnetic properties of nanostructured
systems is becoming important because these parameters de-
termine the behavior and magnetic relaxation of the
si).
magnetization, essential in applications, e.g., the use of nano-
particles in hyperthermia [15,16]. In this case, the magnetic re-
laxation channels are strongly determined by the distribution of
anisotropy energies as well as interactions between particles. In
high-density magnetic data storage [12,17,18], the knowledge of
switching fields distribution and interactions between magnetic
grains are essential to optimize the storage process. The temporal
stability of the stored information and the maximum speed for the
read/write process depends on the above-mentioned distributions.
To access, quantitatively to the switching field and interaction
distributions from minor hysteresis loops is not straightforward.
Since the pioneer work of Preisach [19], many theoretical efforts
have been made to understand the validity range and the physics
behind FORC diagrams [17,20–24].

Motivated by the above-mentioned ideas, the main achieve-
ment of this work is to study the degree of accuracy of the
quantitative information, which is possible to obtain from FORC
diagrams, about the switching field distribution and interactions
in nanoparticle systems. As starting point, we used a model [25]
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that describes the behavior of the magnetization of an interacting
nanoparticle system with size, anisotropy, and interaction field
distributions, to obtain an analytical expression for the FORC
density. We assume that the particles ease axes are oriented along
the external magnetic field direction (Stoner– Wohlfarth model)
and the interactions fields are not dependent of the magnetic state
of the nanoparticle ensemble. Numerical simulations allow us to
study the degree of accuracy achieved when original information
is recovered from the simulated FORC diagrams.
Fig. 1. Schematic illustration of ( )M H H,0 . The sample is saturated with H40 and
then the field is reversed until H0. The field is reversed again until de desired field
H. The magnetization achieved is ( )M H ,H0 .
2. The model

In this work we developed a model to build FORC diagrams
based on the results of a previous work [25] where thermal effects
have been included on the classical Stoner– Wohlfarth model. On
that case it was assumed non-interacting particles having a uni-
axial effective anisotropy and the magnetic relaxation is governed
by the Arrhenius law, being the magnetization reversal time given
by the Master Equation. In order to deal with interactions, we
upgraded the above-mentioned model redefining the effective
field acting on each nanoparticle including interactions in the
same way as in the Preisach model.

The evolution of the magnetization M, Eq. (1), is given by two
contributions. The first term corresponds to the fraction of parti-
cles that are in the superparamagnetic regime, and the second
term corresponds to the blocked fraction. ( )τ̃L H T, , m is the prob-
ability to find the system in the superparamagnetic regime, where
H̃ is the total effective magnetic field acting on each nanoparticle,
T is the temperature and τm the temporal windows of the ex-
periment. Finally, the total effective magnetic field, ̃= +H H Hi, is
given by the interaction (Hi) and the external applied (H) fields.

⎡⎣ ⎤⎦
( ) ( )

( ) [ ]
( )τ τ τ

τ

= ⟨ ~ ⟩ ~

+ − ~ ⟨ ⟩ + ⟨ ⟩ ( )
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The contribution of the blocked population to the total mag-
netization is a function of P0, P1 which correspond to the fraction of
particles whose magnetic moments are oriented along the direc-
tion given by the first and second energy minima E0 and E1 re-
spectively. M0 and M1 are the magnetization values corresponding
to the minima orientations projected on the H⃗ direction, and the
brackets indicate the statistical average of the magnetization
around each energy minimum. The statistical average of the su-
perparamagnetic contribution must be performed over the full
space of the magnetization coordinates.

The probability of finding a particle in the superparamagnetic
regime is given by:

( ) ( )
( )

τ γ τ

γ τ

= −

= ( )
τ τ− *

L H T H T

H T e

, , 1 , ,

, , 2

m m

m
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where τ* is the effective time of passage of the magnetization from
a minimum to the other.

It is necessary to remark that the use of this model require the
knowledge of the time evolutions of the population P0 and P1. The
Eq. (3) gives us such evolution as a function of the time τm (small
enough as well as τ* remain constant while the external field is
change between successively measurements).

