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Abstract
One of the main challenges in land degradation assessment is that a rigorous and systematic

approach to addressing its complex dynamics is still missing. The development and application

of operative tools at regional and global scales remain a challenge. Land degradation is usually

defined as a long‐term decline in ecosystem function and productivity. Due to its temporal and

spatial resolution as well as data availability, the use of time series of spectral vegetation indexes

obtained from satellite sensors has become frequent in recent studies in this field. Slope of linear

trends of the normalized difference vegetation index is usually considered an accurate indicator

and is widely used as a proxy for land degradation. Yet this method is built on a number of

simplifying conceptual and methodological assumptions that prevent capturing more complex

dynamics, such as cyclic or periodic behaviors. Our aim was to examine the limitations associated

with using linear normalized difference vegetation index trends as proxies for land degradation by

comparing outcomes with an alternative methodological procedure based on wavelet

autoregressive methods. We explored these issues in 5 case studies from Africa and South

America. We observed that trend explained a marginal portion of total temporal variability,

whereas monotonic functions, such as linear trends, were unable to capture dynamics that were

non‐unidirectional, resulting in misinterpretation of actual trends. Wavelet autoregressive

method results were encouraging as a step towards the application of more accurate methods

to provide sound scientific information of land degradation and restoration.
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1 | INTRODUCTION

Land degradation is a major concern both in scientific and political arenas

(Sadeghravesh, Khosravi, & Ghasemian, 2016; Torres, Abraham, Rubio,

Barbero‐Sierra, & Ruiz‐Pérez, 2015). Monitoring systems are at the core

of demands to better support decision‐making and to assess the impact

of interventions (Vogt et al., 2011). There is a need for operational

methods and tools to assess the state and dynamics of land degradation

at regional and global scales, able to provide updated information using

low‐cost data, for long‐term series and across spatial scales. Land degra-

dation is usually defined as a long‐term decline in ecosystem function

and productivity, which may be assessed using series of satellite sensed

data such as the normalizeddifference vegetation index (NDVI; Bai, Dent,

Olsson, & Schaepman, 2008). NDVI trend iswidely used as proxy for land

degradation (Bai et al., 2008; Metternicht, Zinck, Blanco, & Del Valle,

2010; Wessels et al., 2007) and most frequently computed as the slope
wileyonlinelibrary.com/jour
of a linear regression of NDVI time series (Anyamba & Tucker, 2005;

Eckert, Hüsler, Liniger, &Hodel, 2015; Fensholt et al., 2012; Gaitán, Bran,

&Azcona, 2015;Vlek,BaoLe,&Tamene, 2008; Yin,Udelhoven, Fensholt,

Pflugmacher,&Hostert, 2012).However,weargue that linear trend is too

simplistic both from theoretical andmethodological perspectives and that

it may lead to misinterpreting—mask or exaggerate—prevailing land deg-

radation dynamics.

A conceptual discussion regards whether significant slopes refer

to a system phase of a state at dynamic equilibrium or if it refers to a

shift towards a new state or regime change (Hastings & Wysham,

2010; López, Cavallero, Brizuela, & Aguiar, 2011). Because the initial

status is often unknown, a positive slope may be thought to represent

either a recovery from drought (Vicente‐Serrano et al., 2013), greening

trends as a function of both climatic and nonclimatic factors (Xiao &

Moody, 2005), a response to other disturbances such as fire events

(Diaz‐Delgado, Salvador, & Pons, 1998; Gouveia, Bastos, Trigo, &
Copyright © 2017 John Wiley & Sons, Ltd.nal/ldr 433
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DaCamara, 2012; Riaño et al., 2002), or a permanent land‐use change

generating higher primary productivity than the previous situation,

such as afforestation (Li, 2015; Vasallo, Dieguez, Garbulsky, Jobbágy,

& Paruelo, 2012). A negative slope, on the other hand, might represent

a downwards trend due to either a long‐lasting drought (Anyamba &

Tucker, 2005), more abrupt shocks such as volcanic ash fallout (de

Schutter et al., 2015), or permanent disturbances such as land use

change, for example, resulting in a decrease of irrigated areas (Gumma

et al., 2015). Both phases and regime shifts are confounded in the

same process when NDVI changes are depicted by a linear trend. From

a methodological perspective, linear regression is by definition a

monotonic function, which means that it is either entirely increasing

or decreasing. There is no option for a change in the trend, and

therefore a significant positive or negative slope means invariably a

regime change, which cannot be differentiated from a state phase.

