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The ability to control the spin current injection has been explored on a hybrid magnetoelectric

system consisting of a (011)-cut ferroelectric lead magnesium niobate-lead titanate (PMNT) single

crystal, a ferromagnetic FePt alloy, and a metallic Pt. With this PMNT/FePt/Pt structure we have

been able to control the magnetic field position or the microwave excitation frequency at which the

spin pumping phenomenon between FePt and Pt occurs. We demonstrate that the magnetoelectric

heterostructure operating in the L-T (longitudinal magnetized-transverse polarized) mode couples

the PMNT crystal to the magnetostrictive FePt/Pt bilayer, displaying a strong magnetoelectric

coefficient of �140 Oe cm kV�1. Our results show that this mechanism can be effectively exploited

as a tunable spin current intensity emitter and open the possibility to create an oscillating or a

bistable switch to effectively manipulate spin currents. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4954167]

The future of spintronic devices relies on the ability to

overcome the different challenges linked to this emerging

field, in particular, the generation, manipulation, and detec-

tion of a spin current. Consequently, over the last decades an

enormous effort has been focused on the manipulation of the

spin degree of freedom of the charge carriers.1–3 In such an

effort, the discovery of the spin pumping phenomenon4,5

opened a new path to investigate, understand, and potentially

design spin based devices. The spin pumping can be thought

as a pure spin current appearing in a ferromagnet/normal

metal (FM/NM) interface when the ferromagnet is fulfilling

the magnetic resonance condition under microwave excita-

tion. The appearance of the spin current is a consequence of

an interfacial relaxation process, mediated by the conduction

electrons of the normal metal, which contributes to relax the

magnetization of the FM to its equilibrium configuration.

The spin current is continuously injected and propagates

diffusively inside the normal metal volume, perpendicularly

to the interface. It is well known that a direct and sensitive

detection of spin currents can be done using the inverse spin

Hall effect (ISHE).6–8 This effect arises in the strong spin-

orbit coupling of some heavy metals like Pt, which deflects

the trajectory of electrons (with opposite spins and propaga-

tion velocities) preferably to one edge of the sample generat-

ing a measurable voltage, the ISHE signal.

Controlling spin related properties by electronic means

is a key step toward future spintronic technologies. Tuning

the response using electric E-fields is rapid, less noisy, and is

compatible with device miniaturization. FePt equiatomic

alloy thin films usually grow in a metastable chemically

disordered fcc phase (called A1), which presents a saturation

magnetization similar to that of the ordered L10 phase

(Ms � 1100 emu/cm3), but has considerably smaller anisot-

ropy and coercive fields.9 FePt alloy also displays potentially

interesting magnetostrictive properties.9–11 The A1 phase, in

contrast to the ordered L10 phase, has a well defined mag-

netic resonance absorption line,11 making it ideal to be used

as a test-bed magnetostrictive film in spin pumping

investigations. In previously published results12 we have also

analyzed the microwave properties of a magnetoelectric

(ME) lead magnesium niobate-lead titanate (PMNT)/FePt

heterostructure under E- and magnetic H-fields tuning con-

trol. We found that in a 20 nm FePt thin film, the magneto-

electric coupling can be higher than 40 Oe cm kV�1. Based

on our recent work on the response of hybrid magnetoelec-

tric systems, we have designed an ISHE tunable system con-

sisting of a substrate/bilayer structure made up of a (011)-cut

PMNT single crystal and an FePt/Pt bilayer. In this study we

have focused on the capability of this magnetoelectric struc-

ture to control the spin pumping by using a static E-field. A

good agreement with the predictions of both inverse spin

Hall effect and magnetoelastic theories has been obtained.

Samples were grown on the polished side of a lead mag-

nesium niobate-lead titanate (011) single crystal with a nom-

inal thickness of 0.05 cm. PMNT is a ferroelectric material

that exhibits a giant strain hysteresis controllable with elec-

tric fields.13,14 In particular, (011)-cut PMNT single crystals

display large anisotropic in-plane piezoelectric coefficients

with a negative d31 around �1200 pC N�1 and a positive d32

of �400 pC N�1.14,15 Using dc magnetron sputtering we

deposited 50 nm of Ag on the unpolished side as the bottom

electrode. On the polished side of the crystal we deposited

the two thin films consisting of 20 nm of FePt covered by

10 nm of Pt, with lateral size of 4 mm� 1 mm. A sketch of

the sample is depicted in Fig. 1.