⎡⎣ ⎤⎦( ) ( ) ( ) ( )τ τ+ = + −

+ = ( )

∞P t P t L H T P P t

P P

, ,

1 3

m m0 0 0 0

0 1

∞P0 is the equilibrium population associated to the E0 energy
minimum. (Eqs. (2) and 3) were obtained from the combination of
Master Equation and the Arrhenius law.
2.1. Modeling the FORC diagrams

To obtain a set of first order reversal curves, one of which is
shown in the schematic Fig. 1, the measurement protocol starts at
high value of H (HMax) with the magnetization in thermal equili-
brium (therefore it is only a function of T and HMax). The external
magnetic field is swept down until a reversal field H0. The FORC
method consists in the measurement of the magnetization as a
function of the external magnetic field when it is increased from
H0 back up to HMax. The total magnetization of the system at the
applied field H on the FORC with reversal point H0 is denoted by

( )M H H,0 , with ≥H H0. A FORC distribution is defined as the mixed
second derivative [24]:

( ) ( )
ρ =−

∂
∂ ∂ ( )

H H
M H H

H H
,

,

40

2
0

0

and the FORC diagram is the contour plot of this distribution.

2.1.1. Additional hypotheses
The (Eqs. (1)–3) provide us a way to calculate the ρ distribution.

However, it is necessary consider some extra hypothesis in order
to get an analytical expression for the calculation of the FORC
distribution. First, the easy axes are aligned along the external
magnetic field direction. This strongly simplifies the problem be-
cause the Stoner– Wohlfarth model has analytical solution in that
case. Indeed this hypothesis is widely used in the literature of the
FORC physics. Even from the beginning of the FORC distribution
studies, most of the authors use as building blocks square like
loops called hysterons. These entities could be straightforward
identified with the parallel configuration of the Stoner– Wohlfarth
model.

The second hypothesis assumes the FORC distribution is obtained
at low temperature. Particularly the system is not only blocked if
not that thermal energy (K TB ) is smaller than the barrier energy
( =E KVB where K is the anisotropy constant and V the volume of the
particle). Actually, this hypothesis does not mean an extra re-
striction because, as it is well known, the magnetic system must be
blocked in order to observe a hysteretic behavior and, in con-
sequence, make sense “build” a FORC diagram.

Based on this last hypothesis we can neglect the effect of
thermal fluctuations of the magnetization orientation in each en-
ergy minima. It means that, as the modulus of the magnetization
do not change with thermal fluctuations, in the blocked regime it
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is only possible to obtain two discrete values of the magnetization.
Then, we can assume that the role of thermal fluctuations are
reduced exclusively to assist the reverse of the magnetization
passing from a given minimum energy orientation to the other
one. Based on the same hypothesis, the γ function of Eq. (3) be-
haves as:

( ) ( )γ θ≈ − ( )H H H 5c

where Hc is the coercive field corresponding to a given value of K
and T, where θ( )x is the Heaviside step function.

Considering all previous assumptions, and also that the equi-
librium population ∞P0 (see Eq. 3) can be approximated by a step
distribution we obtain an expression for the evolution of the
minimum energy population E0 as:

⎡⎣ ⎤⎦( ) ( ) ( )γ γ= + − ( )P H H H H, 1 1 60 0 0

In this context, using (Eqs. (1)–6) it is possible to obtain the
following analytical expression for the FORC distribution, ρ:
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where the total magnetic field acting over each particle can be
writing as: ̃= +H H Hi , being Hi the total interaction field over the
particle i. This fact completes the model including the last hy-
pothesis: the interaction field acting over a given particle is in-
dependent of the magnetic state. We want make some con-
siderations about the way in which the interparticle interactions
are added in the model. As in the Presiach like model, we are using
the concept of interaction field distribution. However, despite this
concept does not has a physical reality; the goal of our work is
study the accuracy of the information about the coercive and in-
teractions field’s distributions, assuming the validity of the pro-
posed model. Clearly, in a real magnetic nanoparticle system, the
interactions are dependent of the magnetic state of the particles.
In this sense, when a FORC diagram is built from the experimental
data, the image of the coercivity and the interactions fields as
disassociated entities in general must be modified. It is not our
purpose study this topic, because for each particular case it is
necessary dispose of an adequate model that describes the me-
chanism that governs the magnetization inversion. In this sense,
the present treatment could be considered as a first step for fur-
ther developments.

