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Abstract

In this paper we study homogenization problems for the best constant for the Sobolev trace embedding W 1,p(Ω) ↪→ Lq (∂Ω)

in a bounded smooth domain when the boundary is perturbed by adding an oscillation. We find that there exists a critical size of
the amplitude of the oscillations for which the limit problem has a weight on the boundary. For sizes larger than critical the best
trace constant goes to zero and for sizes smaller than critical it converges to the best constant in the domain without perturbations.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we consider homogenization problems for the best Sobolev trace constant when a periodic oscillation
is added on the boundary.

Sobolev inequalities have been studied by many authors and is by now a classic subject. Relevant to the study of
boundary value problems for differential operators is the Sobolev trace inequality that has been intensively studied,
see for example, [6,12,13] and references therein.

Given a bounded smooth domain Ω ⊂ RN , we deal with the best constant of the Sobolev trace embedding
W 1,p(Ωε) ↪→ Lq(∂Ωε) where Ωε is obtained by adding an oscillating perturbation to the boundary of a fixed
domain, Ω .

The interest in problems with oscillating boundary appears in the influence of micro-structures of surfaces (porous
medium, composites, micro-materials) over the large scale behavior. The mathematical analysis of problems with
oscillating boundary was presented in [19].
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Let us describe the involved domains Ωε. For simplicity, we consider only perturbations in a region of the boundary
∂Ω but it is clear that the same kind of analysis can be done if the boundary is perturbed everywhere. First, we identify
the region of the boundary of Ω ⊂ RN where the perturbation is localized. We assume that there exists a smooth
function Φ : U ′

⊂ RN−1
→ R, where U ′ is a connected and open set, such that it parameterizes a region Γ1 of ∂Ω

{(x1, x ′) ∈ RN
| x ′

∈ U ′, x1 = Φ(x ′)} = Γ1 ⊂ ∂Ω .

We consider a connected open neighborhood U = (δ1, δ2) × U ′
⊂ RN such that

U ∩ ∂Ω = Γ1,

and

Ω ∩ U = {(x1, x ′) ∈ U | x ′
∈ U ′, x1 < Φ(x ′)}.

Now, let f : RN−1
→ R be a smooth (C1 is enough) periodic function with period Y ′

:= [0, 1]
N−1 and f (0) = 0.

We denote the translate cells as εY ′
n = εn + εY ′ with n ∈ ZN−1. We then define the perturbed domain Ωε as follows:

Ωε ∩ U := {(x1, x ′) ∈ U | x ′
∈ U ′

ε, x1 < Φ(x ′) + εa f (x ′/ε)χU ′
ε
(x ′)},

where U ′
ε =

⋃
{εY ′

n | such that εY ′
n ⊂ U ′, n ∈ ZN

},

Γ 1
ε = {(x1, x ′) ∈ RN

| x ′
∈ U ′, x1 = Φ(x ′) + εa f (x ′/ε)χU ′

ε
(x ′)},

Ωε ∩ U c
:= Ω ∩ U c.

Here χU ′
ε

is the characteristic function of U ′
ε. Therefore, we are considering oscillations of period ε with size εa .

For any 1 < p < ∞ and for every subcritical exponent,

1 ≤ q < p∗ :=
p(N − 1)

(N − p)+
,

we consider the Sobolev trace inequality, S‖v‖
p
Lq (∂Ωε)

≤ ‖v‖
p
W 1,p(Ωε)

, valid for all v ∈ W 1,p(Ωε). The best Sobolev
trace constant is the largest S such that the above inequality holds,

S(ε) := inf
v∈W 1,p(Ωε)\W 1,p

0 (Ωε)

∫
Ωε

|∇v|
p

+ |v|
pdx(∫

∂Ωε
|v|qdS

)p/q . (1.1)