We state that operative tools to assess land degradation through

studying NDVI changes should be able to capture system dynamics by

emphasizing the possibility of a cyclic behavior and not only a one‐direc-

tion process. Methods are needed that are sensitive both to monotonic

changes as a potential reference of regime shifts and to nonmonotonic

changes as depicted by cyclic dynamics, which can be constituted by

different phases. Our objective was to examine the limitations associ-

ated with using linear NDVI trends as proxies for land degradation, by

comparing outcomes with an alternative methodological procedure

based on the use of wavelet autoregressive methods (WARM). The
FIGURE 1 Mean normalized difference vegetation index (NDVI) of case
Uganda, and in South America: N Argentina–S Bolivia and NW Patagonia (
study was guided by two questions: (a) how much variability from

temporal NDVI information is explained by the trend? and (b) can we

distinguish between cyclic and monotonic change? We explored these

issues in five case studies that included drylands, rainforest and humid

areas: (a) NE and (b) SE Zimbabwe, (c) W Kenya–E Uganda, (d) N

Argentina–S Bolivia, and (e) NW Patagonia (Argentina).
2 | MATERIAL AND METHODS

2.1 | Case studies

We selected five regional case studies based on the following criteria:

(a) contrasting biomes including deserts, arid and semiarid rangelands,

rainforests, and ecological gradients within the area considered (soil

types, altitude, and rainfall), (b) different land uses such as cultivated

land, livestock, and pastoralism, (c) different continents (South America

and Africa), (d) a latitudinal gradient from Equator 0° to 39° S, v)

different climate regimes. These were also sites where the authors of

this paper have worked extensively and have first‐hand knowledge

on and for which ground information is amply available.

The case study area of NE Zimbabwe is an area characterized by

coexistence of two dominant, contrasting soil types: granitic sands

(5–10% clay content) and red clay soils (35% clay), defining different

plant productivity potential (Figure 1). Native vegetation is
study areas located in Africa: NE and SE Zimbabwe, and W Kenya–E
Argentina) [Colour figure can be viewed at wileyonlinelibrary.com]
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represented by the Miombo woodland, a savannah‐type ecosystem,

and agricultural activities include large‐scale commercial (mostly on

clay soils) and smallholder (mostly on sandy soils) maize‐based

production with strong livestock interactions. Under smallholder

systems, cattle herds typically graze in communal areas. Average

annual rainfall is 810 mm, ranging from >1,000 mm yr−1 in the

country's Eastern Highlands to ~800 mm in the central watershed.

The country's rainfall generally decreases from NE to SW. The case

study area of SE Zimbabwe spans a semiarid W–E gradient of

decreasing altitude and annual rainfall, from 900 to 400 mm

(Figure 1). The area is dominated by smallholder subsistence farming

with cattle and goats as the main livestock activity and irrigated sugar

cane along the flood plains of the Save river.

The case study area in W Kenya and E Uganda comprises one of

the most densely populated regions of sub‐Saharan Africa (up to

1,000 inhabitants per square kilometer in some places; Figure 1). It

encompasses humid and subhumid highlands west of the rift valley

where soils are deep and relatively fertile (Nitosols and Luvisols), and

rainfall is bimodal (1,100 to 1,800 mm), allowing two cropping seasons

per year. Smallholder subsistence maize farming dominates, coexisting

with rainfed sugar cane, dairy to the south and cotton to the west.

Remnants of the original Congolese‐type tropical forest remain within

national parks and protected areas.

The case study of N Argentina and S Bolivia includes a great W–E

biophysical gradient in terms of altitude (from the Andean range above

3,500 m.a.s.l. to plains and valleys located at 400 m.a.s.l.) and annual

rainfall from less than 100 to 1,000 mm (Figure 1). This gradient

includes the biomes of the Puna dryland on the Western side domi-

nated by grass‐shrub steppes and smallholder pastoralism, with crop

production in local valleys. The Yungas tropical rainforest is located

towards the East of the gradient.

Finally, the case study of NW Patagonia is located also in a W–E

biophysical gradient in terms of altitude (from 2,000 to 400 m.a.s.l.)

and rainfall (from 1,000 to 200 mm yr−1), but mostly dominated by

grass‐shrub and shrub‐grass steppes from the Patagonian Western

District and Monte Austral ecological regions, respectively (Figure 1).