It is important to remark that the Eq. (7) corresponds to the
contribution of only one particle of diameter ϕ, anisotropy K, and
interaction field Hi. In order to obtain the distribution of the full
ensemble of particles ρ, it is necessary to integrate over the dis-
tributions of size ( ϕf ), anisotropy ( fK ), and interaction fields ( fHi

).
Then, the expression for the FORC distribution of the ensemble

is given by:

⎧⎨⎩
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where < >V is the mean volume value and the integrals are per-
formed over the full domain of each parameter (Ωi, ΩK ,and ΩHi

). It
is useful to note that, as Hi do not depend on the magnetization,
after a suitable change of coordinates, we will be able to factorize
this equation.

Usually, in the literature the FORC diagrams are expressed in
terms of the new coordinates ( )̃ = −H H H /2c 0 and ( )̃ = +H H H /2u 0

[23,24,26].
In this coordinate system, it is possible to identify:
( ) ( )

( ) ( ) ( )
δ

γ

δ δ
γ

̃ − ⟷
∂ ̃

∂

̃ + = * − ↔
∂ *

∂ ( )

H H
H

H

H H H H
H

H 9

c c
c

u i c

where * = ̃ + +H H H Hu i c and Hc is the coercive field for a particle,
which is given by:

( )( )τ τ= − ( )H H k T KV1 log 4 / / 10c A B m 0

here k TB is the thermal energy, =H K M2 /A s is the anisotropy field,
KV is the energy barrier of the particle of volume V, τm is the
temporal windows of the measurement and τ0 is the characteristic
time relaxation at → ∞T .

It is convenient to note that the derivative of the gamma
function on the second line of Eq. (9) must be evaluated in *H
despite the graph is plotted in ( )̃ ̃H H,c u coordinates.

Substituting Eq. (7) in (8) and tacking into account Eq. (9).

( ) ( ) ( )δ δ̃ + = * − ↔
γ∂ *

∂H H H Hu i c
H

H
, it is possible to factorize the Hi

integral of Eq. (8), despite of γ is function of V and K through τ*,
which leads to the following expression:
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Then, in this case we can deal with an expression much more
simple than the Eq. (8), which also requires less computational
effort and evidences an underlying symmetry.

Indeed, this symmetry is given by the fact that there is a pro-
portionality factor between two different profiles of FORC dis-
tribution at constant H̃u. This factor is the Hi integral in the Eq. (11),
which account for the interaction field’s distribution. Despite we
start our treatment form a model described in reference [25], by
the simplifications derived from the hypotheses on 2.1.1, we be-
lieve that the resulting model synthetized in Eq. (11) are compa-
tible with the Presisach–Néel model [27,28].

Then, from the Eq. (11) it is evident that the information about
the Hc and Hi distributions are provided by the FORC diagram in
the H̃c and H̃u axis. This affirmation could also be valid even in Eq.
(8) using the appropriate coordinates.

2.2. Simulations. Numerical results

As we have pointed out previously, our main interest regarding
the FORC diagrams, is to know the degree of accuracy on the
quantitative information about the switching field distribution and
interactions that is possible to obtain for nanoparticle systems.

For that reason, starting from Eq. (11) we performed numerical
simulations to study the degree of accuracy of the model. In our

description this accuracy is related to the fact that ( )γ∂ ̃

∂

H

H
0

0
is ap-

proximated by a delta distribution.
Our first test was carried out using a gaussian distribution of K

and hi (with < > =h 0i ) and a lognormal distribution for ϕ. In all
calculations related to the FORC diagrams, it has been used the
reduced fields = < >h H H/ A normalized to the average value of the
anisotropy field < >HA and normalize the FORC density in order to
reach the unity as the maximum value.

As we are dealing with a nanoparticle system, the temperature
plays a crucial role on the magnetic behavior. Then it is very useful
to define the Δ parameter, which relates the energy barrier with
the experimental measurement time and the thermal energy, as
follow:



Fig. 2. Simulated FORC diagrams and hysteresis loops for Δ¼240 (a) and Δ¼0.8 (b). Bottom panels: hysteresis loops associated to the correspondent FORC diagrams.
= < >h H H/ A is the reduced field.
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( )Δ
τ τ

= < > < >
( )

V
k T

K
ln 4 / 12B m 0

We can associate Δ�1 to a reduced temperature scale, where Δ

values close to 1 represents high temperatures, and Δc1 corres-
ponds to low temperatures.

In order to compare two representative cases we plot in Fig. 2
the FORC diagrams and the hysteresis loops for high (a) and low
(b) temperatures.

