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Two-dimensional Ising model with Einstein site phonons
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We consider a simple Ising magnetic model in two dimensions with Einstein site phonons and study it
using Monte Carlo simulations that take into account both degrees of freedom simultaneously. In nonfrustrated
systems, like the square lattice with ferromagnetic and antiferromagnetic interactions, we find that the coupling
of the magnetic to the elastic degrees of freedom gradually lowers the magnetic ordering transition until it is
completely suppressed at a critical value of the coupling constant. Above this the system suffers a simultaneous
magnetic and structural transition into a dimerized state with lower crystalline symmetry and ferromagnetic
clusters antiferromagnetically aligned. In the case of the Kagomé lattice with antiferromagnetic interactions,
which is frustrated, we show that a similar ordered state takes place when the coupling constant is above a
critical value.
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I. INTRODUCTION

In every real magnetic material there is an interplay be-
tween the magnetic and elastic degrees of freedom. While
in many cases this is of no consequence for the magnetic
order, and can be neglected, there are a growing number
of cases where this interplay is key to understanding the
ground state and excitations of magnetic materials. Starting
with the theoretical prediction of the so-called “spin-Peierls”
effect [1], a progressive spin-lattice dimerization occurring at
low temperatures, observed experimentally in CuGeO3 [2],
there has been a rapidly growing literature that addresses this
issue both from theoretical [3–10] and experimental [11–18]
perspectives.

Theoretical models have considered classical Ising and
Heisenberg models coupled with global Debye distortions
(e.g., Ref. [3] or Ref. [10]), unconstrained (the bond model of
Ref. [6]) and Einstein site phonons (e.g., Ref. [8] or Ref. [9])
which are a good approximation for systems dominated by
optical phonons. Treating both degrees of freedom simulta-
neously can be a daunting task. Some simulations exist in
the literature [3,7,10], but the usual method is to perform a
Gaussian integral over the set of displacement coordinates in
the partition function. The phonons are then integrated out
to obtain an effective spin Hamiltonian which redresses the
exchange constants and can introduce additional interaction
terms (see, e.g., Ref. [8]). Analytical work, or simulations, are
then performed on the effective system.

The two-dimensional (2D) Ising model is probably the
simplest magnetic model to show a nontrivial phase transition,
and is among the most studied models. Surprisingly there is
no work in the literature that describes the case of the 2D-
Ising model under Einstein distortions. In this work we do a
full Monte Carlo simulation, treating simultaneously spin and
elastic degrees of freedom, of the classical Ising model on the
square and Kagomé lattices. Following Ref. [8] we consider

Einstein distortions and a linear coupling between both de-
grees of freedom. The model and the Monte Carlo algorithm
used for the simulations and the consistency checks performed
on our system are discussed in Sec. II. A conception usually
found in the literature is that distortions are important only in
frustrated systems and that their main effect is to help ordering
by relief of frustration [8,9,19–21]. Instead, we find that in the
unfrustrated square lattice (Sec. III A) this coupling weakens
the magnetic ordering transition into the fully polarized state.
Upon increase above a critical value the coupling leads to a
structural distortion simultaneous with ordering into a differ-
ent magnetic state, which we label a checkerboard phase, or
CB. This CB phase is a zero-magnetization state, composed of
ferromagnetic clusters ordered antiferromagnetically with re-
spect to each other. In the frustrated Kagomé case (Sec. III B)
we find above a critical coupling an ordered state which shares
many similarities with the CB phase.

II. MODEL AND METHODS

For our study we use a simple model that takes into account
the coupling between magnetic and elastic degrees of freedom
the so-called Einstein site phonon spin model [8]. In this
model the sites have independent displacements given by a
set of independent harmonic oscillators. Here one is assuming
that the most important lattice distortion contribution is com-
ing from optical phonons. This is a reasonable assumption
given that in real materials the active magnetic lattice is
usually a sublattice of a more complex crystal structure (e.g.,
the pyrochlore Dy lattice in Dy2Ti2O7). The Hamiltonian is
then given by

