
Pinning of Domain Walls in thin Ferromagnetic Films

V. Jeudy,∗ R. Dı́az Pardo, and W. Savero Torres
Laboratoire de Physique des Solides, Université Paris-Sud,
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We present a quantitative investigation of magnetic domain wall pinning in thin magnets with
perpendicular anisotropy. A self-consistent description exploiting the universal features of the depin-
ning and thermally activated sub-threshold creep regimes observed in the field driven domain wall
velocity, is used to determine the effective pinning parameters controlling the domain wall dynam-
ics: the effective height of pinning barriers, the depinning threshold, and the velocity at depinning.
Within this framework, the analysis of results published in the literature allows for a quantitative
comparison of pinning properties for a set of magnetic materials in a wide temperature range. On
the basis of scaling arguments, the microscopic parameters controlling the pinning: the correlation
length of pinning, the collectively pinned domain wall length (Larkin length) and the strength of
pinning disorder, are estimated from the effective pinning and the micromagnetic parameters. The
analysis of thermal effects reveals a crossover between different pinning length scales and strengths
at low reduced temperature.

I. INTRODUCTION

A major source of hysteresis in ferromagnets1 is the
pinning of magnetic domain walls (DWs), which impedes
their free motion when driven by an applied magnetic
field or a spin current. For a strong pinning, the DWs
follow the shape of material defects and magnetization re-
versal results from percolation processes of magnetic do-
mains2. Weak random pinning also results in important
effects: the competition with DW elasticity and thermal
activation produces stochasticity3, domain wall rough-
ness4,5, and dramatically modifies the driven dynamics
at small field and current4,6,7. Weak pinning may re-
sult from spatial fluctuations of domain wall energy as-
sociated to inhomogeneous thickness in ultrathin metallic
films4, or concentration of magnetic atoms in ferromag-
netic semiconductors8. As pinning impedes to reach the
high velocity flow regimes, several attempts have been
proposed to reduce the pinning strength finding low pin-
ning materials9 and to engineer the pinning properties us-
ing light-ion irradiation9–13 in ultrathin films, or coupling
with another magnetic layer14. Interestingly, the engi-
neering of pinning is also important for superconducting
materials15,16 and a large variety of methods were devel-
oped to enhance the pinning strength on vortices. Under-
standing of the pinning of elastic objects, among which
domain walls in thin ferromagnets is a paradigmatic ex-
ample, is thus of broad interest.

How weak pinning and thermal fluctuations affect the
glassy dynamics of domain walls is a critical issue for
potential applications based on the controlled motion of
domain walls17,18 and for understanding the physics of
phenomena as the interaction of spin current with DW

or the contribution of the Dzyaloshinskii-Moriya interac-
tion to DW dynamics19. However, going beyond qualita-
tive comparisons between pinning properties of different
materials remains challenging. A quantitative framework
would be particularly welcomed for a better understand-
ing of DW pinning in thin ferromagnetic films.

The pinning dependent DW dynamics combines both
universal and material dependent behaviors, which are
not straightforward to disentangle. A depinning mag-
netic field threshold Hd separates the pinning dependent
thermally activated so-called creep regime (H < Hd)
from the depinning transition (H ≥ Hd) and the flow
regime (H � Hd). Until now, almost all the analysis
of experiments on DW dynamics in the creep regime are
based on the seminal work of Lemerle et al.4. In this
paper, it was shown that the magnetic field driven DW
dynamics can be modeled by the motion of an elastic line
in a weakly disordered medium20. More precisely, the
measured and the predicted creep exponent µ, deduced
from the velocity law v ∼ exp(H−µ) and the roughness
exponent ζ = 2/3 as µ = (2ζ − 1)/(2− ζ) = 1/4, respec-
tively, were found in good agreement thus attesting the
universal nature of DW creep motion. However, those
predictions are only valid in the limit H → 0, which re-
stricts the analysis of domain wall motion to the low drive
creep regime.

Recently, the glassy domain wall dynamics was inves-
tigated beyond the zero drive limit, and it was shown
that the universal creep regime extends up to the de-
pinning threshold21. The depinning transition was also
found to present universal behaviors22. Their analysis
was pushed beyond the usual asymptotic power law vari-
ations. The universal functions describing the creep and
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depinning regimes could be extracted from experimental
results obtained for different materials and temperatures.
Moreover, it was shown that both regimes can be de-
scribed self-consistently using only three parameters ab-
sorbing all the intrinsic temperature and material depen-
dent pinning properties. These effective pinning param-
eters are an effective pinning barrier height kBTd, where
kB is the Boltzmann constant, a depinning threshold Hd

and a depinning velocity vT
22. As the latter are directly

related to the physics at the so-called Larkin regime of
an elastic string in a random medium23,24, they can be
used to bridge between the non-trivial macroscopic uni-
versal behavior such as the collective creep and depinning
phenomena, to the micromagnetic level of description at
which domain walls and their pinning to inhomogeneities
emerge. This situation is analogous to the case of vor-
tex pinning in superconductors, where the Larkin regime
bridges between the macroscopic scale and the Ginzburg-
Landau continuum description for which vortices are de-
scribed by well defined pinned elastic objects15,25.

The aim of this paper is to understand better the corre-
lations between the material and temperature dependent
pinning parameters controlling the glassy DW dynamics
and the microscopic origins of DW pinning. To this end
we exploit the self-consistent “top-down” approach22 de-
scribed above, starting from the identification of univer-
sal features in the driven DW glassy dynamical regimes.
We deduce a ”map” of the material and temperature de-
pendent effective pinning parameters (Td, Hd, and vT )
controlling DW velocity. We develop a model provid-
ing scaling relations between the effective pinning pa-
rameters, the micromagnetic parameters (the saturation
magnetization Ms and the domain wall surface energy σ,
the domain wall thickness parameter ∆ and the Gilbert
damping factor α), and the microscopic pinning parame-
ters characterizing the weak pinning disorder (which are
the pinning strength fpin and the correlation length of
the disorder ξ). The model is used to estimate the mi-
croscopic pinning parameters, which are not directly ac-
cessible experimentally. A strong modification of domain
wall pinning properties at low temperature is evidenced.
This work opens a way to a systematic quantitative anal-
ysis of magnetic domain wall pinning engineering, which
remains however beyond the scope of this paper.

