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ABSTRACT 

Purpose: Radiotherapy is an effective tool for cancer control, but side effects on normal 

tissue limit its therapeutic effectiveness. Thus, the search for agents that may allow the use 

of high doses of radiation but exerting a differential protection to healthy tissue is of current 

concern. Resveratrol (3, 5, 4'-trihydroxy-trans-stilbene) (RSV) is a polyphenol with 

pleiotropic benefits for health due to its antioxidant and anti-inflammatory properties. Recent 

findings suggest that RSV could be promising in the fight against cancer since it inhibits the 

growth of tumor cells and optimizes radiotherapy. However, evidence in rodents and human 

beings is inconsistent. The aim of this study was to evaluate the radiomodulatory capacity of 

RSV on human lymphocytes.  

Materials and methods: To study these properties of RSV, human peripheral blood 

lymphocytes from 20 healthy women undergoing in vivo RSV treatment with 50 mg/day 

doses were irradiated. The genotoxic damage was assessed by the comet assay, also called 

single cell gel electrophoresis (it makes it possible to measure the extent of the DNA 

migration from individual cells, detecting the genomic damage present in each cell). 

Results: No differences were observed in basal clastogenic damage among samples without 

irradiation. There was only a slight radiation-induced clastogenic damage. The Damage 

Index (DI) value had a statistically significant increase in the exposed groups in comparison 

with the control groups (p<0.0001), but a statistically significant decrease of the DI value 

was observed in samples irradiated after treatment with RSV compared to pre-treatment 

samples (p<0.0001). 

Conclusion: The RSV used as a dietary supplement had radioprotective properties, without 

exerting cytotoxic effect. The potential utility of RSV to optimize the radiotherapeutic ratio 

in cancer treatments using radiotherapy should be considered. 
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1. Introduction 

Radiotherapy is a common therapeutic modality in modern medicine based on the use 

of ionizing radiation for cancer treatment (United Nations Scientific Committee on the 

Effects of Atomic Radiation 2008; Barnett et al. 2015). Although radiation is effective for 

disease control, side effects such as damage in normal tissues surrounding the tumor limit its 

therapeutic benefits (West and Barnett 2011; Raabe et al. 2012). Recent advances have 

focused on achieving an optimal balance between tumoricidal efficacy and acceptable toxic 

effects. Usually, radiotherapy is performed using many relatively small fractions of radiation, 

but currently, there is a push to increase overall total dose and to increase in fraction size 

mostly taking advantage of more accurate delivery thus avoiding or giving less dose to the 

surrounding normal tissue. Therefore, there is interest in protecting the normal tissue, so 

research is centered in finding agents that exerts a differential protection to healthy tissue. 

Since cellular damage induced by electromagnetic radiation is mainly attributed to the 

harmful effect of free radicals (Zhang et al. 2013; Li et al. 2014; Koohian et al. 2017), 

substances that could eliminate them are particularly attractive as radio-modulators. A large 

number of natural and synthetic compounds such as antioxidants, cytoprotective agents and 

vitamins have been extensively studied in in vitro and in vivo models (Brisdelli et al. 2009). 

Unfortunately, some radioprotectors are toxic at the doses required for this end, and many 

synthetic agents have not been used in clinical applications yet. In addition, the search for 

new agents for cancer prevention and treatment has been strengthened in recent years due to 

the progressive increase of the disease as a result of both life style changes and increased 

longevity (GLOBOCAN 2018). Natural products have always been an important source of 

these new agents; thus, numerous studies have focused on biologically active substances of 

plant origin having therapeutic properties (Kundu and Surh 2008; Shukla and Singh 2011).  
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Resveratrol (3,5,4'-trihydroxy-trans-stilbene) (RSV) is a polyphenol commonly 

obtained from grapes and their derivatives and also synthesized by several plant species in 

response to biotic and abiotic stress. The compound has shown pleiotropic benefits for health, 

particularly because of its antioxidant, anti-inflammatory, anti-aging, cardioprotective and 

neuroprotective activities (Brisdelli et al. 2009; Shukla and Singh 2011; Carter et al. 2014; 