Local meadows with very high productivity are frequent towards the

Western sector but represent less than 3% of the total area, which are

used for livestock production. Smallholder transhumant pastoralism

dominates, with goat husbandry in mixed herdingwith sheep and cattle.
2.2 | Data source

We used the 16‐day composite MODIS images (MODIS13Q1 prod-

uct) for the series February 2000–February 2016, which were

obtained from the USGS Earth Resources Observation and Science

Data Center. The pixels from the selected study areas (i.e.,

250 m × 250 m of spatial resolution) were uploaded from MODIS

mosaics with Python‐GDAL library (Geospatial Data Abstraction

Library, GDAL Development Team [2015]) and then clipped by means

of a point‐inside‐polygon routine from the Matplotlib library of

Python programming language (Hunter, 2007). This procedure auto-

matically detects if whatever of the four corners of the pixel is found

inside the polygon of the study area or whichever of the corners of

the study area is found inside a given pixel. For these cases, the pixel
is then considered inside the study area. The sequence of clipped

MODIS images were piled up into a space‐time cube (i.e., a three‐

dimensional matrix comprised by longitude, latitude, and time). Hence,

we obtained the temporal sequence for each pixel along the last

dimension of that matrix (i.e., time). In order to avoid further distor-

tion, data were not reprojected, keeping the sinusoidal projection

provided by the original MODIS mosaics.

NDVI was derived fromMODIS images, which was calculated with

the following equation (Rouse, Haas, Schell, & Deering, 1973):

NDVI ¼ ρNIR−ρRð Þ= ρNIRþ ρRð Þ (1)

where ρNIR and ρR are the surface reflectances centered at 858 nm

(near‐infrared) and 648 nm (visible) portions of the electromagnetic

spectrum, respectively.

2.3 | Data preprocessing

Because NDVI is a continuous finite variable, we assumed that the

NDVI error followed a logit‐normal distribution (i.e., a statistical

distribution whose logit transform follows a normal distribution,

Ashton, 1972).

Before fitting the NDVI time series, data were logit‐transformed in

order to use a normal likelihood function. Because NDVI is a value

between −1 and 1, but values lower than 0 do not have a biological

meaning, we treated it in a similar way as a proportion between 0

and 1. Logit transformation also avoids the use of the more complex

Beta distribution as a likelihood function. Instead, we used a normal

function, which is also simpler in interpretation in terms of mean and

variance. A second benefit was to avoid dealing with meaningless

values (i.e., estimated values larger than 1 or lower than zero).

After the transformation of NDVI data, we centered the series by

removing the mean. Because the values lower than zero had no

biological meaning, they were treated as missing values (i.e., values

below zero mean snow cover, clouds, water, or rocks). If a pixel in

the data stack consisting of xy NDVI layers contained more than 20

negative values, it was discarded from the analysis. After this

procedure, most of the discarded pixels corresponded to borders of

water bodies and top of the mountains.

2.4 | Trend estimation methods

2.4.1 | Simple linear regression

Linear trend of NDVI time series was used in this article as an example

of a monotonic function. We estimated the interannual NDVI trend

using a linear regression of series of annual integral NDVI (NDVI‐I).

The NDVI‐I was calculated as the weighted sum of the 23 annual data

(16‐day composites) divided by the fraction of the year that each

composite occupied (i.e., because the last composite which

corresponds to December occupies a shorter time span of 13 or

14 days, instead of 16 days). This process resulted in series of 16

NDVI‐I data per pixel, which were used to perform simple linear

regression analysis. After performing the regression, the pixels were

classified according to the sign and the significance of the slope

(α = 0.05). Hence, pixels with negative significant slope were classified

as decreasing (red pixels) and pixels with positive significant slope as
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increasing (green pixels). Pixels with nonsignificant slope were

classified as no trend (white pixels). The linear regression was

performed using the statsmodels library for statistical analysis from

Python (Seabold & Perktold, 2010).
2.5 | WARM model

2.5.1 | Filter description

Instead of using the most common wavelet transformation (discrete or

continuous), we chose an alternative via a sparse transform through

the matching pursuit (MP) algorithm with time frequency dictionaries

(Mallat & Zhang, 1993). MP decomposes any signal into a weighted

sum of time‐frequency dictionaries, which most commonly are Gabor

atoms (Demanet & Ying, 2007). These atoms are periodical trigonomet-

ric functions (e.g., a cosine function) multiplied by a Gaussian window.

Here, the periodic function was centered in the Gaussian window so

that the maximum of the window coincided with a maximum of the

cosine (or minimum, depending on the amplitude sign).