The organization of the paper is the following. The
Section II discusses DW dynamics: it starts from a quali-
tative description and extends to the self-consistent mod-
eling, which is used for the extraction of pinning parame-
ters controlling creep and depinning regimes of the veloc-
ity. The Section III presents a set of pinning parameters
deduced from 50 velocity curves reported in the literature
for different material and temperature and then proposes
a model, which relates those parameters to microscopic
properties of pinning. A comparison of microscopic pa-
rameters characterizing the pinning and an analysis of
thermal effects is presented in Section IV. In Section V
we overview our results and summarize our main conclu-
sions.

II. DOMAIN WALL DYNAMICS

After a qualitative description of different magnetic
field driven DW dynamical regimes observed experimen-
tally, a self-consistent empirical approach exploiting the
universal features of the creep and depinning regimes, is
presented. In this way we obtain the three fundamental
pinning parameters which we use in the next Section to
compare different magnetic materials.

A. Different dynamical regimes

A typical velocity curve of domain wall obtained for
a Pt/Co/Pt ultrathin film is shown in Fig. 1 and is
used to describe the different dynamical regimes. At
low drive (H < Hd), the DWs move in the creep regime
which is controlled by pinning, DW elasticity and thermal
activation. The DW velocity follows an Arrhenius law
v ∼ exp(−∆E/kBT ), where kBT is the thermal activa-
tion energy, and ∆E the effective pinning barrier height.
The creep regime presents a universal behavior. Close to
zero drive (H → 0), the barrier height follows a power
law variation with magnetic field ∆E ∼ H−µ where µ
is the so-called creep exponent4,20. Increasing the ap-
plied magnetic field reduces the effective barrier height
which vanishes (∆E → 0) at the depinning threshold
(H = Hd)

21,26.
Above the threshold, the curvature of velocity curve

becomes negative (d2v/dH2 < 0)22 (see Fig. 1). The
DWs undergo a depinning transition controlled by elas-
ticity and thermal noise, which is also a universal dy-
namical regime22. At zero temperature, the velocity is
expected to follow a power law scaling with magnetic
field v ∼ (H −Hd)

β , where β is the so-called depinning
exponent. At finite temperature, the thermal activation
produces a ”thermal rounding” of the velocity curve. The
velocity is also predicted to present an asymptotic power
law scaling with temperature at the depinning thresh-
old v ∼ Tψ, where ψ is the thermal rounding expo-
nent22,27–31. The end of depinning transition corresponds
to the onset of the divergence between the velocity curve
and the magnetic field scaling law which crossovers at a
magnetic fieldH ' Hu (see Fig. 1). This upper boundary
also roughly defines the limit of universal dynamics which
covers the whole creep regime and the depinning transi-
tion21,22. Below H = Hu, the dynamics of a DW can
be described as the motion of an elastic string submitted
to thermal activation and to pinning20,32 and is inde-
pendent of its magnetic structure. The measured critical
exponents for a DW moving in an ultrathin film are com-
patible with theoretical predictions (µ = 1/44,20,21,33,
β = 0.2534, and ψ = 0.1522,26,29,31) for the quenched Ed-
wards Wilkinson universality class, with random short
range uncorrelated pinning disorder.

Above H = Hu, the DW dynamics is found to be of
non-universal nature. The DW presents a crossover from
the depinning transition to a flow regime. In the flow
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Figure 1. Typical velocity curve observed for an ultrathin
Pt/Co/Pt film at room temperature taken from Ref. 22. The
universal and the non-universal dynamics are separated by
the boundary field Hu, which corresponds to the upper limit
of the depinning transition. Within the non-universal dynam-
ics, DWs present a crossover between the depinning transition
and the linear flow regime, which is observed at the largest
drive. Within the universal dynamics (H < Hu), the depin-
ning threshold H = Hd separates the creep regime (H < Hd)
from the depinning transition (Hd < H < Hu). Inset: log-
log plot of the velocity curve highlighting the creep regime.
The dotted line in the main panel corresponds to the linear
extrapolation of the flow regime, observed for H > Hf . The
dash dot curve is a fit of Eqs. 1, 2 for the creep regime. The
dashed curve is a fit of Eq. 6 for the depinning transition
using the universal parameter x0 = vT /vH = 0.65. The part
that matches with experimental data is underlined by black
solid segments. The diamond and star points located on the
vertical line H = Hd are the velocity at depinning v(Hd) and
the depinning velocity vT . v(Hd) corresponds to the inflection
point separating the creep regime from the depinning transi-
tion. The value of vT was deduced from Eq. 5 and is found
to coincide with the flow velocity DWs would have in absence
of pinning.

regime, the velocity depends on the time evolution of
DW magnetic texture and presents a non-monotonous
variation with magnetic field. Below the Walker limit35

H ≤ Hw = (1/2)αMs, where α is the so-called Gilbert
damping parameter and Ms the saturation magnetiza-
tion, DW is expected to follow the so-called steady state
regime for which its magnetic texture remains fixed dur-
ing the motion. Above Hw the DW velocity presents a
negative slope35 with the drive and it recovers a linear
asymptotic variation at sufficiently high drive (H � Hw)
which corresponds to the so-called asymptotic preces-
sional regime. Experimentally, the steady state regime is
rarely observed36–38. As the Walker field is much smaller
than the depinning field (Hw � Hd), it is generally hid-
den by pinning33. This is the case for the curve of Fig. 1
where the linear variation corresponds to the precessional

asymptotic regime22,33.