On the high temperature case, we observe a narrow coercive
fields distribution with a mean value close to zero. On the other
hand, for the low temperature case, we have a FORC diagram
centered on a mean hc value well above zero and slightly wider
than the high temperature one. This is directly reflected on the
squarness of the hysteresis loop showed on the bottom part of
Fig. 2(b).

Concerning the interaction field distribution, which is related
to the vertical axis of the FORC diagram, in Fig. 2 we can observe
that both cases have similar features. Regarding these diagrams,
we want to highlight a particular point about their properties.
Different profiles taken at constant hu or hc have translation
symmetry along their own axis. This symmetry comes from the
factorized expression obtained in Eq. (11).

In order to quantify the accuracy of the hi and hc distributions,
we show in Fig. 3 two profiles of the FORC diagrams at different
temperatures. On the left panel (Fig. 3(a)), it is shown a ̃hu profile
obtained at constant ̃hc across the maximum value of the dis-
tribution, and, on the right panel it is shown a ̃hc profile obtained
at constant ̃hu.

The open symbols correspond to the data of Fig. 2, while the
solid lines are the expected theoretical distributions given by:

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

( )( )

( ) ( )

∫ ∫

∫

ϕ δ ϕ ϕ

δ

~
=

< >
~

− ( )

~
=

~
−

( )

ϕ ϕΩ Ω

Ω

f h
V

f f h h K d

dK

f h f h h dh

1
,

13

H c
K K c c

H i
H H i i i

3
c

i
i

i

where hc is the normalized coercive field expression given by Eq.
(10).

Regarding these distributions, we remark that these definitions
are consistent with those that could be obtained using the FORC
distribution (Eq. (11)) and the identities given by Eq. (9). In this
sense, we can assert that the definitions of Eq. (13) are compatible
with the Presiach model description.

In order to obtain numerical results for Eq. (13) it is necessary
to approximate the delta distributions. In this work we choose to
use the numerical derivative of an approximation of the Heaviside
step distribution given by ( )θ( ) ≈ + α−x e1/ 1 x (with α = 2000).

It is remarkable the good agreement between the profiles ob-
tained by using the FORC information and the expected distribu-
tions of Eq. (13).

To quantify the accuracy of the profiles obtained by using the
FORC diagrams, we define a confidence factor C, which compare
the FORC profiles with the expected results of Eq. (13), as follow:

∫
∫

= −
( ) − ( )

( ) ( )
−∞

∞

−∞

∞C
f x G x dx

f x dx
1

14

where ( )f x is the expected distribution function and ( )G x is the



Fig. 3. hi (panel (A)) and hc (panel (B)) profile distributions corresponding to data of Fig. 2. Dots correspond to the FORC data, lines to definitions given in Eq. (13). Panel
(C) shows the evolution of the C confidence coefficients (associated to hc and hi) with the Δ control parameter.
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probe function. As the C value approximate to 1, the ( )G x dis-
tribution becomes close to ( )f x . This parameter becomes highly
relevant to quantify the range of validity of our results.

In Fig. 3(c) it is presented the confidence factor C for hi and hc
distributions at different temperatures. We can see in both cases
that the agreement between FORC profiles and the expected dis-
tributions is higher than 97 % even at the high temperature
regime.

Up to now all the results discussed in this work correspond to a
particular election of the hi, K , and ϕ distributions. In order to
study, how the election of a particular profile for the parameters
(hi, K , and ϕ) affect the hi and hc data obtained from FORC dia-
grams, we calculate them using normal, lognormal, triangular and
uniform distributions for the anisotropy, interaction field and
diameter. It is well known that some of the chosen distributions
are highly pathological, but we want to emphasize that the main
objective is to test the robustness of the model even in the worst
scenarios.

As it was shown in Fig. 3 it is expected that the obtained hi
distribution does not depend on temperature. For this reason, the
calculated profile from Eq. (11) is the same that the input hi dis-
tribution given by the Eq. (13). In contrast, the coercive field
distribution hc , also shown in Fig. 3, has a marked thermal de-
pendence. Then, we studied the hc profile in the low temperature
regime using Δ¼240.