H/|J0| =
∑
〈i, j〉

J (ri j )SiS j + Ke

2

∑
i

|ui|2. (1)
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Here J0 gives the energy scale, J (ri j ) is the exchange constant
in units of J0 that depends on the relative position of the sites i
and j, Si are Ising variables, and the sum 〈i, j〉 is over nearest
neighbors only. The ui are the dimensionless displacements
for each site i in units of the undistorted nearest neighbors
distance a and Ke is a dimensionless elastic constant. If we
consider the displacements to be sufficiently small compared
with the lattice parameter (|ui| � a) then it is reasonable to
expand Ji j to a linear dependence on the relative site positions
ri j :

J (ri j ) = sgn(J0)[1 − α(ri j − 1)], (2)

where α is a dimensionless coupling constant. We will use α

as a control parameter to measure the degree of coupling to
lattice distortions.

To simulate the elastic distortions we consider polar co-
ordinates, θ is treated like a clock model of 360 equally
spaced angles and the displacement ρ is chosen randomly in
a distribution from 0 to a temperature dependent maximum
δmax(T ). The use of the latter has no impact on the results
obtained from the simulation, it is introduced merely as a
way to optimize the speed of the simulations by avoiding the
proposal of extremely unlikely moves at low temperatures. To
determine δmax(T ) we simulate a spinless lattice with a large
δmax and calculate a histogram of the displacements at several
temperatures. From each of these we choose a δmax(T ) such
that it includes 80% of the histogram. We then fit a power law
to these points and use the fitted function in the simulations.
The function that fits best has, as expected, a square root
dependence in T/J0. A spinless simulation of a square lattice
using this algorithm gives the correct specific heat (Cv = 1)
and the correct temperature dependence for the mean square
displacement (〈u2〉 ∝ T ).

In our Monte Carlo simulation we treat simultaneously
the magnetic and elastic degrees of freedom using a Born-
Oppenheimer (BO) approximation, that is, by assuming that
the relaxation times of the magnetic degrees are much shorter
than the elastic. Each step of the simulation is split into elastic
and magnetic moves. The BO approximation translates into
the fact that each elastic move is done with a relaxed magnetic
configuration. The algorithm proceeds as follows:

We do P elastic Monte Carlo steps (MCS), each of which
consists of the following:

(1) Choose a random site.
(2) Propose a move by picking at random an angle and a

displacement (from 0 to δmax).
(3) Calculate the exchange constants for the proposed

spacial configuration.
(4) Calculate the total energy of the system

(magnetic+elastic) and accept or reject the move according
to Metropolis.

(5) Make Q magnetic moves, each move consists of:
(a) Flip one spin at random
(b) Calculate the change in magnetic energy
(c) Accept or reject according to Metropolis
(d) Repeat (a) to (c) until each spin has been chosen at

least once on average.
(6) Repeat 1 to 5 until each site has been chosen at least

once on average.
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FIG. 1. Comparison between the specific heat of a decoupled
elastic system (blue line, left axis) and a static Ising system (orange
line, right axis). As expected the specific heat of the former is a
simple sum of the elastic contribution (Cel

v = 1) and the magnetic
Ising part (the right axis is shifted accordingly in the plot).

We have checked that our results are independent of the
precise choice of the ratio P/Q by running different simula-
tions on lattices with N sites with Q varying from 1 to 300,
that is, the number of moves for each Q being from N to 300N
times those for each P. We have used square lattices with L
from 4 to 24 and typically with P = 107 MCS. Quantities are
averaged over time after a waiting period of P = 50 000 MCS
to allow for equilibration (see [22]). The figures in this paper
are all for L = 16.