The MP method consists of an iterative greedy selection of best‐

matching function from a list of randomly generated atoms (Mallat &

Zhang, 1993). We used the maximum likelihood criterion to choose

the best fitting atom. After one atom is selected, a new atom is added,

and this procedure is repeated until the information explained by the

dictionary reached a certain level considered satisfactory. We choose

the Akaike information criterion (Akaike, 1974) as a stopping rule for

the iterative selection of Gabor atoms. Instead of using the standard

MP, we choose the Orthogonal MP (OMP) in which all the coefficients

(including those of the previously selected atoms) are updated. This

procedure reduced the information shared between atoms and gave

us more parsimonious results. After each iteration, we further refined

the calculation of the parameters of the Gabor atom, to increase the

likelihood function. We performed this step using a random optimiza-

tion procedure (Matyas, 1965).

Finally, at the end of the OMP procedure, we ran an autoregressive

model with conditional heteroscedasticity to check for autocorrelation

of errors, because we found that the NDVI data contained nonconstant

variance. As in the previous steps, all the coefficients of the Gabor

atoms and of the autoregressive model with conditional

heteroscedasticity model were updated via random optimization. The

order of themodel ARwas increased stepwise until the AIC value began

to increase, while the heteroscedasticity coefficients were kept into

order one, because we found in preliminary studies that higher orders

made the fitting procedure unnecessarily complex.
2.6 | Trend estimations

After fitting the WARM model, we had a series of periodic functions

whose shared information was minimal, whose fitting was corrected

by autocorrelation of errors and whose residuals were Gaussian white

noise (i.e., any two values are statistically independent no matter how

close they are in time; Marmarelis, 2012). Those atoms contained

information on periodic variability of different frequency of the NDVI

time series. Some atoms contained a trigonometric function whose

wavelength was longer than the length of the time series (16 years),

because the trend (i.e., the long term variation of the mean on a time
series) is indistinguishable from very low frequency phenomena, we

considered these atoms to be the ones containing the trend compo-

nent of the NDVI time series. These were considered the trend atoms.

After finding the trend atoms, we calculated the ratio between the

information contained by the trend and the total information of the

time series, as the generalized coefficient of determination (Cox &

Snell, 1989) of the trend‐only model.

Trend atoms contained a periodical function which is longer than

the time series. This function had one minimum and one maximum

value within the span of the time series. Hence, the trend was not

necessarily monotonic and therefore its minimums and/or maximums

could be found anywhere in the time series. In order to classify

different kinds of trends, we used as a rule the location of the

maximum value with respect to the location of the minimum value in

the time series. We defined four classes: (a) Increasing (In, the

maximum occurred after the minimum, and minimum was located at

the end of the time series), (b) Decreasing (Dc, the minimum occurred

after the maximum, and maximum was located at the end of the time

series), (c) Recovering (Rc, decreasing time series whose minimum

occurred before the end of the time series, and after the minimum a

change in the trend direction occurred), and (d) Relapsing (Rl, increasing

time series whose maximum occurred before the end of the time

series, and after the maximum a change in the trend direction

occurred; Figure 2). For the purpose of this paper, increasing and

decreasing patterns obtained with the WARM model were treated as

monotonic trends as in the cases of the simple regression method.