In Fig. 4 we present several hc profiles corresponding to dif-
ferent K and ϕ distributions. Each panel of Fig. 4 corresponds to
normal (A), lognormal (B), triangular (C) and uniform (D) K dis-
tributions where each kind of symbols correspond to a particular ϕ
distribution as it is indicated by the labels on panel (B). The si-
mulations were performed considering Δ¼240, σ < > =V/ 0.66V ,
and σ < >=K/ 0.31K . It is evident some particular characteristics that
we want to remark as follow. First, in all the cases the obtained hc
profile inherits the K distribution profile. This fact can be under-
stood considering the Eq. (10), which corresponds to the thermal
evolution of the coercive field. This expression shows clearly that
at very low temperatures (or large Δ values) the profile of the hc
distribution must be identical (corrected by the factor M2/ s) to the
K distribution. It is important to emphasize that the diameter
profile (ϕ) distribution has not a relevant role in the hc profiles
shown in Fig. 4. However, it is important to remark that to obtain
the good agreement shown in Fig. 4, we used different kind of
distributions but always with the same values of mean volume
(< >V ) and its dispersion (σV ). This can be understood in terms of



Fig. 4. hc profiles obtained for normal (A), lognormal (B), triangular (C), and uniform (D) K distribution. In all cases Δ¼240, σ < >=K/ 0.31K , and σ < >=V/ 0.66V . The size
distributions are represented by different kinds of dots and lines.
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the fact that in (Eqs. (11) and 13) the quantity relevant is the vo-
lume and not the diameter, because the magnetization is propor-
tional to the last one.

As shown in Fig. 4, the coincidence between the profiles of
different diameters distributions is better than 95 % in all cases
(see the confidence factor C on each panel). Note that C¼1
corresponds to compare any of the profile distributions with itself.
These results lead to the conclusion that, if we fit the profiles of
Fig. 4 (using Eq. (13)) with the appropriate K distribution, we can
get information about this, but not about the diameters distribu-
tion; we can only can get information about < >V and σV .

From the results showed in Fig. 4 we can infer, almost trivially,
the shape of the K distribution, but it is important to remark that it
was always on the low temperature limit (Δ¼240). Then, on the
next paragraph, we will address how we can deal with the system
at higher temperatures.

On the one hand we want to quantify how accurate is the “si-
milarity” between the distributions of hc and K as a function of
temperature. Also, we want to know the degree of accuracy on the
estimation of the anisotropy distribution from FORC diagrams.

In the limit of T-0(Δ-1), the Eq. (10) indicates that the hc
distribution must be, except for a scale factor, identically to the K
one and σ σ< >= < >h K/ /h c Kc

. In contrast, as the temperature increase,
the σ < >h/h cc

ratio is modified by thermal effects and the volume
distribution.

Fig. 5 shows hc distribution profiles as a function of h, calcu-
lated using different K distributions: normal (A), lognormal (B),
triangular (C) and uniform (D). Focusing our attention on the tri-
angular K distribution, we can see on panel (C) two profiles of hc at
different temperatures obtained from FORC diagrams simulations
with Δ¼250 (open circles) and Δ¼1 (open stars). The profile ob-
tained in the low temperature regime is almost the same as shown
before in Fig. 4 (C), but when temperature increases the shape of
the profile strongly change losing their triangular appearance,
despite of K distribution remains the same. In order to study the
effect of temperature, we calculate < >hc and σhc values from the
data of Fig. 5, and built a triangular distribution with these para-
meters, to be used as a reference (showed in solid and dashed
lines). As the low temperature profile obtained from FORC dia-
grams is almost triangular, it is evident that the built distribution
is almost the same to the obtained from the FORC. In contrast on
the high temperature regime we can see major differences. How-
ever these differences, we remark that triangular and uniform
distributions are highly pathological.

The fact that the shape of K distribution is not reflected on the
hc profile at high temperature is observed for all the studied dis-
tributions. In order to quantify the difference between the hc
distribution obtained from the FORC profile and the reference
distribution, we calculate the C confidence factor between both. In
Fig. 6A we present the evolution of C as a function of Δ, for dif-
ferent K distributions. For ΔZ30 , except the pathological uniform
distribution, the discrepancy between the reference and the hc
distributions is less than 10%.