The energy scales for magnetic and elastic degrees of
freedom can be characterized by the critical temperature of
the decoupled Ising system T 0

c and the melting temperature
T ∗. The latter can be defined in our system by means of the
Lindemann criterion in two dimensions [23] (

√
〈u2〉 ≈ 0.1),

and the former can be determined by simulating the decou-
pled magnetic system. Using equipartition one gets T ∗ ≈
|J0|Ke/200. In order to work in the limit |u| � 1 one must
choose Ke such that T 0

c /T ∗ � 1. For the simulations of this
work we have chosen Kel = 7200 which means T ∗/T 0

c ≈ 15.
A simple checkup of the simulation algorithm is to com-

pare the results obtained for α = 0, that is, no coupling be-
tween elastic and magnetic degrees of freedom with the results
obtained from a Metropolis simulation of an Ising model on a
fixed lattice. Figure 1 shows such a comparison for the specific
heat of a L = 16 square lattice. The orange curve corresponds
to the static Ising system. As expected, the decoupled elastic
system is simply a sum of the elastic contribution (Cel

v = 1)
and the magnetic contribution which is identical to the static
system, showing the same finite-size broadened peak at the
ordering temperature.

III. RESULTS

A. Square lattice

In what follows we will describe the results obtained for
ferromagnetic interactions. The antiferromagnetic case can be
obtained by the usual mapping SA → −S̃A, SB → S̃B, where A
and B are the two disjoint sublattices of the square lattice. We
find it useful in terms of presenting the results to separate the
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FIG. 2. Specific heat Cv (upper panel) and magnetization M
(lower panel) as a function of temperature for a series of fixed
values of α below αc (see legend). The ferromagnetic transition
progressively moves to lower temperatures as α is increased until
it eventually vanishes at αc. The lower panel shows a snapshot of the
ordered state.

discussion for values of α above and below the critical value
αc at which the ordering transition vanishes.

1. α < αc: The ferromagnetic transition

Figure 2 shows the specific heat and magnetization (the
order parameter for the FM transition) as a function of tem-
perature as obtained from our simulations for a series of runs
with increasing values of the coupling parameter α. The data
show that the ferromagnetic (FM) transition moves towards
lower temperatures as α is increased. As expected, the peak
in the specific heat (upper panel) becomes sharper as the
critical temperature is reduced, and so does the step towards
saturation in the magnetization (lower panel). If α is further
increased, the FM transition temperature sinks towards zero
at αc = 60 (for this given value of Ke). A calculation of αc,
which becomes clear once the ordered state for high values of
α is known, is given in the Appendix.

Figure 3 shows the mean value of the displacement 〈u〉 for
the same range of temperatures and coupling parameters. The
curve for α = 0 follows the expected square root behavior
starting at 〈u〉 = 0 at T = 0. The coupled systems follow
that same curve at low temperatures, while the system is
ordered, but the disordering transition in the magnetic part is
accompanied by a sudden increase in 〈u〉. It is straightforward
to calculate from this data the mean value of the pair exchange
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FIG. 3. Mean value of the displacement 〈u〉 as a function of
temperature for different α below αc. In the absence of any coupling
(α = 0) the curve follows the expected

√
T behavior (dotted line).

For coupled systems the displacement follows the same curve at low
temperatures and jumps up at the magnetic transition and follows a√

T dependence with an increasingly higher prefactor (see text). The
inset shows 〈Ji j〉 as a function of T for the same values of α.

constant 〈Ji j〉 seen in the inset of the same figure, but it offers
little explanation as for the cause of the suppression of order as
a function of α. The origin of the decrease in TC , and eventual
disappearance of the FM phase is twofold. One factor is that
even if the mean value of Ji j/|J0| is always close to −1, the
dispersion increases rapidly as a function of temperature. For
small α, the tail of the distribution with weaker Ji j values
dominates the transition temperature. For higher values of α,
but still below αc, another mechanism becomes important:
the stabilization of magnetization domains. As usual in any
Ising transition, the systems start splitting into domains of
opposite magnetization, but the unusual mechanism in this
case is that the antiferromagnetic walls between domains are
accompanied by distortions that change the sign of the ex-
change constant and thus render them stable. This mechanism
favors the existence of domains of opposite magnetization of
different sizes and thus conspires against the FM order. To
ascertain the existence of these two mechanisms beyond the
mere inspection of snapshots, we constructed a histogram of
Ji j as a function of temperature. The upper panel of Fig. 4
shows such a histogram for α/αc = 5/6 using a data window
in Ji j/|J0| between −20 and 20, with a binning of 0.002, and
collecting data over P = 107 MCS. The distribution resembles
a Gaussian centered around Ji j/|J0| = −1 that increases its
half-maximum width as the temperature is increased. How-
ever, a closer inspection reveals that the distribution is slightly
skewed towards positive Ji j . A quantitative way of seeing this
is by comparing the value of Ji j at the maximum with 〈Ji j〉,
which should coincide for a symmetric distribution. This is
shown in Fig. 5 for α/αc = 5/6. Below the FM transition,
Tc(5/6)/|J0| = 0.75, both the maximum and the mean value
coincide, but at Tc there is a jump after which the maximum
lies at a considerably lower value than the mean. This is
evidence of the stabilization of positive values of Ji j around
the domain borders. This type of mechanism is particular to