On the other hand, recovering and relapsing trends were considered

as functions that described different cycle phases.
2.7 | Test of methods

We analyzed the outcome of both methods in two well‐documented

areas located in North Patagonia, Argentina. The aim was to test if the

four classes of trend from the WARM model could be differentially

identified from those obtained by the simple linear regression. The

selected areas represented two contrasting situations in terms of envi-

ronmental disturbance and land‐use change. On the one hand, we

selected a representative pixel from a grass‐shrub steppe located in

Pilcaniyeu Experimental Station of theNational Institute for Agricultural

Technology (INTA, in Spanish; 41.0083 S, 70.5796W), where a massive

ash fallout from the eruption of the Puyehue‐Cordón Caulle volcanic

complex took place in June 2011 (Collini et al., 2013). The ash deposits

significantly affected the dynamics of rangelands in the following

months (Figure 3a). On the other hand, we selected a representative

pixel of a land‐use change process which involved a shrubland clearing

in an arid region followed by forest plantation under irrigation

(39.3687 S, 69.0393W). Due to several problemswithwater availability

and the irrigation system, after the year 2015, the afforestation could

not be adequately irrigated and hence it was abandoned (Figure 3B).
3 | RESULTS

The WARM model did provide different outcomes in comparison with

the simple linear regression method in the case studies used for testing



FIGURE 3 Trends obtained from the simple linear regression method (red line) and wavelet autoregressive method model (blue line) of normalized
difference vegetation index time series in two selected areas from North Patagonia, Argentina: (a) a grass‐shrub steppe that faced an ash fallout
from a volcanic eruption (41.0083 S, 70.5796W) and (b) a shrubland clearing followed by forest plantation under irrigation, which was not irrigated
in last 2 years of the time series due to problems with water availability and irrigation system (39.3687 S, 69.0393W). Statistics for linear trends: (a)
slope = −0.0036, R2 = 0.30, p value = .021; (b) slope = +0.0086, R2 = 0.64, p value = .0001 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Classification of trends in monotonic and nonmonotonic functions according to the position of the last maximum or minimum value: (a)
decreasing and recovering and (b) increasing and relapsing, respectively
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the models. The WARM model identified a recovering trend of the

grass‐shrub steppe affected by volcanic ash fallout, whereas the linear

regression trend recorded a statistically significant decreasing pattern

(Figure 3a). As well, the WARM model identified a relapsing trend of
the afforested land for which irrigation was interrupted at the end of

the time series, whereas the linear regression trend recorded a statisti-

cally significant increasing pattern (Figure 3B). These results demon-

strate the sensitivity of WARM model to differentially capture

http://wileyonlinelibrary.com


TABLE 1 Aggregated results obtained from the wavelet autoregressive method (WARM) model and simple linear regression method

Regional study areas

Method Variable
N Argentina–S
Bolivia

NW Patagonia,
Argentina

W Kenya–E
Uganda

SE
Zimbabwe

NE
Zimbabwe

WARM model Trend (explained variabilitya; %) 2.10 7.43 2.59 3.22 0.80
1.Decreasing (%)b 1.25 0.92 1.58 22.83 7.60
2.Recovering (%)b 13.58 54.91 18.73 41.47 16.29
3.No trend (%)b 37.88 39.98 45.48 31.51 60.65
4.Relapsing (%)b 40.80 6.37 23.12 3.89 14.30
5.Increasing (%)b 4.39 1.26 8.50 0.30 1.16

Monotonic change (%)b

(increasing + decreasing)
5.64 2.18 10.08 23.13 8.76

Cyclic change (%)b (recovering + relapsing) 54.38 61.28 41.85 45.36 30.59

Simple linear
regression method

6.Linear decreasing (%)b 3.31 36.46 6.16 27.25 7.20
7.No trend (%)b 52.15 57.44 77.42 71.55 82.70

8.Linear increasing (%)b 44.54 6.10 16.42 1.20 10.10

Monotonic change (%)b (linear
increasing + linear decreasing)

47.85 42.56 22.58 28.95 17.3

aPercentage of total variability.
bPercentage of the total pixels included in each study area.
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dynamics that were nonunidirectional and where a simple regression

method would record monotonic patterns.

Results of the time series analysis differed substantially between

methods for all five case studies in Africa and South America, even

though the input data were the same. Trend estimated by the linear

regression method recorded many more pixels with no significant

slopes (i.e., above 50% for all study cases), whereas the WARM model

recorded less area without significant trend, which means a higher

capacity to discriminate trend patterns (Table 1). For example, a
relevant proportion of pixels without significant linear trend was

discriminated as recovering and/or relapsing in W Kenya–E Uganda

(Figure 4b) and NE and SE Zimbabwe (Figures 5b and 6b).

Monotonic changes recorded by the simple linear regression

method were mostly described as cyclic phases across all case studies

with the WARM model. For example, many linear increasing and

decreasing trends (Figures 7a and 8a) were recorded as relapsing and

recovering, respectively (N Argentina–S Bolivia, Figure 7b; NW

Patagonia, Figure 8b). Decreasing and increasing trends estimated by
FIGURE 4 Case study area of W Kenya–E
Uganda, Africa: (a) slope of the linear trend
and (b) classes of trends obtained from the
wavelet autoregressive method (WARM)
model (see Figure 2). Circles exemplify a
similar zone with (a) increasing trend and (b)
relapsing trend, obtained from simple linear
regression method and wavelet autoregressive
method model, respectively. Dc = decreasing;
In = increasing; Nt = nonsignificant trend;
Rl = relapsing; Rc = recovering; α = 0.05
[Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 5 Case study area of NE Zimbabwe,
Africa: (a) slope of the linear trend and (b)

classes of trends obtained from the wavelet
autoregressive method (WARM) model (see
Figure 2). Circles exemplify a similar zone with
(a) increasing trend and (b) relapsing trend,
obtained from simple linear regression method
and WARM model, respectively.
In = increasing; Rl = relapsing; Rc = recovering;
Dc = decreasing; Nt = nonsignificant trend;
α = 0.05 [Colour figure can be viewed at
wileyonlinelibrary.com]
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the WARM model represented less than 10% of pixels in most cases,

reaching 23% in the case of SE Zimbabwe (Table 1). In other words,

most case studies recorded decreasing or increasing trends for less

than 10% of the total spatial area, whereas cyclic change was

significant for a minimum of one third to as much as two thirds of

the total spatial area, for all case studies.