Usually, the main interest is to have information about the K
distribution, assuming the previous knowledge of their “shape”. In
other words, if we know the profile distribution of K, how well
could be estimated the ratio σ < >K/K from the hc distribution data
as function of temperature. With this in mind, we define the
quantity

Γ = −
−

( )

σ σ

σ1
15

h K

K

hc

c

K

K

where Γ indicates the relative coincidence between the σ h/h cc
and



Fig. 5. hc distributions profiles for Δ¼250 (open circles) and Δ¼1 (open starts). The lines correspond to the same kind of K distribution in each case, with the same mean
value and dispersion that the FORC hc profiles.
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σ K/K ratios. In Fig. 6 (B) we present the evolution of Γ as function
of Δ for each of the K distributions. The dashed horizontal line
represents the unit, i.e. the case limit case when σ h/h cc

and σ K/K

match exactly. The figure shows an almost universal curve beha-
vior, i.e., independent of the used K distribution. Particularly,
for Δ-1 the ratio σ < >h/h cc

tends to 1. From data of Fig. 6 (B) we
observed that, for ∆~50 the error in the estimation of σ < >K/K is
close to 13%, and for Δ�250 value is around 3%.

Using the fact that Γ exhibits an approximately universal
behavior, independent of the profile of K distribution, we want to
find an expression for this. Then, considering the anisotropy,
volume and its dispersion, as well as Δ, we calculated σ < >h h/c c
starting from Eq. (10), using the definition (12), and assuming that
the dispersion σhc comes from the quadratic square root of the sum
of quadratic contribution of K, and < >V . Making a Taylor series
expansion at order Δ�1/2 (low temperature limit), we obtain:
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σ σ
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K
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1

2

1
1

2 16

c

c

The dash line in Fig. 6(b) corresponds to the curve descript by
Eq. (16). It is noticeable that the asymptotic approximation is
outstanding. Remarkably, the correction given by the volume
distribution does not appears at order Δ�1/2. This means that for
“sufficiently” large values of Δ, the volume correction can be ne-
glected. Combining (Eqs. (16) and 12) we can estimated the degree
of accuracy in the direct estimation of σ < >K/K from σ < >h/h cc

. For
example, for a desirable estimation of �5% should be enough
taking Δ¼100. Converting Δ¼100 value to temperature values
depends of the characteristic parameters of each system. For in-
stance, considering the case of a normal distribution of anisotropy
with a mean value of ×8 105 erg/cm3, and a lognormal size dis-
tribution given by ϕ =15nm0 and σ = 0. 4, then Δ¼100 corresponds
to T¼7 K [29]. If Calculating the same systemmeasured at 80 K, for
instance, we obtain Γ~0. 5 which is a poor estimation, however for
ϕ =20nm0 in the same experimental conditions Γ~0. 7.

As a final remark, due the fact that Eq. (11), by the simplifica-
tions and assumption, can be “associated” to the Preisach–Néel
model, and the definitions given in (13) to the Preisach model,
could be claim that the spirit of the work results in the analysis of
a comparison between the distributions of hc and hi associated to
both models.
3. Conclusions

In this work we have studied the degree of accuracy of the
information obtained using the FORC diagrams for a nanoparticle
system. We developed an analytical model describing the FORC
diagram as function of the applied external field, the experimental
time windows and temperature. In the model it is assumed that
the easy axes of the particles are all oriented along the H⃗ direction
and also the interactions fields are not dependent of the state of
the magnetization. Defining the irreversibility and interactions
fields distributions as a function of temperature, volume dis-
tribution, anisotropy, and other parameters, we were able to
quantify the degree of accuracy of the information obtained from
these diagrams. The results of the simulations indicate that this is
a very appropriate and accurate technique. The description of the
distributions of the irreversibility and interactions fields is out-
standing, even for the case of high temperatures (Δ�1). However,
we verified that increasing the temperature qualitative and
quantitative information about distributions in the system are
losing.



Fig. 6. Upper panel: C coefficient relating the dots and lines of Fig. 5 as function of
Δ. ΔZ30 the agreement is superior that 90 % (at exception of the uniform dis-
tribution, which needs ΔZ75). Bottom panel: dots corresponds to Γ data, dashed
lines indicates the reference value, and the solid line the asymptotical expression of
Eq. (16).
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It was found that the distribution shape of coercive fields is
determined principally by the distribution of anisotropy, especially
at low temperatures (Δc1); the role played by the size distribu-
tion is reduced. Only the volume average and its dispersion values
are relevant, regardless the shape of the size distribution. Our
results also indicate that for Δ�50 the shape of K distribution can
be obtained with a good accuracy (over 90%) from the Δ�50
profile (except for pathological cases as the uniform distribution,
in which case Δ�100 is required). In addition, at very low tem-
peratures Δ�100 it is possible estimate the σ < >K K/ ratio with a
high degree of confidence (95%) directly from the hc FORC dis-
tribution profile.
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