Poulsen et al. 2015). Considering that some of these properties are supposed to counteract 

both the carcinogenic process and the side effects of the radiant protocols, much of the 

current research on RSV is concerned with its possible application in oncology as a 

therapeutic and/or chemopreventive agent (Singh CK et al. 2015). In this sense, recent 

findings from our laboratory and other research groups suggest that RSV could be promising 

in the fight against cancer as well as in the improvement of radiation therapy (Kundu and 

Surh 2008; Brisdelli et al. 2009; Carter et al. 2014). As a polyphenolic compound, RSV 

removes hydroxyl and superoxide radicals and promotes the activity of antioxidant enzymes 

such as superoxide dismutase and catalase. Their reduction prevents DNA damage, which 

could be useful in oncological radiotherapy to avoid normal tissue damage (Brisdelli et al. 

2009).  

On the other hand, recent work has remarkably advanced our understanding of the 

molecular mechanisms underlying RSV anticancer properties. For instance, it has been 

shown to inhibit or retard the growth of tumor cells in vitro and tumors implanted in vivo 

(Brisdelli et al. 2009; Banegas et al. 2018). However, although the data obtained from cell 

cultures are promising, evidence in rodents and human beings is scant and inconsistent. 

Contradictory results may be due to the route of administration and the dose or animal 

species used, among other factors. Thus, the transfer of RSV to the clinical area is still far 

from real considering the challenges to be addressed, namely, from metabolic issues to the 

total understanding of RSV systemic action (Shukla and Singh 2011; Singh CK et al. 2015). 
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According to the above mentioned and previous results obtained by our research group 

(Banegas et al. 2018), the aim of this study was to evaluate the radiomodulatory capacity of 

RSV in 4 Gy-irradiated human peripheral blood lymphocytes from healthy women 

undergoing in vivo RSV treatment. 

 

2. Materials and methods 

 

2.1. Chemicals 

Low-melting-point agarose (LMA), normal-melting point agarose (NMA), NaCl, Na-

EDTA, Tris, NaOH, Triton X-100, ethanol, EDTA and dimethyl sulfoxide (DMSO) were 

obtained from Invitrogen (California, USA), Biopack (Buenos Aires, Argentina) and Carlo 

Erba Reagents (Barcelona, Spain). Resveratrol capsules were purchased from N.S. Products 

S.R.L. (Buenos Aires, Argentina), RPMI 1640 Medium from Gibco (California, USA) and 

Sybr green from Sigma-Aldrich (Missouri, USA) 

 

2.2. Study design 

The experimental group was composed of healthy, non-smoking female volunteers with 

similar nutritional conditions. Participants received one capsule of 50 mg RSV daily under 

fasting conditions for 15 consecutive days. A sample of about 5 mL peripheral blood was 

drawn in labelled tubes containing lithium heparin as anticoagulant (Monovettes®; Sarstedt, 

Nümbrecht, Germany) at the beginning and end of this treatment. Immediately afterwards, 

two aliquots of blood (1 mL each) were separated and centrifuged for 5 min at 1000 rpm at 

20 °C. Plasma was removed and replaced for an equal volume of RPMI, and the pellets were 

resuspended. One aliquot was irradiated with 4 Gy and the other was used as experimental 

control. Genotoxic damage was assessed with the alkaline comet assay.  
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The study was performed in accordance with the core principles of the Good Clinical 

Practice Guidelines (Vijayananthan and Nawawi 2008) and following the principles of the 

Declaration of Helsinki. All donors were properly informed of the purposes of this study and 

gave their written informed consent. 

A total of 20 healthy female subjects (age range, 20-30 years) were recruited. General 

characteristics of the study sample are presented in Table 1. Eligibility criteria met the 

following requirements: normal physical examination, vital signs and laboratory screening 

results within normal ranges, willingness to abstain from specific foodstuff and beverages, 

ability to understand the full nature and purpose of the study, non-smoking, non-pregnant and 

non-lactating women (Sergides et al. 2016). Exclusion criteria included history of 

hypersensitivity to the test substance and the inactive ingredients, hospitalization for any 

reason or blood donation (≥ 450 ml) within 12 weeks prior to the initiation of the study, 

intake of any drugs within 4 weeks prior to or during the study, history or presence of any 

relevant medical condition, history of drug or alcohol abuse, and subjects that were 

vegetarian or followed a particular diet. 