To illustrate the main differences between both methods, we

highlighted areaswith contrasting results for each case study. For exam-

ple, zones that were classified as having decreasing trends and could

then be associated with a potential degradation process with the linear

method (Dc, Figures 6a, 7a, 8a) were instead classified as recovering

with the WARM model (Rc, Figures 6b, 7b, 8b). These differences

exemplified the need for caution when interpreting NDVI changes over

time. On the other hand, zones that were identified by the monotonic

function as significantly increasing (In, Figures 4a, 5a, 7a) were classified

as relapsing by the nonmonotonic function (Rl, Figures 4b, 5b, 7b). This
refers to a shift in the orientation of the trend within the same analyzed

time. Hence, whereas a greening pattern can be inferred in the first

option, a phase change can be emphasized in the second.

A noteworthy result to be highlighted from our analysis of these

five regional case studies, spanning a wide diversity of biophysical situ-

ations, is that trend explained less than 8% of total temporal variability

of NDVI time series, whereas in most cases, it was below 3% (Table 1).
4 | DISCUSSION

Trend estimations from remote sensing time series data gained

consensus to be used as proxies for land degradation. In particular, trend

is frequently defined by the slope of a linear regression of NDVI time

series, whichwas considered in this paper as an example of a monotonic

function. Here, we showed through a range of case studies that there

http://wileyonlinelibrary.com


FIGURE 6 Case study area of SE Zimbabwe,
Africa: (a) slope of the linear trend and (b)
classes of trends obtained from the wavelet
autoregressive method (WARM) model (see
Figure 2). Circles exemplify a similar zone with
(a) decreasing trend and (b) recovering trend,
obtained from simple linear regression method
and WARM model, respectively.
In = increasing; Rl = relapsing; Rc = recovering;
Dc = decreasing; Nt = nonsignificant trend;
α = 0.05 [Colour figure can be viewed at
wileyonlinelibrary.com]
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are three main limitations with this approach. First and foremost, trend

explained a marginal portion of the temporal information that is

contained in NDVI time series, barely less than 3% in most cases

(Table 1). Second, the monotonic characteristic of linear functions

prevents us from considering the more complex dynamics of ecosys-

tems, in terms of periodic or cyclic changes, which was corroborated

in all case studies (Figures 3--8). Finally, WARMmodel was much more

sensitive to different kinds of trends as measured by monotonic and

nonmonotonic functions than linear method, and a higher proportion

of spatial patterns was described as cyclic change (Table 1).

Ecosystems are complex and adaptive systems (Levin, 1998), which

fluctuate in a state or regime in dynamic equilibrium under similar

conditions (Folke et al., 2004). Because ecosystems are exposed to

perturbations or disturbance factors, a systemwill be often pushed away

fromthe steady state, but itwill tend to return to the original situation due

to feedback processes (Holling, 1973), if a threshold was not surpassed

(Groffman et al., 2006; Figure 3a). During this kind of stressful circum-

stances, there is a lag response on the output of the ecosystem in reaction

to present and past inputs or perturbations, and the trajectory return to
the equilibriumpointmay differ from theoneadoptedduring the outward

movement (Beisner, Haydon, & Cuddington, 2003; Gallopín, 2006). This

phenomenon is known as hysteresis (Tittonell, 2014; Tittonell et al.,

2012). The results of this article suggest that linear NDVI trend is

intended to describe a complex system using a very simple tool without

taking into account these complex dynamics of ecosystems.

One of the current challenges in applied ecology and environmental

sciences is the tremendous gap between the wide theoretical consen-

sus around complex dynamic of ecosystems and some methodological

proposals aimed at tackling this complexity. The foundations of this

gap are too frequently based on the dominant mindset that supports

the usage of averages, normal distributions, and linear relationships to

describe spatial or temporal differences, instead of time series analyses

(Easdale & Bruzzone, 2015). Land degradation assessment based on

NDVI monotonic trends is a relevant example to illustrate this problem.