144421-3



L. PILI AND S. A. GRIGERA PHYSICAL REVIEW B 99, 144421 (2019)

Jij/|J0|

−4 −3 −2 −1 0 1 2
T/|J0|

0.0

0.4
0.8

1.2

C
ou

nt
s

×1
07

0

1

2

α/αc = 5/6

Jij/|J0|

−7 −5 −3 −1 1 3 5
T/|J0|

0.0

0.4
0.8

1.2

C
ou

nt
s

×1
06

0

2

4

6

8

α/αc = 7/6

FIG. 4. Histograms for the pair exchange constants Ji j at differ-
ent temperatures. In the upper panel for α < αc, and in the lower
panel for α > αc. Below αc the distribution resembles a Gaussian
centered around −1, but closer inspection shows it is skewed to the
right at temperatures close to Tc/|J0| = 0.75 (see text for details).
Above αc it is a bimodal distribution with two clearly defined FM
and AFM peaks that merge as the temperature is raised.

the Ising case and should be absent in a Heisenberg system.
Indeed, numerical studies of a coupled spin-lattice system
with Heisenberg-like spins show that in this case the transition
is only marginally affected by the coupling to vibrations [24].

2. α > αc: The checkerboard transition

If the coupling parameter α continues to be increased, a
new ordered state develops at low temperatures. The upper
panel of Fig. 6 shows the specific heat above αc. As seen in the
figure, there is a sharp peak in the specific heat for α > αc that
increases in temperature as α is increased. A snapshot of the
ordered state that is found at low temperatures in this case is
shown in the upper part of Fig. 7. This is a zero-magnetization
state where the lattice breaks into clusters of four spins with
equal orientation, ordered antiferromagnetically with respect
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FIG. 5. The value of Ji j at the maximum (green triangles) com-
pared with the mean value 〈Ji j〉 (blue circles) for α/αc = 5/6. These
should coincide for a symmetric distribution, instead, there are seen
to diverge above Tc. This is the evidence of the stabilization of
positive values of Ji j around the domain borders (see text).
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FIG. 6. Specific heat Cv (upper panel) and CB order parameter �

(lower panel) as a function of temperature for a series of fixed values
of α above αc (see legend). Increasing the value of α above αc helps
stabilizing the CB phase at progressively higher temperatures. The
lower panel shows a snapshot of the ordered state.
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FIG. 7. Two snapshots of configurations for α > αc. The upper
panel shows an example of one of the possible checkerboard states.
Here the lattice dimerizes into square clusters of equal spin orien-
tation aligned antiferromagnetically with respect to each other. The
dotted line shows the unit cell. The colored circles correspond to the
values of the 〈Ji j〉 in the bond, and are colored according to the scale
on the right. The lower panel shows a stripped phase. This is a low
temperature excitation of the CB phase that takes place for values of
α close to αc. For visual clarity, in both cases the distortions have
been exaggerated tenfold.

to each other. We have shaded the clusters in red and blue to
emphasise the checkerboard nature of this state. The pair ex-
change interactions 〈Ji j〉 are shown as circles in the midpoint
between bonds, colored according to the scale shown on the
right. The distortions are exaggerated tenfold in the picture for
visual clarity.