From three days prior to the study and up to 24 h after the last RSV dose, volunteers 

maintained a strict diet, avoiding the consumption of foods or beverages with a high RSV 

content such as red/black fruit, kiwi fruit, red/black grapes, peanuts, nuts and red wine. The 

diet was controlled during the entire treatment period. Each RSV tablet was administered 

orally with 200 ml water early in the morning on an empty stomach. 

 

2.3. Irradiation procedure  

Cell irradiation was performed with a VarianClinac® 6MV linear accelerator (Varian 

Medical Systems, Palo Alto, California, USA). The dose rate was calculated using isocentric 

formalism and set at 300 cGy/min. The 1.5 ml tubes containing 1 ml of sample were placed 
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in an immobilized rack inside an acrylic phantom with water, whose density was equivalent 

to soft tissue and whose depth was greater than the buildup zone. This system was placed on 

a “tennis racket” support panel of the accelerator and irradiated from the bottom with 4 Gy 

isocentric photon beams using a 10-15 X field size. The deviation of the absorbed dose was 

less than 5%, which was compatible with the therapeutic objective. The samples were 

irradiated at room temperature, but immediately after that they were put on ice. Despite for 

conventional radiotherapy treatments the exposure is usually given on 2 Gray fractions once 

per day five days per week, previous results obtained in our laboratory showed that 4 Gy was 

optimal in relation to the sensitivity of the technique used (Olive 2009; Banegas et al. 2018).  

 

2.4. Comet assay 

Cytomolecular genotoxic damage in peripheral blood was assessed immediately after 

each radiation treatment with the alkaline version of the comet assay according to Singh NP 

et al. (1988) with slight modifications. Microscopic slides were coated with NMA and kept at 

room temperature for agarose gel solidification. Twenty microliters of treated cells were 

mixed with 160 µL LMA in phosphate-buffered saline; 90 µl of the mixture were layered on 

each slide, spread out with a cover slip and kept at 4 °C for 10 min. After solidification, 

coverslips were removed and slides were immersed in cold lysing solution (2.5 M NaCl, 100 

mM Na2EDTA, 10 mM Tris, pH 10); then, 1% Triton X-100 and 10% DMSO were added 

just before use. After lysis, the slides were placed in a horizontal gel electrophoresis tank 

filled with alkaline buffer (300 mM NaOH and 1 mM EDTA, pH 13) for 20 min at 4 °C to 

allow DNA unwinding and the expression of alkali-labile damage. Electrophoresis was 

performed for 25 min at 250 mA and 25 V. After electrophoresis, the slides were washed 

three times for 5 min with neutralizing buffer (0.4 M Tris, pH 7.5) and fixed with ethanol 

absolute.  
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2.5. Microscopic analysis and scoring 

Slides were scored under blind code. They were stained with 20 µl Sybr green (1/2000 

dilution) just before the microscopic analysis. A total of 100 randomly captured cells per 

slide were visually analyzed under a fluorescence microscope with excitation filters of 515-

560 ηm (Olympus BX40®, Tokyo, Japan) at 400 magnification. Each experimental point was 

evaluated in duplicate. Thus, total cell observations included 800 cells per volunteer (200 

cells per condition). The degree of damage was determined visually according to Collins et 

al. (1995) (Kumaravel et al. 2009). Each cell was classified into 5 classes, from class 0 (no 

DNA migration) to class 4 (maximum DNA migration). Genetic damage was measured with 

the damage index (DI), calculated with the formula DI = [ (1×n1) + (2× n2) + (3× n3) + (4× 

n4)] / (n0 + n1 + n2 + n3 + n4) x 100, where n indicates the number of cells in each class. 

Damage class (DC) was calculated as the sum of cells with 0 (null), 1 and 2 (slight), and 3 

and 4 (severe) damage.  

 

2.6. Statistical analysis 

Data were analyzed using Student´s t-test and Chi-square test. Results are expressed as 

means ± SEM. 