FIG. 1. Sketch of the magnetoelectric structure consisting of an

FePt(20 nm)/Pt(10 nm) bilayer grown on a (011) PMNT crystal slab with a

bottom 50 nm Ag electrode. In the inset we show the coordinate reference

system chosen to describe the FMR and the ISHE signal measurements.
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Spin pumping through the metallic interface was

induced by driving the FePt layer to the ferromagnetic reso-

nance (FMR) condition. The experiment was performed at

room temperature in a commercial Bruker ESP300 spec-

trometer at a microwave frequency of 9.78 GHz (X band-

TE102 rectangular cavity). The ISHE signal was acquired by

measuring the voltage between the edges of the sample (see

Fig. 1) as described in previously published works.6,16

Measurements were made with the magnetic field applied

parallel to the film plane along the y direction, with the

microwave excitation field parallel to z. Due to the hysteretic

behavior of the PMNT, it is necessary to follow a systematic

protocol for the application of the E-field in order to get

repetitive and reliable results. Before starting the measure-

ments the PMNT was cycled by applying alternatively elec-

tric fields of 64 kV/cm, and then E¼�4 kV/cm was used as

the starting point for the experiments.

In Fig. 2(a) we present typical X-Band data for the FMR

absorption line and the ISHE signal. A single line is observed

in both cases. The FMR absorption spectra show a derivative

Lorentzian lineshape due to the modulation field used for

detection, while ISHE signals are Lorentzian, with a maxi-

mum voltage, VISHE; occurring at a field HISHE coincident

with the zero crossing of the FMR absorption. The small

absorption observed at 1640 Oe in Fig. 2(a) is due to the perti-

nax sample holder.

Figure 2(b) shows the trend followed by the ISHE signal

at different E-fields. It is observed that HISHE shifts to larger

fields when the absolute value of the E-field is increased.

The application of a voltage between both electrodes pro-

duces a strain on the PMNT which in turn causes a mechani-

cal elastic deformation on the FePt/Pt bilayer. Due to the

magnetostrictive properties of the FePt an additional strain

anisotropy field is induced, which modifies the resonance

field position. A detail of the response of HISHE and VISHE

against the E-field is shown in Fig. 3 and the inset, respec-

tively. The already mentioned protocol was used to obtain

the ascending branch from �4 kV/cm to þ4 kV/cm (full

square symbols) and then the descending from 4 to �4 kV/cm

(open circle symbols). The variation of HISHE vs. E-field shows

a non-reversible butterfly-like hysteretic shape that follows

closely the E-field induced strain in the ferroelectric crys-

tal.17–19 The maximum of the ISHE signal is weakly dependent

on E (see the inset of the Fig. 3) with an average VISHE

� 2:8 6 0.3 lV.

As the ISHE signal is a direct measurement of the spin

current pumped during the FMR experiment, the behavior

shown in Fig. 3 is a strong evidence that the spin current

emission can be controlled by using E-fields. These results

proved an alternative way to tune the magnetic field at which

the spin current is established. With the aim to quantitatively

understand the control of the spin current emission by the

E-field, the effects of the mechanical strain on the PMNT

crystal must be considered simultaneously in the ISHE and

magnetoelastic theories. The strain as a function of E in the

two in-plane principal axes of a (011)-cut PMNT single crys-

tal has been carefully studied by several authors.13–15 It

is thus important to remark the complex non-reversible ani-

sotropic behavior of ferroelectric materials. The strain occur-

ring in the crystal is converted in an asymmetric stress on the

bilayer, with ry 6¼ rz 6¼ 0 and rx ¼ 0 (the FePt/Pt is

unstressed in the normal direction) where rx;y;z refers to the

stress components. The relevant contributions to the free

energy can then be written as

EF ¼ �H �Mþ 2pM2 sin2h cos2/

� 3

2
k ry sin2h sin2/þ rz cos2h
� �

; (1)

where h and / are the azimuth and polar angles of the magnet-

ization M in the reference system of the sample (see Fig. 1).