This state (which we will call CB for short) is a sort of
dimerization in two dimensions: the spins in the clusters are
closer to each other (thus enhancing ferromagnetic interac-
tions) and further apart from their neighbors in the other
cluster (thus turning this interaction antiferromagnetic). It is
straightforward to notice that the Ji j show a bimodal FM-
AFM distribution, which is readily seen in the histograms for
α > αc. An example of these is shown in the lower panel
of Fig. 4, for α/αc = 7/6. Below the transition temperature
[Tc(7/6) ≈ 0.7] there are two separate peaks that evolve into
two sharply defined identical peaks at low temperatures at
−4|J0| and 2|J0| (averaging −|J0|).
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FIG. 8. Mean value of the displacement 〈u〉 as a function of
temperature for different α above αc. The transition into the CB
phase is marked by a jump in 〈u〉 which then intercepts T = 0 at
a nonzero value. This is the consequence of a structural transition
simultaneous with the magnetic one. The inset shows the mean value
of the exchange constant.

To characterize this transition it is useful to calculate an
order parameter. We use a unit-cell like the one shown in
Fig. 7. We define an index j that runs over all squares in
the lattice such that it counts as odd and even the squares
marked with 1 and 2, respectively, in the picture, and an
index a that runs over the spins in the squares. There are four
possible degeneracies of the ground state (plus time reversal),
corresponding to where the colored squares are set in the unit
cell. We then define an order parameter � that is the sum over
the four possibilities � = 1/N

∑4
m=0(−1)m|�m| where

�m =
N/4∑
j=1

4∑
a=1

(−1) jeiφm
a σ j

a . (3)

Here σ
j

a are Ising-spin variables that can take the values
±1, N is the total number of spins, and the φm

a are the
phase factors for the spin that take into account the four
possible degeneracies: φ1 = π (0, 0, 0, 0), φ2 = π (1, 0, 1, 0),
φ3 = π (1, 1, 0, 0), φ4 = π (1, 0, 0, 1).

The lower panel of Fig. 6 shows the evolution of the order
parameter φ as a function of temperature for different fixed
values of α (indicated in the figure). As expected, there is a
jump in φ that coincides with the peak in the specific heat. The
jump is sharp for α close to αc and softens as α increases. An
inspection of the mean value of the displacement 〈u〉, Fig. 8
shows that the magnetic ordering corresponds with a jump
in 〈u〉, i.e., there is a simultaneous magnetic and structural
transition. This jump in 〈u〉 in turn relates to the separation
of the peaks in the histogram of Ji j that we have discussed
earlier. Figure 8 also shows that 〈u〉 remains nonzero as T →
0 above αc. It is straightforward to calculate 〈u(T = 0)〉 as the
minimum from the two possible ground states (FM and CB).
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FIG. 9. Distortion at T = 0 as a function of the coupling param-
eter α. The blue circles correspond to the values obtained from the
simulation, and the red line to those predicted by Eq. (4). The sharp
step at αc = 60 marks the structural transition.

The expression, calculated in the Appendix, is simply

umin(α) =
{

0 if α � αc,√
8

Kel
α if α > αc.

(4)

This is shown as a red line in Fig. 9 together with the values
obtained from the simulations (open circles). As it can be seen
there, there is a sharp step in 〈u(T = 0)〉 at αc corresponding
to a structural transition that lowers the lattice symmetry.

When α is close to αc the distortions are still small and
there are states with long-range order that have energies
comparable with the ground state. It is very frequent that
for these values of α the simulated system will remain at
a local minima. One such possible state is pictured in the
bottom part of Fig. 7. This is still a dimerized state, with pairs
of equally pointing spins ordered antiferromagnetically, but
it corresponds to a shift in the phase (by a) in consequent
horizontal rows. In this state the Ji j order in stripes, and so do
the spins (shaded red and blue). In all other respects it shares
the characteristics of the ground state (bimodal distribution,
jump in the distortion, etc.) If the distortion is small, this costs
very little energy, but it becomes progressively disfavored as
〈u〉 increases. The snapshot corresponds to a small distortion
configuration, but, as we mentioned before, the distortion in
the figure has been multiplied by an order of magnitude to
make it apparent.