 

3. Results 

All volunteers completed the study. The demographic characteristics of participants are 

presented in Table 1 (mean age, 25.39 ± 2.44 years [range, 22 - 30 years]; mean weight, 

60.43 ± 6.018 kg [range, 49.2–76.0 kg); mean height, 1.62 ± 0.06 m [range, 1.48–1.76 m]; 

mean Body Mass Index kg/m
2
, 22.98 ± 2.04 [range, 19.33–29.69]). [Table 1 near here] 
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Mean frequency of comet classes for each experimental point is shown in Table 2. 

Comet classes 3 and 4 were observed more frequently in the irradiated than in the control 

groups, while comet class 0 was observed more frequently in controls. [Table 2 near here] 

Figure 1A shows DC of blood samples taken before and after daily RSV administration 

for 15 days. No significant differences were observed in basal clastogenic damage among 

control, pre- and post-treatment samples without irradiation, suggesting that both RSV and its 

metabolites did not exert a genotoxic effect at the dose administered. Despite the absence of 

unwanted side effects in volunteers, our results failed to verify the antioxidant capacity of 

RSV. Radiation-induced clastogenic damage comparing irradiated cells (4 Gy) before and 

after treatment, was slight and mostly corresponded to comet grades 2 and 3 (Figure 1A). 

This tendency was repeated in all volunteers. Figure 1B shows the DI of blood samples. 

While the lowest DI value was observed in the control groups (not irradiated), both before 

(mean DI 24,72 ± 6,42) and after (mean DI 19,07 ± 4,05) treatment with RSV, this parameter 

had a significant increase in the exposed groups (p<0.0001). An important DI decrease 

(p<0.0001) was observed in samples irradiated after treatment with RSV (mean DI 120,52 ± 

9,22) compared to pre-treatment samples (mean DI 171,91 ± 6,44), it was noted that the DI 

increased with the irradiation and decreased with the RSV treatment. [Figure 1 near here] 

 

4. Discussion 

Currently, radiotherapy is the cornerstone of cancer treatment considering that it is a 

targeted and non-invasive therapy, with good organ preservation. However, its side effects on 

normal tissue limit its use, making it necessary to find agents to mitigate them (Citrin et al. 

2010). Although radiotoxicity would be related to immediate and widespread oxidative 

damage to the genetic material of irradiated cells, new paradigms propose broader 

mechanisms of action which are integrated at systemic level (Güerci and Córdoba 2015). In 
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general, cell damage has been attributed to the increase in reactive oxygen species that induce 

functional alterations in lipids, proteins and nucleic acids (Zhang et al. 2013; Li et al. 2014; 

Dobrzynska et al. 2016). Thus, molecules with free radical scavenging properties are 

particularly promising as radio protectors, and their clinical use has been investigated during 

the last years. Since these compounds frequently have side effects and toxicity (Sebastia et al. 

2013; Li et al. 2014), the focus is now being placed on natural compounds with lower toxicity 

than the synthetic substances and with most favorable administration routes (Sebastia et al. 

2013). Among them, RSV has been highly promoted both as antioxidant and anticancer 

(Shukla and Singh 2011; Zhang et al. 2013). Such dual mechanism of action constitutes the 

fundamental basis of a radio-protective substance, i.e., protective for normal cells and toxic 

for tumor cells (Fabre et al. 2011; Sebastia et al. 2014).   

Taking into account the tissue analyzed in this study (human peripheral blood), an 

important aspect to consider is that the side effects of radiotherapy vary depending on the 

area treated, the general condition of the patient and the type and dose of radiation used. 