B. Universal glassy dynamics

As shown in Refs. 21 and 22, the universal features of
driven glassy DW dynamics, including the whole creep
regime and the depinning transition, can be made explicit
by introducing the reduced variables H/Hd, T/Td, and
v/vT , whereHd, Td, and vT are material and temperature
dependent parameters characterizing DW pinning. It is
worth stressing that such description is self-consistent:
the velocity of depinning and creep regimes are described
by universal (though very different) functions of the same
set of three above-mentioned reduced variables. In the
following, we describe the form of such functions. Table I
presents an overview of parameters describing the DW
dynamics.

For the creep regime [0 < H < Hd(T )], the DW veloc-
ity is described by an Arrhenius law:

v(H,T ) = v(Hd, T ) exp

(
− ∆E

kBT

)
(1)

with the effective pinning barrier height given by

∆E = kBTd(T )

[(
H

Hd

)−µ

− 1

]
, (2)

where kBTd is the characteristic pinning energy scale and
µ (= 1/4) the universal creep exponent. v(Hd, T ) corre-
sponds to the velocity at depinning. In Ref. 21, it was
shown that the ratio ∆E/kBTd is a universal function of
the reduced magnetic field H/Hd, (i.e., material and tem-
perature independent) which controls the creep velocity
in whole 0 < H < Hd range. The asymptotic behaviors
of the pinning barrier height are a power law divergence
∆E ∼ (H/Hd)

−µ close to zero drive (H → 0) and a lin-
ear collapse ∆E ∼ µ(1 − H/Hd) close to the depinning
threshold (H → Hd).

For the depinning transition [Hd(T ) < H < Hu(T )],
the combined contributions of magnetic field and tem-
perature on the velocity are described by a generalized
universal homogeneous function28,31,39,40 of the form:

y = g

(
x

x0

)
, (3)

where the scaled dimensionless variables are defined as
y = (v/vT )(T/Td)

−ψ and x = [(H−Hd)/Hd]
β(T/Td)

−ψ.
A rather good approximation for the shape22 of the g-
function is

g(x/x0) = [1 + (x/x0)
n
]
1/n

, (4)

where n (= 8.7±0.4) tunes the width of the crossover and
x0 = 0.65±0.04 is a universal constant. The DW velocity
presents two universal asymptotic power law behaviors.
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At the depinning threshold (H = Hd), the temperature
variation can be written as

v(Hd, T ) = vT (Hd, T )

(
T

Td

)ψ
, (5)

where ψ (= 0.15) is a depinning exponent and vT (Hd, T )
a depinning velocity. Just above the depinning thresh-
old22, for H >∼ Hd[1 + (0.8(Td/T )−ψ)1/β ], the velocity is
dominated by the driving field as

v(H,T ) ≈ vT (Hd, T )

x0

(
H −Hd

Hd

)β
, (6)

where β (= 0.25) is another depinning exponent. For
most of the studied magnetic materials, the thermal ac-
tivation energy is much smaller than the pinning energy
(T � Td), and part of the velocity curve just above Hd

present a good agreement with the predictions of Eq. 6
as shown in Fig. 1.

In summary, the set of Eqs. 1, 2, and 3 constitutes
a self-consistent description of the DW glassy dynamics
observed below the universality limit (H ≤ Hu). The
creep motion and the depinning transition are both de-
scribed by universal functions and their asymptotic limits
agree with the predictions from models of elastic lines in
disordered media. The non-universal character of DW
motion is caught by only three purely material and tem-
perature dependent parameters corresponding to the de-
pinning threshold Hd, temperature Td, and velocity vT .

C. Self consistent analysis of DW dynamics

The determination of material and temperature de-
pendent parameters requires to perform simultaneously
a fit of the creep regime (Eqs. 1 and 2 ) with ad-
justable velocity-magnetic field coordinates at depinning
(Hd, v(Hd)), and of the depinning transition (Eq. 6) over
an adjustable range (with an upper boundH = Hu). The
following procedure can be used:

• Step 1: the upper boundary of the creep regime
(Hd, v(Hd)) is assumed to correspond to the inflec-
tion point of the velocity curves (see the diamond
in Fig. 1). Indeed, the curvature is predicted to
change of sign at the depinning transition: positive
for the creep regime (H < Hd, see Eqs. 1 and 2)
and negative for the depinning regime (H > Hd,
see Eqs. 6).

• Step 2: an estimate of Td is then deduced from a fit
of v(H) with Eqs. 1 and 2 (with µ = 1/4) over the
range 0 < H < Hd (see the dot-dash line in Fig.
1).

• Step 3: in order to improve the accuracy for the
values of Hd and v(Hd) a fit of Eqs. 1 and 2 is
performed for increasing values of H. The upper
boundary of the creep regime (Hd, v(Hd)) can also

be defined as the limit above which the fit and the
experimental curve start to diverge. The step 2 can
then be repeated to improve the accuracy for the
Td-value.

• Step 4: a final fine tuning of Hd and v(Hd) is
deduced from a fit of Eq. 6 with β = 0.25 and
x0 = 0.65 over the largest magnetic field range (see
the dashed curve in Fig. 1).

• Step 5: when the linear flow regime is observed (as
in the case of Pt/Co/Pt films), the coordinates (Hd,
v(Hd)) can be also finely adjusted using Eq. 5 and
assuming vT to coincide with the velocity of linear
flow regime22 (see the star in Fig. 1) .

This procedure was used to analyze 50 velocity curves
reported in the literature.