Similar phases are known to be brought about by coupling
to lattice distortions in a different context. This is the case
of the phonon-induced phases found in the Holstein-Hubbard
model [25–29]. This is model of a correlated electron system
where electron-phonon interactions with Einstein phonons
are considered in addition to electron-electron interactions.
Contrary to our case, this model treats phonons quantum
mechanically and has a coupling to elastic degrees of freedom
that is odd in nature, since it was originally conceived for a
molecular crystal. For large values of the coupling strength,

FM

PM

CB

FIG. 10. The T -α phase diagram for the FM Ising model on a
square lattice obtained from the simulations. The transitions separate
a high temperature paramagnet (PM) from the two ground states:
the ferromagnet (FM) and the checkerboard (CB). The single line
marks a second-order phase transition while the double line marks
first order. The circles, taken from the position of the peak in the
specific heat, show some of the data points used to construct the
phase diagram.

a bipolaronic insulator emerges that is reminiscent of the CB
phase found here.

3. T-α phase diagram

The T -α phase diagram of this system is a sort of summary
of the results discussed up to this point. Figure 10 shows the
T -α phase diagram as obtained from the simulations. The
circles in the figure correspond to the position of the peak in
the specific heat.

In the absence of any coupling (α = 0) we find the Ising
transition from the high temperature paramagnet (PM) into
the ferromagnetically ordered state (FM). This second-order
transition decreases in temperature as α is increased until it
sinks to T = 0 at αc. When the coupling is increased beyond
this point a new ground state emerges, the checkerboard (CB),
which is a combination of antiferromagnetically ordered fer-
romagnetic clusters. The CB transition is simultaneous with a
structural transition that decreases the symmetry of the lattice.

As we mentioned, the transition below αc is the expected
second-order transition in the Ising universality class. This is
not the case above αc. The simultaneous occurrence of the
magnetic and structural transitions alters the nature of the
transition which seems to be first order in the range 1.0 �
α/αc � 1.3, as determined from the behavior of the Binder
cumulant (not shown) [30,31]. Some properties show hystere-
sis in this region when sweeping the temperature up and down.
The exact mechanism that determines the range of existence
of this first-order region is matter of future investigation.

B. Kagomé lattice

We have applied this same simulation algorithm and data
analysis to the case of the Ising model on the Kagomé lattice.
For the FM case the results follow closely those of the square
lattice. In the AFM case, which is frustrated, the systems
remain disordered up to a critical value of α above which the
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PM

CB

FIG. 11. The T -α phase diagram for the AFM Ising model on
the Kagomé lattice obtained from the simulations. For low values
of α there is no long range order at any temperature. Above αc

the coupling to the lattice degrees of freedom results in a lifting
of the frustration into a checkerboard (CB) phase at low tempera-
tures. The circles, taken from the position of the peak in the specific
heat, show some of the data points used to construct the phase
diagram.

frustration is lifted through a simultaneous structural and mag-
netic transition into the Kagomé CB phase (see Fig. 11). The
Kagomé CB, pictured in Fig. 12, can also be understood as a
dimerization along the three different axes of the lattice (pic-
tured as ovals of different shades). However, the distribution
of the Ji j is slightly different, since it is now trimodal, with two
different FM exchange constants corresponding to triangular
and hexagonal FM clusters, pictured in Fig. 12 in red and
blue, respectively, which are oriented antiferromagnetically
with respect to each other. This is also a zero magnetization
state, since the number of triangles is twice the number of
hexagons.