Treatment over large areas of the body, such as bones that contain a main part of the bone 

marrow, for example pelvis, legs, thorax, or abdomen, may lead to drop of the white and red 

blood cell count (American Cancer Society 2019; American Society of Clinical Oncology 

2017). In relation, it is suggested that special treatments, such as Total Body Irradiation, 

induce significant leukopenia. It has also been observed a reduction in the number of 

circulating leukocytes and lymphocytes in cervical and endometrium radiotherapy (van Meir 

et al. 2017). In this way and in agreement with Yi et al. (2019), there is a need to consider 

agents, such as resveratrol, that provide protection against hematopoietic injury induced by 

irradiation. On the other hand, currently relevant protocols like hypofractionated 

radiotherapy, induce damage on infiltrating lymphocytes (Arnold et al. 2018), and could also 

be optimized using substances with radioprotective properties. 
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Most studies related to the possible application of RSV in oncological therapy have been 

carried out in in vitro models. Results of in vivo treatments are scarce, and evidence for their 

clinical use in human beings is still inconsistent (Carter et al. 2014) even more when 

administered along with other therapies. Thus, we evaluated the effectiveness of RSV against 

radiation-induced genetic damage after in vivo treatments and studied its genotoxicity in 

human lymphocytes to optimize the most widely used oncological treatment these days.  

Previous studies from our group (Banegas et al. 2018) and other authors (Zhang et al. 

2013; Sebastia et al. 2014; Meng et al. 2016) indicate that the chemo-protective effect of 

RSV depends on the dose administered and the synergistic interaction with other drugs or 

cytotoxic factors. Accordingly, the dose recommended as a dietary supplement (50 mg/day) 

and that showed results in mice (Koohian et al. 2017) was chosen, considering that doses of 2 

mg/kg/day in human beings would exercise radioprotection and that there was no toxicity 

from 25 mg to 5 g/day. In this sense, our results could experimentally guarantee that 

treatment of young and healthy women with such dose had good systemic tolerance and no 

stomach discomfort, dizziness, fatigue, headache or cutaneous reactions. 

Genotoxic damage and the radiomodulatory potential of RSV were analyzed with the 

comet assay, taking into account its high sensitivity to detect and quantify DNA damage 

induced by several agents and by ionizing radiation. This test allowed the analysis of DNA 

strand breaks induced by x-irradiation in the presence or absence of RSV. The entero-hepatic 

recirculation of the compound enabled its slow elimination while allowing prolonged effects 

(Delmas et al. 2006), being it therefore plausible to detect it in the post-treatment times 

evaluated. 

The fact that no significant differences were observed in cytomolecular DI before and 

after in vivo treatment with RSV suggests that RSV and its secondary metabolites did not 

exert clastogenic effects on human peripheral lymphocyte DNA at the dose administered. 
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Thus, the interference of RSV with topoisomerases and increased DNA damage attributed to 

RSV (Sebastia et al. 2013) could not be demonstrated. On the other hand, RSV 

radioprotective effect against ionizing radiation-induced genotoxicity could be seen. In our 

study, pretreatment with RSV decreased DNA strand breaks in irradiated human 

lymphocytes, which agrees with Carsten et al. (2008), who endorsed that oral RSV 

administration to mice acted as a generalized radioprotector, decreasing the frequency of 

chromosomal aberrations induced by radiation in the same cells. Our observation that 

treatment with RSV decreased DI by 29.41% in irradiated lymphocytes clearly indicated that 

RSV prevented radio-induced DNA damage. This is also in agreement with Koohian et al. 

(2017), who found that RSV offered the best protection with low toxicity against 2 Gy 

irradiation in mice evaluating the effects by the comet assay.  

Taking the genotoxicity and radiomodulation analyses of this work together, in vitro 

evidence also showed that although trans-resveratrol decreased the damage in blood 

lymphocytes exposed to 2 Gy X-rays, few chromosomal aberrations were found when these 

cells were treated with RSV without being exposed to radiation (Sebastia et al. 2013; Sebastia 

et al. 2014; Dobrzynska et al. 2016). On the topic of the mechanisms of action, RSV is a 

hydrophobic compound able to cross cell membranes and eliminate radio-induced free 

radicals that are close to the DNA double helix and alter its structure (Koohian et al. 2017). 

Thus, RSV is able not only to scavenge these free radicals but also to maintain and restore the 

levels of intra-cellular antioxidants (Carsten et al. 2008; Sebastia et al. 2013; Zhang et al. 