III. DOMAIN WALL PINNING

In this section, we first present the effective pinning
parameters (Hd, vT , and Td) deduced from the analysis
of the glassy dynamics for different materials and various
temperatures. We then propose a model, which relates
those parameters to the micromagnetic and microscopic
pinning parameters.

A. Effective pinning parameters

A synoptic presentation of the effective pinning param-
eters is proposed in Figs. 2, and 3. See also the Table II in
the annex for details and for the values of micromagnetic
parameters.

A plot of the depinning field Hd versus depinning tem-
perature Td is shown in Fig. 2. As it can be observed, the

Figure 2. Depinning temperature Td versus depinning field
Hd. For each magnetic material, the legend indicates the film
thickness, the explored temperature range, and the reference.
For the CoFeB films, the letter “a” means annealed.
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Figure 3. (A) Velocity at depinning v(Hd) and (B) depinning
velocity vT versus depinning field Hd. v(Hd) corresponds to
the measured upper limit of the creep velocity. vT (Hd) was
deduced from Eq. 5 and is only dependent on material and
temperature. The global increasing trend of vT (Hd) is materi-
alized by two dash lines which correspond to linear variations
of depinning velocity (vT = mHd) for two constant slopes
(m = 0.15 and 1.1 m/(s.mT)). For the CoFeB films, the let-
ter “a” means annealed.

data points are rather dispersed. The values of Hd and
Td extend over two orders of magnitude (Hd: from 3mT
for CoFeB/MgO to 300mT for TbFe, and Td: from 600K
for (Ga,Mn)(As,P) to 50000K for CoNi). From Fig. 2,it
is not evident to extract general trends for the variations
of the effective height pinning barrier kBTd with the de-
pinning threshold Hd. The analysis of those variations is
extensively discussed in the following.

Now let us discuss the results obtained for the velocity
at depinning v(Hd) and the depinning velocity vT (Hd)
(see Eq. 5). As shown in Fig. 3 A, v(Hd) globally
increases with increasing Hd-value and covers a typical
range extending from 1 to 100 m/s. The significantly
lower values obtained for TbFe compared to others mag-
netic materials could be due to an underestimation of the
depinning threshold since no change of curvature sign was
observed in the velocity curve of Ref. 21. For the depin-

ning velocity vT , a global increase with Hd is observed
in Fig. 3 B. This trend can be framed by two linear
variations of the depinning velocity (vT = mHd) for two
constant slopes (see the dashed lines which correspond
to m = 0.15 and 1.1m/(s.mT)).

More generally, the map of effective pinning parame-
ters presented in Figs. 2 and 3 B is a main result of the
present paper. It serves as a starting point for the dis-
cussion on the microscopic origin of pinning proposed in
the following.

B. Model for domain wall pinning

In order to go further in the analysis of pinning prop-
erties, the effective pinning parameters deduced from ve-
locity curves (Hd, vT , and Td) have to be related the
microscopic characteristics of pinning and to ultimately
to the micromagnetic parameters of each material.

The universal functions describing the velocity are con-
sistent with the general theoretical predictions obtained
by solving the large-scale non-equilibrium behavior of a
driven elastic string in random medium41. We thus ex-
pect to obtain Hd, vT , and Td from a simple dimensional
analysis of such model at relatively short length-scales.
We follow the approaches of Refs. 4, 42, and 43 which
consider the DW as an elastic line, not taking into ac-
count the detailed magnetic texture 44,45 and express the
model parameters in terms of micromagnetic quantities.

The variation of the free energy associated with the
displacement of a DW segment of length L over a trans-
verse distance u is roughly given by:

δF (L, u) = σtu2/L+ δFpin(L, u)− 2MsHtLu, (7)

where the magnetization saturation Ms, the DW elastic
energy σ (≈ 4

√
AKeff for a Bloch wall, where A and

Keff are the stiffness and the effective anisotropy con-
stant, respectively) are micromagnetic parameters, and t
is the layer thickness (see Table I for an overview of the
parameters controlling domain wall pinning). In Eq. (7),
the first term corresponds to the elastic energy associated
to the elongation of domain wall, δFel, the second is the
pinning energy, δFpin, and the third term stands for the
contribution of the driving magnetic field, δFH .

The DW is expected to be depinned for an applied
magnetic field H = Hd, such that no metastable states
with zero velocity exist for H > Hd. Larkin realized
that this happens when a DW segment of a character-
istic size Lc, displaces over the characteristic range of
effective pinning potential (u ≈ ξ), or pinning force cor-
relation length, in response to the field. The so-called
Larkin length Lc is field independent and can be esti-
mated from δFpin(ξ, Lc) ≈ δFel(ξ, Lc). This estimate can
be explicitly done after modeling the scaling properties
of δFpin(u, L), typically using collective pinning theory if
pinning is weak24,25.

At depinning, the elastic and Zeeman terms are of
the same order (δFel(Lc, ξ) ≈ δFH(Lc, ξ)), establishing a
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connection between the collectively pinned DW segment
length Lc and the depinning field Hd. Moreover, we can
assume that the typical pinning energy barrier height en-
countered in Eqs. 2 and 5 corresponds to the pinning
energy at the depinning threshold kBTd ≈ δFpin(Lc, ξ).
As the latter energy contribution should be also of the
same order as δFel(Lc, ξ), using Eq. (7) we obtain

kBTd = (ξ2σt)/Lc (8)

Hd = σξ/(2MsL
2
c), (9)

which relate the depinning temperature and magnetic
field to the microscopic length scales Lc and ξ, and to
the micromagnetic parameters σ and Ms. As this model
is essentially based on scaling arguments, it is expected
to describe correctly the temperature variation of Lc and
ξ and to provide a rough estimate of their magnitude
from the knowledge of velocity response parameters Td
and Hd.