IV. CONCLUSIONS

In this work we have studied the simple classical two-
dimensional Ising model on a square and on a Kagomé
lattice with Einstein distortions. We have performed Monte
Carlo simulations of the linearly coupled system taking into
account simultaneously both degrees of freedom. In both the
unfrustrated square lattice and the frustrated Kagomé lattice
we find that when the coupling is increased above a critical
value the system has a structural transition—a dimerization
along the lattice axes. This occurs simultaneously with mag-
netic ordering into a clustered state with zero magnetization,
composed of squares in the square lattice, and triangular and
hexagonal FM clusters in the Kagomé case. These clusters
correspond to the appearance of a bimodal distribution of
exchange constants in the square lattice, one intracluster FM
and one intercluster AFM, and a trimodal distribution in
the Kagomé case: two FM interactions (intratriangles and
intrahexagons) and an AFM interaction intercluster. In the
unfrustrated case we show that the coupling to the elastic de-
grees of freedom gradually weakens the transition, through a
mechanism whereby domain formation is gradually stabilized
by distortions. In the square lattice we identified low-energy
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FIG. 12. Upper panel: Snapshot of the Kagomé CB. The ovals
of different shades mark the dimerization along the three different
directions. The distribution of Ji j is in this case trimodal, with one
AFM peak and two FM constants corresponding to the red triangular
and the blue hexagonal clusters. 〈Ji j〉 is marked by colored circles
located midpoint between the spins, colored according to the scale on
the right. Lower panel: Histogram of the Kagomé CB state obtained
from a system of N = 216 spins showing a trimodal distribution with
two peaks at FM couplings and one AFM.

excitations consisting of stripes of zigzagging spins. The
analysis of the phase diagram shows that the transition into
the ordered state is not always second order, but further work
is needed to identify the exact boundaries and the mechanisms
that are responsible for this.

The main aim of this work was to study one of the
simplest possible models with magnetoelastic coupling, and
hence the choice of the Ising model on two dimensions with
linear coupling between J and u. It can still be questioned
whether such a simple model would have any remit of ap-
plicability. Detailed descriptions of the dependence of J with
u in real materials are scarce. References [32,33] provide a
careful discussion of the dependence of the magnetic coupling
constants of the compound CuGeO3 with respect to lattice
distortions. The main magnetic interaction in this case is
given by superexchange paths, but if one makes a simple
geometrical model to translate variations in the angle of the
mediated pathway into relative displacement between the two

144421-7



L. PILI AND S. A. GRIGERA PHYSICAL REVIEW B 99, 144421 (2019)
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i
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1
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FIG. 13. Schematic view of the CB cell used for the calculation
of the energy.

magnetic sites, one finds that for the parameters of CuGeO3

displacements in ui j of the order of 3% are well described
by a linear dependence of J (u) with a coupling constant that
varies from 10 to 90 depending on the value chosen for the
undistorted angle, i.e., for α/αc between 0.16 and 1.5 in the
simple Ising model presented here.
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APPENDIX: CALCULATION OF THE GROUND STATE
AT T = 0 FOR THE SQUARE LATTICE

At T = 0 it is straightforward to calculate the critical value
of the coupling parameter αc above which the CB phase is
energetically favorable over the FM phase.

We start by calculating the energy in the CB configuration.
Figure 13 shows a schematic view of the cell used for this
calculation.

Taking the assumption that at T = 0 
ui has identical pro-
jections along x and y and one gets

r1,2
i j = 1 ∓ 2

u√
2
, (A1)

where u ≡ ui = |
ui|. The value of the two exchange constants
is then given by

J1,2 = J0

[
1 − α

(
1 ∓ 2

u√
2

− 1

)]
= J0(1 ± α

√
2u), (A2)

where we have used that SiS j = ±1 for 1 and 2, respectively.
Thus, the energy per spin of the given unit cell (Fig. 13), is

given by

εCB = ECB

N
= 4J1 − 4J2 + 4|J0|Kel

2 u2

4
(A3)

= 2
√

2 J0 α u + |J0|Kel

2
u2. (A4)

Minimizing the energy with respect to the displacement u
one obtains the displacement at minimal energy umin = √

8 α
Kel

,
which in turn gives the energy

εCB
min ≡ εCB(umin) = −4

α2

Kel
|J0|. (A5)

On the other hand, the energy of the FM phase is trivially

εFM
min = EFM

min

N
= −2|J0|. (A6)

By equating Eqs. (A5) and (A6) one obtains

αc =
√

Kel

2
,

which gives αc = 60 for the parameters used in this work.
This is in good agreement with the value determined by the
MC simulations.

It is probably worth noticing that, were the sign of SiS j

in J2 not be subject to inversion, then J1 + J2 = 2J0, which
means that with a linear Ji j no deformation would be stable
since there would no longer be any gain in the magnetic part
of the energy.
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