For subcritical exponents, 1 ≤ q < p∗, the embedding W 1,p(Ωε) ↪→ Lq(∂Ωε) is compact, so we have existence
of extremals, i.e., functions where the infimum is attained. These extremals are strictly positive in Ωε (see [15]) and
C1,α

loc (Ω) ∩ Cα(Ω) (see [21,18]). When one normalizes the extremals with∫
∂Ωε

|uε|
qdS = 1, (1.2)

they are weak solutions to the following problem1puε = |uε|
p−2uε in Ωε,

|∇uε|
p−2 ∂uε

∂νε

= S(ε)|uε|
q−2uε on ∂Ωε,

(1.3)

where 1pu = div(|∇u|
p−2

∇u) is the usual p-Laplacian operator and νε is the unit outward normal vector. In the rest
of this article we will assume that the extremals are normalized according to (1.2) and hence solutions to (1.3). Note
that when p = 2 the equation becomes linear. Even in this case our results are new. Of special importance is the case
q = p. In this case (1.3) is an eigenvalue problem of Steklov type, see [15,20], etc.

Problems like (1.3) appear naturally in several branches of applied mathematics, like non-Newtonian fluids,
reaction diffusion problems, nonlinear elasticity, glaciology, see [2,3], etc. Also, the Steklov eigenvalue problem has
applications. For instance, problems of minimization of the energy stored in the design under a prescribed loading.
Solutions of these loadings are unstable under perturbations of the loading. The stable optimal design problem is

Please cite this article as: Julián Fernández Bonder et al., The best Sobolev trace constant in a domain with oscillating boundary, Nonlinear
Analysis (2006), doi:10.1016/j.na.2006.07.005.
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formulated as minimization of the stored energy of the project under the most unfavorable load. This most dangerous
loading is one that maximizes the stored energy over the class of admissible functions. This problem is reduced to
minimization of the Steklov eigenvalues (see [9]). For many other applications of the Steklov eigenvalue problem we
refer to [4].

Again, we want to stress that the results in this paper are new even in the linear case. Since our techniques are
variational and can easily be extended from the linear setting to more general energies, like the L p norm of the
gradient, we choose to present our results in the Sobolev trace context which also has many theoretical and practical
implications (see [6,10,12,15] and references therein).

In view of the above discussion, our concern in this article is the study of the limit of S(ε) and of the corresponding
extremals as ε goes to zero. We find that there is a critical size of the amplitudes for the oscillations such that the
extremals converge as the oscillations go to infinity to a solution of a homogenized limit problem and the best trace
constant converges to a homogenized best trace constant. For amplitudes larger than the critical one, the size of the
boundary becomes too large and the Sobolev trace constant goes to zero. For amplitudes smaller that the critical one,
the perturbation is too small, so the Sobolev trace constant converges to the one of the unperturbed domain.

The precise statement of our result is as follows:

Theorem 1. Let S(ε) be the best Sobolev trace constant given by (1.1).

(1) If a < 1, then S(ε) goes to zero as ε → 0. Moreover, it holds

S(ε) ≤ Cε(1−a)p/q
→ 0 as ε → 0. (1.4)

(2) If a > 1, then S(ε) converges as ε → 0 to S(0) defined by

S(0) := inf
v∈W 1,p(Ω)\W 1,p

0 (Ω)

∫
Ω |∇v|

p
+ |v|

p dx(∫
∂Ω |v|q dS

)p/q , (1.5)

i.e, S(0) is the best Sobolev trace constant of the unperturbed domain Ω . The corresponding normalized extremals,
rescaled to Ω , converge (along subsequences) strongly in W 1,p(Ω) to an extremal of (1.5).

(3) If a = 1, then S(ε) converges as ε → 0 to S∗ defined by

S∗
= inf

v∈W 1,p(Ω)\W 1,p
0 (Ω)

∫
Ω |∇v|

p
+ v p dx(∫

∂Ω m(x)|v|q dS
)p/q , (1.6)

with

m(x) :=


∫

Y

√
1 + |∇Φ(x ′) + ∇ f (y)|2 dy√

1 + |∇Φ(x ′)|2
for x ∈ ∂Ω ∩ U,

1 elsewhere.