Let us now discuss the DW velocity at depinning
v(Hd, T ) and the depinning velocity vT . In Eqs. 5 and
6, vT is defined as a purely scaling factor and it is impor-
tant to give to this parameter a precise physical meaning.
Following the discussions in Refs. 22 and 26, we assume
that vT corresponds to the velocity, which would have
DWs in the absence of pinning, which yields

vT (Hd, T ) = mfl(Hd, T )Hd(T ), (10)

where mfl(Hd, T ) is the mobility of the DW in the flow
regime at the depinning field Hd. Strictly, mfl(Hd, T )
has a non-monotonous field dependence with two impor-
tant reference values: mfl(Hd, T ) = γ∆/α for Hd ≤ Hw

and

mfl(Hd, T ) =
γ∆α

1 + α2
, (11)

for Hd � Hw, where ∆ =
√
A/Keff is the domain wall

width parameter, α the Gilbert damping parameter, and
γ the gyromagnetic factor (= 1.761011 Hz.T−1). For
the data of Refs.21, 22, and 33, as in the case of Fig.
1, mfl(Hd, T ) corresponds to the mobility of asymptotic
precessional flow regime (i.e., Hw � Hd).

C. Thermal effects

The thermal activation produces fluctuation of DW po-
sition which, if strong enough, can appreciably smooth
the effective random pinning potential experienced by
DWs. As a result, the correlation length of the disorder
ξ(T ) and the Larkin length Lc(T ) are expected to in-
crease with increasing temperature. For a weakly pinned
elastic line, Nattermann et al.42,43 proposed the follow-
ing temperature variations: ξ(T ) = ξ0[1 + (T/Td)]

3 and
Lc(T ) = Lc0[1 + (T/Td)]

5, which are interpolation for-
mula between power law variations deduced form scaling

arguments and values (ξ0 and Lc0) corresponding to the
limit of zero thermal fluctuation of DW position. More
recently, Agoritsas et al.46 proposed the analytic predic-
tions:

Lc(T, ξ) =
4π

σtD2

(
kBT

f(T/Td)

)5

(12)

and

ξ(T ) =

√
3(4π)5/6

σtD

(
kBT

f(T/Td)

)3

, (13)

where the function f is given by the implicit equation
f6 = 4π(1−f)(T/Td)

6. The zero temperature values are
given by:

Lc0 = (4π)1/6
(kBTd)

5

σtD2
(14)

and

ξ0 =
√

3(4π)5/6
(kBTd)

3

σtD
. (15)

In Eqs. 12, 13, 14, and 15, D is the strength of disor-
der46–48, reflecting the typical amplitude of the quenched
random pinning potential and has the dimension of the
square of an energy. Note that Eqs. 14 and 15 indi-
cate that Lc0 and ξ0 are also expected to present intrin-
sic temperature variations due to their dependency on
micromagnetic and pinning parameters. Such intrinsic
variation must be hence distinguished from the extrinsic
variation explicitly given in Eqs. 12 and 13, which be-
comes important only when the temperature T is close
to Td.

D. Pinning and domain wall dynamics

In order of get a better insight into the variation of
DW dynamics with the magnetic material and temper-
ature, it is interesting to relate the pinning parameters
(see Figs. 2 3) with the micromagnetic and microscopic
pinning parameters.

A more intuitive insight of the predictions of Ref. 46
can be deduced from scaling arguments. Following Ref. 4
and neglecting thermal effects (i.e. Lc = Lc0, and ξ = ξ0)
the pinning energy can be modeled by collective pinning
theory24 δFpin(Lc0, ξ0) = fpinξ0

√
nξ0Lc0, where n is the

density of pinning centers (≈ 1/ξ20), and fpin a typical
pinning force. Using Eqs. 8 and 9 leads to

(kBTd)
3 = σt(fpinξ0)2ξ0 (16)

which for f2pinξ
2
0 = D/(

√
3(4π)5/6) is equivalent to Eq.

15 and to

(Hd)
3 =

(fpinξ0)4

ξ70σt
4(2Ms)3

, (17)
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respectively. Eqs. 16, 17, and 10, 11 now fully relate
the pinning parameters controlling DW dynamics (Hd,
vT , and Td) to the micromagnetic parameters (σ, Ms,
∆, and α) and the microscopic pinning parameters (fpin
and ξ0). Therefore, combining the description of univer-
sal behaviors (see Eqs. 1, 2, 3, 5, and 6 in sect. II B),
the predictions of model for DW pinning (see Eqs. 16
and 17) and experimental measurements of the micro-
magnetic parameters, one can estimate the microscopic
parameters controlling DW pinning.

IV. FUNDAMENTAL PINNING SCALES

By mean of the scaling model of pinning developed
in Sect. III, it is possible to discuss the fundamental
pinning scales from the map (see Figs. 2 and 3 B) of
material and temperature dependent pinning parameters
controlling domain wall dynamics.

A. Characteristic length-scales of pinning

Using Eqs. 8 and 9, we can deduce the range of the
pinning potential

ξ = [(kBTd)
2/(2MsHdσt

2)]1/3, (18)

and the Larkin length

Lc = [(σkBTd)/(4M
2
s tH

2
d)]1/3. (19)

Those relations are expected to provide estimations of
values ξ and Lc and to reveal their temperature vari-
ation26. Following Eqs. 18 and 19, estimations of ξ
and Lc rely on the values of Ms and σ. As it can be
seen in Table II, this eliminates the analysis for materi-
als Au/Co/Au, CoFeB for different irradiation dose, and
TbFe. Note that we could also consider the Larkin area
Lcξ (= (kBTd)/(2HdMst)), which is independent of σ.