Many studies aimed at analyzing global or regional land degradation are

supported by the argument that trends can be adequately tackled and

explained by monotonic functions (Anyamba & Tucker, 2005; Beck

et al., 2011; de Jong, de Bruin, deWit, Schaepman, &Dent, 2011; Eckert
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FIGURE 7 Case study area of N Argentina–S Bolivia, South America: (a) slope of the linear trend and (b) classes of trends obtained from the
wavelet autoregressive method (WARM) model (see Figure 2). Circles exemplify a similar zone with (a) increasing and decreasing trends and (b)
relapsing and recovering trends, obtained from simple linear regression method and wavelet autoregressive method model, respectively.
In = increasing; Rl = relapsing; Rc = recovering; Dc = decreasing; Nt = nonsignificant trend; α = 0.05 [Colour figure can be viewed at

wileyonlinelibrary.com]
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et al., 2015; Fensholt et al., 2012; Gaitán et al., 2015; Luo, Tang, Zhu, Di,

& Xu, 2016; Miao, Yang, Chen, & Gao, 2012; Omuto, Balint, & Alim,

2014; Saha, Scanlon, & D'Odorico, 2015; Vlek et al., 2008; Yin et al.,

2012). The main implication of this position is that it is not possible to

consider neither states at dynamic equilibrium with a range of

luctuation nor hysteresis, becoming then a major limitation of linear

NDVI trends for land degradation studies. Themain consequence of this

methodological pitfall is the promotion of alarmist conclusions

associated with regime shifts such as desertification as measured by

significant negative slopes or even the opposite situation with regard

to greening patterns as measured by significant positive slopes, which

may not be the correct circumstances (Figure 3). Recent research

emphasizes some limitations of monotonic methods and trend analyses

based on remote sensing vegetation index data for the detection of land

degradation (de Jong et al., 2011; Wessels, van den Bergh, & Scholes,

2012) and the need to move forward in the analysis of nonlinear

vegetation change (Jamali, Seaquist, Eklundh, & Ardö, 2014).

Whereas there are many methodological and operational advances

of focusing on the relationships between climatic drivers and vegetation
structure and responses in the face of degradation processes (Gaitán

et al., 2013; Nemani et al., 2003; Verón & Paruelo, 2010), there are still

difficulties to fully discriminate effects of climate from effects of

human‐induced land degradation (Wessels et al., 2007). Indeed,

measures of land degradation based on NDVI trends underestimate

the problem because the downward rate of change of some ecosystem

services or natural capital stocks such as soil organic matter, nutrient

cycling, or available water capacity may be comparatively higher

(Nezomba, Mtambanengwe, Tittonell, & Mapfumo, 2015; Yengoh,

Dent, Olsson, Tengberg, & Tucker, 2014). In addition to these major

challenges, we emphasize that NDVI trend explains a very low portion

of the total temporal variability (often less than 3%—cf. Table 1), given

the current available length of remote sensing data.

The use of remote sensing is increasingly valuable for terrestrial

ecologists tackling vegetation dynamics, wildlife movement patterns,

climate change impacts, land‐use change and ecosystem services

assessments (Pettorelli et al., 2005; Smith et al., 2014). However, the

use of NDVI to discriminate between degraded and nondegraded areas

is still challenging both in terms of implementation and interpretation
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FIGURE 8 Case study area of NW Patagonia, Argentina, South America: (a) slope of the linear trend and (b) classes of trends obtained from the
wavelet autoregressive method (WARM) model (see Figure 2). Circles exemplify a similar zone with (a) decreasing trend and (b) recovering
trend, obtained from simple linear regression method and wavelet autoregressive method model, respectively. In = increasing; Rl = relapsing;
Rc = recovering; Dc = decreasing; Nt = nonsignificant trend; α = 0.05 [Colour figure can be viewed at wileyonlinelibrary.com]
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(Yengoh et al., 2014). One of the main issues that need to be

considered is that NDVI is directly related to energy absorption but

not to leaf area index (LAI), which means that there are several

relationships between LAI and vegetation indices. The overall

relationship can be expressed as a function of amount of

photosynthetically active vegetation or chlorophyll content and other

canopy characteristics such as leave/plant structure (Haboudane,

Miller, Pattey, Zarco‐Tejada, & Strachan, 2004). In addition, the issue

of NDVI saturation at higher LAIs (Wang, Adiku, Tenhunen, & Granier,

2005) reduces accuracy in many highly productive zones. A solution to

this problem is choosing vegetation indices that saturate less with high

vegetation cover such as the enhanced vegetation index (Wang, Liu, &

Huete, 2002). On the other hand, many scholars alert on the need to

deal with noise components of time series due to cloudy conditions,

high aerosol situations, presence of snow cover, sun‐sensor‐surface

viewing geometries, calibration, digital quantization errors, and sensor

degradation (Hird & McDermid, 2009; Kaufmann et al., 2000; Tanré,

Holben, & Kaufman, 1992; Viovy, Arino, & Belward, 1992).