2013). At molecular level, RSV decreased the effects of radiation at least partly based on 

Sirt1 expression and activity (Zhang et al. 2013; Li et al. 2014). This protein plays an 

important role in oxidative stress, cell proliferation and genomic stability, among other 

biological processes. An increase in Sirt1 mRNA and in protein activity has been 

demonstrated after treatment with RSV.  
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Ultimately, it should be noted that RSV systemic impact would also be effective in 

relation to the holistic effect of irradiations, since it exhibits anti-inflammatory activity 

through the modulation of enzymes and mediators of inflammation (Kundu and Surh 2008; 

Udenigwe et al. 2008), and also enhances the immune response against cancer (Soldati et al. 

2018), both central elements of the response to radiant treatment.  

 

5. Conclusions 

Our results suggest that RSV could be a successful radiomodulator to protect human 

lymphocytes from the harmful effects of irradiation. Daily doses of 50 mg did not show 

genotoxic risk, nor did they present adverse effects that may generate controversies among 

doctors or patient concern. Administration of RSV could help to protect against genomic 

instability and eventual radio-induced carcinogenesis, as well as against the side effects of 

radiant treatments. In this way, radiotherapy, as well as other oncological treatments, 

diseases, certain medications and poor nutrition, can affect white blood cells, weakening the 

immune system. This deficit of white blood cells that sensitizes the individual to an infection 

could be counteracted by the supply of appropriate substances such as RSV. The good 

pharmacological availability and affordable cost position RSV as a good candidate to 

optimize the radiotherapeutic quotient promoting the elimination of cancer cells subject to 

radiotherapy and decreasing chronic oxidative stress and inflammation responsible for the 

side effects of this treatment. 
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Figure 1. Radiation-induced genotoxic effect evaluated in human peripheral blood lymphocytes 

pre and post-treatment with RSV. Panel A: Clastogenic damage class for each of the analyzed 

points, expressed as mean ± SEM of 20 samples in duplicate. Panel B: Damage index for each 

treatment performed, expressed as mean ± SEM of 20 samples in duplicate. **** p <0.0001 

control vs 4Gy, pre and post treatment. #### p <0.0001 pre vs. post treatment irradiated with 4 

Gy. One-way ANOVA and post-hoc Tukey´s test. 
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Table 1. Demographic characteristics of the study sample.  

Volunteer Age Weight (kg) Height  

(m) 

Body Mass Index (kg/m
2
) 

1 23 64.600 1.60 25.234 

2 22 53.000 1.54 22.348 

3 24 70.000 1.64 26.026 

4 25 70.000 1.62 26.673 

5 24 61.500 1.61 23.726 

6 24 52.500 1.62 20.005 

7 22 60.000 1.55 24.974 

8 25 61.000 1.63 22.959 

9 25 61.000 1.65 22.406 

10 29 60.000 1.65 22.039 

11 24 63.000 1.60 24.609 

12 24 64.000 1.63 24.088 

13 25 60.000 1.60 23.438 

14 26 64.000 1.64 23.795 

15 30 52.000 1.64 19.334 

16 29 53.000 1.64 19.706 

17 28 63.000 1.65 23.140 

18 24 71.000 1.70 24.567 

19 27 62.000 1.76 20.015 

20 30 49.200 1.48 22.462 

Range 22 - 30 49.2 - 76.0 1.48 - 1.76 19.33 - 29.69 

Mean 25.39 60.435 1.62 22.98 

SD 2.44 6.018 0.06 2.04 
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Table 2. Mean frequency of comet classes from 4000 cells (±SEM) for each experimental 

point. 

 

 

Class 0 Class 1 Class 2 Class 3 Class 4 

Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

Pre-treatment Control 79.34 4.92 7.63 2.27 12.31 4.22 0.00 0.00 0.71 0.26 

Pre-treatment 4Gy 4.80 2.36 22.06 3.09 70.97 4.23 0.37 0.19 1.80 0.56 

Post-treatment Control 88.05 2.46 5.10 0.92 6.67 1.75 0.00 0.00 0.18 0.10 

Post-treatment 4Gy 19.00 4.83 43.29 4.25 36.60 5.03 0.02 0.03 1.09 0.58 

 

Acc
ep

te
d 

M
an

us
cr

ipt