As it can be observed in Fig. 4, for all the re-
ported materials (Pt/Co/Pt, Co/Ni, (Ga,Mn)As, and
CoFeB/MgO), the range of values for the pinning cor-
relation length (ξ ≈ 20 − 50nm), and the Larkin length
(Lc ≈ 40 − 170nm) are relatively well separated. The
ratio between Lc and ξ scales the density of pinning sites
along the DWs. Its relatively small values suggest that
DWs pinning involves only few pinning sites (2− 4) over
the Larkin length. Moreover, the correlation length of
the disorder is larger than the domain wall width param-
eter (∆ ≈ 5 − 20nm) except for CoFeB/MgO for which
we have ∆ ≈ ξ. This indicates that generally the weak
pinning originates from fluctuations of pinning over dis-
tances larger than the domain wall width parameter.

Figure 4. Characteristic lengths versus reduced tempera-
ture. ∆, ξ, and Lc are the domain wall width parameter,
the correlation length of the disorder, and the Larkin length,
respectively.

B. Temperature variations of the pinning strength
and length-scales

Let us now discuss the temperature variation of ξ and
Lc. In order to compare the temperature variation for
different materials and theoretical predictions we first
normalize the data for each material to values of ξn and
Lcn, which are assumed to be temperature independent.
Those values were chosen in order for the ratios ξ(T )/ξn
and Lc(T )/Lcn to follow the temperature variation pre-
dicted by Eqs. 12 and 13 over the largest range of T/Td,
respectively.

The results are shown in Fig. 5 for materials for which
both σ and Ms are reported in the literature. Follow-
ing Eqs. 12 and 13, ξ/ξn and Lc/Lcn are predicted to
decrease rather weakly as the temperature is reduced.
In contrast, the experimental data present an important
variation with temperature. This suggests that the ther-
mal behavior of ξ(T ) and Lc(T ) is dominated by the tem-
perature variation of the micromagnetic and pinning pa-
rameters of ξ0(T ) and Lc0(T ) (reflected by Eqs. 14 and
15) and not by thermal fluctuations of DW position.

Assuming now negligible fluctuations of DW position,
the data of Fig. 5 can be viewed as the relative tempera-
ture variation of ξ0(T ) and Lc0(T ). Different regimes can
be clearly distinguished. For T/Td > 0.02, ξ0(T )/ξn and
Lc0(T )/Lcn globally tend to weakly increase with tem-
perature. For T/Td > 0.10, the large observed fluctua-
tions suggest a strong sample dependent temperature be-
havior. For T/Td < 0.02, both ξ0(T )/ξn and Lc0(T )/Lcn
are observed to drop with decreasing temperature. The
decrease of ξ0(T )/ξn can reach a factor 4, which suggests
that ξ0(T ) becomes close to the DW width ∆. There-
fore, we can infer the drop observed in Fig. 5 to reflect
a crossover between different pinning length scales. At
sufficiently large reduced temperature (T/Td > 0.02), the
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Figure 5. (A) Reduced correlation length of the disorder
ξ/ξn, and (B) reduced Larkin length Lc/Lcn as a function
of reduced temperature T/Td. The solid lines in A and B
correspond to the predictions of Eqs. 12 and 13, respec-
tively. All the data correspond to single sample and vari-
able temperature except the shade red points (Pt/Co/Pt:
Ref.33), which correspond to room temperature and different
sample thicknesses. The normalization values (ξn and Lcn)
are indicated in the figures for each material. In the range
0.02 < T/Td < 0.1, the data agree well with theoretical pre-
dictions. For T/Td < 0.02, there is a drop of both ξ/ξn and
Lc/Lcn.

correlation length of the disorder is larger than the DW
thickness (ξ0 > ∆). At low temperature (T/Td < 0.02),
the pinning is controlled by the DW width, which defines
the correlation length of the disorder (ξ0 ≈ ∆).

In order to further analyze the pinning, it is interesting
to discuss the strength of pinning disorder. The value of
the strength of pinning disorder can be deduced from Eq.
14 (D2 = (4π)1/6[(kBTd)

5]/[σtLc0]). In Fig. 6, we plot√
D (which has the dimension of an energy) as a function

of the ratio T/Td. Above the crossover (T/Td > 0.02),
the strength of pinning disorder is almost temperature
independent for the Pt/Co/Pt films (

√
D ≈ 200 meV),

as expected for a quenched disorder. For (Ga,Mn)(As,P),

Figure 6. Square root of the strength of the disorder as a
function of reduced temperature T/Td.

Figure 7. Ratio between depinning velocity and mobility in
the flow regime versus depinning field. The equality between
those two quantities indicates that the depinning velocity cor-
responds to the velocity DW would have in the absence of
pinning.

the slight decrease of
√
D with increasing temperature is

probably associated to a not enough stringent estimation
of the DW energy σ (see Table II). For T/Td < 0.02, we
observe a drop of the pinning strength. At low temper-
ature, DWs become sensitive to pinning sites with both
lower strength and shorter range, which are un-efficient
at higher temperature. This also suggests the existence
of different pinning strength ranges and a crossover be-
tween pinning regimes tuned by the magnitude of thermal
activation. A better understanding of this issue requires
further investigations.
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C. Depinning velocity

Let us now discuss the depinning velocity vT , which
is important as it sets the fundamental time scale, once
known the length-scales characterizing the pinning. As
shown in Fig. 1, the value of vT deduced from Eq. 5 is
found to coincide with the linear extrapolation of the
flow regime observed at high drive. In order to test
the generality of this observation, we have analyzed the
flow regime for different material and temperature. The
Table II reports the value of DW mobility mfl deduced
from a linear fit of the linear flow regime, which was only
observed for Pt/Co/Pt and (Ga,Mn)As films. In Fig. 7,
we report the variation of the ratio vT [(Hd, T )/mfl(T )
with the depinning field Hd. As it can be observed,
all the points collapse on a single line. The slope is
equal to 1, which indicates that the depinning velocity
can be written vT (Hd, T ) = mfl(T )Hd. We can deduce
that the depinning velocity vT correspond to the flow
velocity that DW would have in the absence of pinning.
Following Eq. 5, this suggests that the DW velocity of
the glassy dynamics to scale with the domain wall width
parameter ∆ and damping parameter α following Eq. 11.