Further research is needed to separate NDVI time series into other

different components such as low and high frequency domains as

measures of periodic components, stochastic components, and white

noise (Hird & McDermid, 2009; Jakubauskas, Legates, & Kastens,

2001; Verbesselt, Hyndman, Newnham, & Culvenor, 2010). The

identification of phases and states is also dependent on the length of

the temporal window used to perform the analysis (Yengoh et al.,

2014). A temporary disturbance may be seen as a change of state or
a regime shift when the window of time is short, as shown in the case

of a grass‐shrub steppe dynamics facing sudden volcanic ash fallout

(Figure 3a). On the other hand, a too long window of time blurs out

most perturbations. Then, in trend analysis of satellite remote sensing

data such as NDVI which are based on monotonic functions, what is

commonly assumed to be a new state or regime shift as measured by

significant slopes may often be no more than a state phase that depicts

recurrent phenomena in ecosystem dynamics (Table 1). In other words,

the result of confusing regime shifts with plain stochastic noise (Doney

& Sailley, 2013) or red noise which is dominated by low‐level

frequencies and is positively self‐correlated (Rudnick & Davis, 2003).
4.1 | A brief comparison of methods

Simple linear regression method, as an example of a monotonic func-

tion, is simple and easy and offers straightforward outcomes. How-

ever, results are simplistic and do not provide sound scientific

information of current dynamics (Figure 3). The WARM model was

sensitive to discriminate both monotonic and nondirectional dynamics

and recorded less area without significant trend, which means a higher

capacity to discriminate trend patterns. Hence, results of monotonic

functions are already included among the potential outcomes of

WARM model, with the additional advantage of capturing

nonmonotonic patterns. We acknowledge however that model devel-

opment and implementation is more laborious, and some of the results

obtained may be less intuitive at first glance.
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Finally, none of bothmethodsmay be expected to provide accurate

information on land degradation or restoration, basically because trend

explained a minor proportion of temporal NDVI variability (Table 1). In

this regard, we suggest that trend analysis should be integrated into

other frequency domain analysis of time series such as interannual

and intraannual cycles and perturbations (Hastings & Wysham, 2010)

and complemented with explanatory variables such as climatic data

and land‐use information, which may provide more complete pictures

of changes in NDVI dynamics. The WARM model has potential to be

used in this direction. As well, other alternativemethods for the analysis

of nonlinear vegetation change such as polynomials (Jamali et al., 2014)

or breakpoints detection in time series (Verbesselt et al., 2010) highlight

the need to move forward in this theme. Future research is needed to

advance in the identification of different components of temporal

variability, key changes, or dynamic thresholds which may provide

evidences that need to be supported by ground data. At this stage of

development, we conclude that results obtained in this paper are

encouraging as a step towards more accurate ways of assessing land

degradation process using remote sensing data.
5 | CONCLUSIONS

Land degradation is frequently assessed through monotonic functions

applied to NDVI trends. Here, we challenged this approach by showing

its limitations at capturing more complex land dynamics than those

described by linear trends. The main conclusions that arise from

comparison time series analysis methods are that (a) trend explained a

marginal portion of the temporal information that is contained in NDVI

time series, and (b) the monotonic characteristic of linear functions

prevents us from considering the more complex dynamics of ecosys-

tems, in terms of periodic or cyclic changes. With regard to the first

issue, we stress the need for caution in the usage of NDVI trends as

proxies to land degradation. To overcome the limitations identified in

the second issue, the WARM model proposed in this paper allows

distinguishing between monotonic and nondirectional trend patterns

in NDVI dynamics, even within the still short length of the time series

currently available for land degradation studies. Results are encouraging

as a step towards the application of more accurate tools to provide

sound scientific information of land degradation and restoration. Yet

further research is needed to better understand the influence of

external drivers such as climate, environmental, or land‐use change

and internal ecological dynamics (or likely some combination) in such

cyclic patterns of NDVI. These scientific challenges still need a shift in

the focus from dominant approaches based on average thinking towards

dynamic thinking in research on land degradation and restoration.
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