FIG. 2. (a) Typical ISHE signal and FMR spectrum of the PMNT/FePt/Pt

system for E¼ 2.6 kV/cm. (b) Evolution of the ISHE signal for different

E-field values.

FIG. 3. Dependence of the magnetic field where the maximum ISHE signal

is observed (HISHEÞ as a function of the E-field. The inset shows that the

voltage values of VISHE are almost independent on the E-field.
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The first and second terms of Eq. (1) correspond to the

Zeeman and shape anisotropy energies while the last term is

the magnetoelastic energy.20 Note that a charge mediated sur-

face anisotropy term is often considered in the description of

the free energy, especially in the case of very thin films.18 This

anisotropy depends on the polarization state of the PMNT

causing an asymmetry in the resonance field position when it

is plotted as a function of the E-field. As the asymmetry

observed in Fig. 3 is negligibly small, we did not consider this

charge mediated anisotropy field in Eq. (1).

The Smit–Beljers formalism is generally used to connect

the microwave frequency excitation with the magnetic and

anisotropy fields.21 The corresponding dispersion relation

takes the form of Eq. (2) when the external magnetic field is

applied along the y direction (the equilibrium angles of the

magnetization are / ¼ h ¼ p=2)

x
c

� �2

¼ H þ H1ð Þ H þ H eff þ H2ð Þ; (2)

with x=2p the microwave excitation frequency, c ¼ glB=�h
the gyromagnetic ratio, and k the saturation magnetostriction

coefficient of FePt. The magnetoelastic and the shape anisot-

ropy fields of Eq. (2) are defined as H1 ¼ 3k
M ðry � rzÞ;

H2 ¼ 3k
M ry, and Heff ¼ 4pM:

As already mentioned, PMNT crystals have d31 and d32

coefficients of opposite sign, which gives ry and rz stresses

of different sign and consequently jH1j > jH2j. Additionally,

an estimation of these magnetoelastic anisotropy fields indi-

cates that they are both much smaller than the shape anisot-

ropy field, i.e., jH1j; jH2j � Heff . When this condition holds,

the dispersion relation can be approximated by

x
c

� �2

� H þ H1ð Þ H þ Heffð Þ: (3)

Eq. (3) shows that the effective magnetoelastic field H1

can be associated to the changes in the magnetic field position

at which VISHE occurs. From the experimental results presented

in Fig. 3 we have found that the total variation of H1 in the

spanned range of E-fields is DH1 � 500 Oe. Considering and

average slope in the ascending and descending branches of

Fig. 3 (due to the hysteresis in the ferroelectric crystal) we can

estimate an ME coefficient of �140 Oe cm/kV.

This ME coupling value can be compared with values

reported by Liu et al. in Fe3O4/(011)-cut PMNT.19 They

observed an ME coefficient of 67 Oe cm kV�1. An enhanced

value was obtained using a single crystal slab of Lead Zinc

Niobate-Lead Titanate (PZNT) in a Fe3O4/PZNT heterostruc-

ture, with an ME value of 108 Oe cm kV�1.19 In addition, our

value can be compared with the FeGaB/PZNT heterostruc-

ture, which shows an average ME value of 94 Oe cm kV�1.