V. CONCLUSION

In conclusion, we propose a quantitative and compar-
ative study of domain wall pinning in different ferromag-
nets. The latter is based on a clear discrimination be-
tween universal and material dependent behaviors of the
creep and depinning dynamical regimes. The determi-
nation of effective pinning pinning parameters allows to
explore the interplay between micromagnetic and pinning
properties of ferromagnets and domain wall dynamics.

Our works opens a way for a better understanding of
the microscopic origin of pinning in magnetic systems.
Our analysis provides a functional dependency of DW
glassy velocity with the micromagnetic and pinning pa-
rameters. This should have important implications for a
comparison between experimental and theoretical studies
as micromagnetic simulations on one hand49 and to sta-
tistical models for interface motion in disordered elastic
systems46,50 in the other. In particular, the latter allows
a more stringent test for the different equilibrium and
depinning universality classes proposed to describe the
non-equilibrium dynamics at different length-scales and
velocities. Moreover our analysis should help for a better
understanding of chiral effects on DW dynamics19,51,52

and in particular the contribution of the Dzyaloshinskii-
Moriya interaction. They should manifest through the
fundamental field, temperature and velocity scales con-
trolling the macroscopic universal response of DWs.
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ANNEX I: MICROMAGNETIC AND PINNING
PARAMETERS

Here, we discuss technical details on the determination
of micromagnetic parameters, which are listed in Table II
(see Annex II) together with the fundamental pinning pa-
rameters controlling domain wall dynamics. The values
of magnetization saturation Ms, domain wall energy σ,
and thickness parameter ∆ are directly reported from the
publications when they are available or deduced from the
relations σ = 4

√
AKeff and ∆ =

√
A/Keff , where A is

the stiffness energy and Keff the effective anisotropy.

For Pt/Co/Pt, the data were taken from Refs. 33 (dif-
ferent thicknesses t, and room temperature), 26 (thick-
ness t = 0.45 nm and variable temperature) and 22
(thickness t = 0.5 nm and variable temperature). For
0.5 nm thick Pt/Co/Pt film22, the room temperature
micromagnetic parameters Ms, σ and ∆ correspond to
those of the 0.5 nm thick film of Ref. 33. As proposed in
Ref. 26, the thermal dependence of Ms was deduced from
polar magneto-optical Kerr rotation. Since A ∼Ms(T )2

and Keff ∼ Ms(T ), we assumed the following tempera-

ture variations for the DW energy σ ∼Ms(T )3/2 and the
domain wall width parameter ∆ ∼Ms(T )1/2.

For Au/Co/Au, Ms was taken equal to its bulk value53.

For (Ga,Mn)(As,P), the temperature variation of the
saturation magnetization Ms was deduced from PMOKE
measurement and was found similar to that observed for
(Ga,Mn)As36,38. The Curie temperature is 74 ± 1 K.
According to the concentration of Mn atoms, we assumed
Ms(T = 0 K) = 40 kA/m54. The domain wall width
parameter ∆ was deduced from the slope (mfl) of the
precessional flow regime and the prediction of the one
dimensional model: mfl = v/H = αγ∆/(1 + α2), with
γ = 1.761011 Hz/T and α=0.336,38. The obtained value
for ∆ = 11.5±0.5 nm is almost temperature independent
and close to the value reported in Ref. 54 (∆ = 8±1 nm).

For CoFeB/MgO with different Co and Fe concentra-
tions, the data were taken from Ref. 55. The DW energy
is deduced from σ = 4Keff∆, with Keff = MsHk,eff/2.

For CoFeB/MgO with different irradiation dose, the
data were taken from Ref. 9.

For the [Co/Ni] superlattices, data were taken from
Refs. 56 and 57. For the DW energy, we used σ =
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4Keff/∆. For the stiffness energy, we took the value
(A =10 pJ/m) reported in Ref. 57.
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9 L. Herrera Diez, F. Garćıa-Sánchez, J.-P. Adam, T. De-
volder, S. Eimer, M. S. E. Hadri, A. Lamperti, R. Manto-
van, B. Ocker, and D. Ravelosona, Appl. Phys. Lett. 107,
032401 (2015).
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Characteristic length-scale Variable Name
Micromagnetic continuum description A stiffness energy

Keff anisotropy energy
Ms saturation magnetization
α Gilbert damping factor
γ gyromagnetic factor

Microscopic domain wall scale L < Lc ∆ ∼
√

Keff

A
domain wall width parameter

DW micromagnetic structure σ ∼
√
KeffA domain wall energy

mfl = γ∆α
1+α2 domain wall mobility

DW Pinning D strength of the pinning disorder
ξ correlation length of the disorder

fpin ∼
√
D
ξ

pinning force (cf. Eqs. 14 and 15)

Mesoscopic DW scale L ∼ Lc Td depinning temperature (cf. Eqs. 1 and 2)
(Larkin Regime) Hd depinning threshold (cf. Eqs. 1 and 2)

vT depinning velocity (cf. Eq. 5)
Macroscopic DW scale L� Lc µ creep exponent (cf. Eq. 2)
(Random Manifold regime) Creep regime ∆E/(kBTd) universal energy barrier function (cf. Eq. 2)
Depinning transition v(Hd) velocity at depinning (cf. Eqs. 1 and 2)

β depinning exponent (field effects) (cf. Eq. 6)
ψ depinning exponent (thermal effects) (cf. Eq. 5)
x0 universal metric factor (cf. Eq. 6)

g(x/x0) universal function of depinning (cf. Eq. 3)

Table I. Parameters describing domain wall dynamics, classified according to the length-scale they emerge.
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Material t(nm) T (K) Td(K) Hd(mT ) v(Hd)(m/s) mfl(m/(s.mT )) Ms(kA/m) σ(µJ/m2) ∆(nm)
Pt/Co/Pt 0.5 293 2558(10) 28.5(2) 5.7(0.2) 0.276(0.005) 910 9030 6.2
Ref. 33 0.6 4145(25) 56(1) 10.6(1.0) 0.325(0.005) 1130 11700 5.5

0.7 6490(30) 76(1) 16.6(1.0) 0.370(0.005) 1200 10700 6.7
0.8 9720(45) 72(1) 18.4(1.0) 0.454(0.005) 1310 10200 8.6

irradiated 0.5 2260(50) 15(1) 7.5(1.0) 0.676(0.005) 700 3080 15.6
Pt/Co/Pt 0.45 293 1900(100) 91(4) 59(2) 800 7400 5.8
Ref. 26 200 2500(100) 110(5) 61(2) 1120 12300 6.9

150 2700(100) 135(5) 90(2) 1260 14700 7.3
100 3200(100) 141(5) 75(2) 1370 16700 7.6
50 3500(100) 150(5) 81(2) 1470 18500 7.9

Pt/Co/Pt 0.5 293 2650(50) 57(3) 12.0(0.5) 0.288(0.005) 910 9030 6.2
Ref. 22 225 2750(50) 75(3) 14.8(0.5) 0.307(0.005) 1120 12300 6.9

150 2700(50) 101(3) 18.6(0.5) 0.280(0.005) 1330 16000 7.5
100 3090(50) 107(3) 18.7(0.5) 0.260(0.005) 1470 18500 7.9
50 2860(50) 120(3) 19.5(0.5) 0.292(0.005) 1600 21000 8.2
10 660(50) 130(3) 21.0(0.5) 0.363(0.005) 1720 23500 8.5
4.4 450(50) 136(3) 20.0(0.5) 0.364(0.005) 1730 23700 8.5

Au/Co/Au 1.0 318 28400(1500) 88.0(1.0) 8.7(1.0) 1400
Ref. 58 273 29000(1500) 96.5(1.0) 8.4(1.0) 1400

243 29300(1500) 102.5(1.0) 7.3(1.0) 1400
213 29400(1500) 110.0(1.0) 7.5(1.0) 1400
183 28800(1500) 115.0(1.0) 7.4(1.0) 1400
150 25800(1000) 122.6(1.0) 9.7(1.0) 1400

Co20Fe60B20 an 1 293 1800(100) 6.6(0.2) 1.7(0.5) 1100 9200 9.7
Co20Fe60B20 ag 1800(100) 4.8(0.2) 2.3(0.5) 1000 2700 30.2
Co40Fe40B20 an 1400(100) 5.0(0.2) 2.0(0.5) 880 7400 10.7
Co40Fe40B20 ag 2000(100) 4.3(0.2) 4.6(0.5) 1100 4900 21
Co60Fe20B20 an 2200(100) 3.5(0.5) 2.3(0.5) 1100 5100 27.7
Ref. 55
Co20Fe60B20 an 1 293
Ref. 9
Dose ×1019He/nm2

0 2640(100) 10.5(0.2) 2.1(0.5) 880
0.1 2580(100) 10.2(0.2) 2.4(0.5) 860
0.2 2570(100) 10.9(0.2) 2.4(0.5) 890
0.4 2640(100) 11.4(0.2) 3.0(0.5) 760
0.6 2500(100) 11.4(0.5) 3.2(0.5) 810
0.8 2510(100) 17(0.2) 3.8(0.5) 840
1 2540(100) 22.4(0.2) 3.3(0.5) 770
1.2 2670(100) 23.0(0.2) 2.9(0.5) 710
1.4 2680(100) 25.0(0.5) 2.8(0.5) 680
1.6 2300(100) 46.3(0.5) 1.7(0.5) 670
TbFe 5×1.8 271 5750(50) 295(5) 1.4(0.1)
Ref. 21 289 4200(50) 225(5) 1.8(0.1)

304 3050(50) 130(5) 1.7(0.1)
310 2600(50) 100(5) 1.7(0.1)
315 2200(50) 80(5) 1.8(0.1)

(Ga,Mn)(As,P) 12 10 616(10) 6.2(0.1) 1.8(0.1) 0.537(0.005) 38 130 11.1
Ref. 21 30 1440(20) 5.8(0.1) 1.8(0.1) 0.564(0.005) 34 100 11.6

50 1140(20) 5.6(0.1) 2.0(0.2) 0.566(0.005) 26 60 11.7
65 815(10) 5.5(0.1) 2.3(0.1) 0.58(0.01) 18 30 12.0

[Co/Ni] superlattice 1.1×3 293 51300(500) 25(1) 5.1(0.1) 930 6900 5.8
Ref. 56
[Co/Ni] superlattice 1.2×4 293 30000(10000) 12.5(2.0) 7.5(2.5) 680 8300 6.95
Ref. 57

Table II. Material and temperature dependent parameters. For each material, the thickness (t) and the temperature
of the experiment (T (K)) is indicated. The depinning temperature (Td) and magnetic field (Hd) and the domain wall velocity
at the depinning field (v(Hd)) are deduced from a fit of the velocity curves (see text). mfl (m/(s.mT)) is the best fit for the
slope of the linear precessional regime. The saturation magnetization Ms, the DW energy σ and the DW thickness parameter
∆ are extracted or deduced from the references indicated below the name of material.
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