On the other hand, in order to analyze VISHE as a func-

tion of the E-field, it is necessary to explore the effect of the

magnetoelastic anisotropy fields on the spin current pumped

during the FMR experiment. It is important to remember that

the ISHE signal comes from the ability of the Pt layer to con-

vert the spin current into a measurable voltage.5 The magnet-

ization precessing in the ferromagnetic film loses angular

momentum generating an interfacial (FePt/Pt) spin current,

given by the following equation:

J0
s ¼

x
2p

g"#eff

�h

4p

ð2p
x

0

m� dm

dt

� �
dt

�����
�����; (4)

where g"#eff is the effective spin mixing conductance that

quantifies the efficiency of the FM layer to transfer angular

momentum across the FM/NM interface. The spin current

propagates diffusively across the thickness of the Pt film and

vanishes at the opposite interface (Pt/air).4 The magnetoelas-

tic anisotropy fields modify the ISHE signal because of the

implicit dependence contained in Eq. (4). A solution of this

equation is quite complex but when the resonance condition

is fulfilled (H ¼ HISHE) it takes a simpler form given by the

following expression:

J0
s ¼ c

�h

4p
g"#eff

hlx

a

� �2
HISHE þ Heff þ H2

2HISHE þ Heff þ H1 þ H2½ �2
; (5)

where hlx is the amplitude of the microwave magnetic field

and a is the Gilbert damping parameter. As already men-

tioned, the shape anisotropy field is much larger than other

fields and, as can be inferred from Eq. (5), the variation of

the other fields produces very small changes in J0
s . This de-

pendence explains the relatively constant value of VISHE as a

function of E-field observed in the inset of Fig. 3.

A remarkable result is found when the E-field is used to

detune the FMR condition. If the external H- and E-fields are

initially chosen in order to maximize the emission of the

spin current, it is then possible to modify E in order to detune

the spin pumping condition. When the H-field is kept con-

stant, the spin current intensity can be controlled exclusively

by the E magnitude. The behavior is shown in Fig. 4, where

VISHE as a function of the H-field is plotted for different

values of E. If H is maintained fixed, for example, at

1430 Oe as indicated by a vertical line in the figure, a strong

E-field dependence of the ISHE signal is found. The results

obtained from this experiment show explicitly that a precise

FIG. 4. ISHE signal as a function of H-field measured at different E-fields.

The inset shows the evolution of the spin current intensity as a function of E
when the H-field is kept fixed at the value indicated by a vertical line.
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control of the spin current intensity can be obtained by

changing the external E-field. As can be seen in the inset of

Fig. 4, when the E-field is changed from 3.6 kV/cm to

�0.4 kV/cm the spin current intensity is reduced to 20% of

the initial value. By properly defining threshold limits, this

behavior can also be used to build a voltage controlled ON/

OFF spin current device.

Because of the hysteretic behavior of the PMNT crys-

tal, some caution must be taken in the interpretation of the

results. The precise control of the spin current depends on

the history of the experiment, and is not reversible for

E-fields within the hysteresis region. However, if a protocol

is followed the results are reproducible. The strain-field

response of PMNT crystals is nonhysteretic only in the

region of jEj � 10 kV/cm. If a reversible response is

desired, for example, when trying to obtain an oscillating

spin current by driving the PMNT with an oscillating volt-

age, it would be necessary to apply a bias voltage to shift

the operating region to the reversible part of the hysteresis

loop. The application of relatively large electric fields

implies the possibility of a dielectric breakdown failure.

The design of structures that can work in the nonhysteretic

region of the ferroelectric material is an open challenge for

future investigations in optimized hybrid magnetoelectric

structures.

The reduction of the bias H-field could be attained by

reducing the microwave excitation frequency or by inducing

an uniaxial anisotropy in the fabrication process of the sam-

ple. Both parameters can be modified in order to tune the

resonance condition at a lower or even zero applied magnetic

field. In this condition the possibility of the formation of

magnetic domains makes the analysis more complex and

extra care must be taken in the interpretation of the experi-

mental data.

In summary, we have demonstrated that an E-field can

be used to modify the magnetic field position at which the

spin pumping phenomenon occurs in a magnetoelectric

structure (PMNT/FePt/Pt). Our results also show the possi-

bility of controlling the pure spin current intensity by using

an electric field. Additionally, we have opened the possibility

to create an oscillating spin current device or an ON/OFF

switch with very good control of the spin current. All these

results, obtained from the E-field control of the ISHE signal,

are promising for the development of spin based devices

and can lead to substantial advances in hybrid spintronic

devices.
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