(1.7)

Moreover, the normalized extremals (rescaled to Ω in a suitable way) converge (along subsequences) weakly in
W 1,p to an extremal of (1.6).

To end the introduction, we briefly describe related results for problems with oscillating boundary for second
order elliptic equations. In [7,17], the asymptotic behavior of solutions to the Neumann boundary value problem
with respect to the oscillating boundary shows a limiting macrostucture. In [1] the authors study the behavior of
the Laplace equation in an oscillating domain imposing non-homogeneous Dirichlet boundary conditions on the
oscillating part of the boundary. In [8,16] a rapidly oscillating boundary with unlimited growth and inhomogeneous
Fourier boundary condition is studied. The limiting problem can involve Dirichlet, Fourier or Neumann boundary
conditions depending on the structure. There exists references that deal with quasilinear operators and oscillating
boundaries, see [5,11]. On the other hand, the best Sobolev trace constant in domains with holes was recently studied
in [14] using homogenization techniques.

Please cite this article as: Julián Fernández Bonder et al., The best Sobolev trace constant in a domain with oscillating boundary, Nonlinear
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2. Proofs of the results

2.1. Subcritical case. a < 1

This is the easiest case. The result follows just by taking v ≡ 1 as a test in the variational characterization of S(ε),
(1.1). Doing so we get the following inequality

S(ε) ≤
|Ωε|

|∂Ωε|
p/q .

It is clear that

lim
ε→0

|Ωε| = |Ω |.

Let us estimate |∂Ωε|. We have

|∂Ωε| ≥ |∂Ωε ∩ U | ≥

∫
U ′

ε

√
1 + |∇Φ(x ′) + εa−1∇ f (x ′/ε)|2 dx ′

= εa−1
∫

U ′
ε

√
ε2(1−a) + |ε1−a∇Φ(x ′) + ∇ f (x ′/ε)|2 dx ′.

As a < 1, it is easy to see that∫
U ′

ε

√
ε2(1−a) + |ε1−a∇Φ(x ′) + ∇ f (x ′/ε)|2 dx ′

→ m(|∇ f |) :=

∫
Y ′

|∇ f (y′)| dy′ > 0.

Hence, |∂Ωε| ≥ cεa−1. From where it follows that

S(ε) ≤ Cε(1−a)p/q
→ 0 as ε → 0,

as we wanted to show.

Remark 2.1. From the previous proof we have that the constant C in (1.4) can be any constant larger than
|Ω |/(m(|∇ f |))p/q .

2.2. Supercritical case. a > 1

To transform integrals in Ωε into integrals in Ω , let us perform the following change of variables

x̄ ′
= x ′, x̄1 = x1 − εa f (x ′/ε)ϕ(x1, x ′),

where ϕ is a smooth cut-off function with bounded derivatives that vanish outside U . For every u ∈ C1(Ωε) consider

u(x1, x ′) = v(x̄1, x̄ ′).

We obtain that v ∈ C1(Ω). For any u ∈ W 1,p(Ωε) and v ∈ W 1,p(Ω), we denote

Qε(u) :=

∫
Ωε

|∇u|
p

+ u p dx(∫
∂Ωε

|u|q dS
)p/q and Q0(v) :=

∫
Ω |∇v|

p
+ v p dx(∫

∂Ω |v|q dS
)p/q .

To change variables in Qε(u), let us compute the Jacobian of the change of variables

J−1
= 1 − εa f (x ′/ε)ϕx1 .

The derivatives of v and u are related by

ux1 = vx̄1(1 − εa f (x ′/ε)ϕx1)

and

∇x ′u = −vx̄1(ε
a−1

∇x ′ f (x ′/ε)ϕ + εa f (x ′/ε)∇x ′ϕ) + ∇x̄ ′v.

Please cite this article as: Julián Fernández Bonder et al., The best Sobolev trace constant in a domain with oscillating boundary, Nonlinear
Analysis (2006), doi:10.1016/j.na.2006.07.005.
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Therefore, as ϕ and f have bounded derivatives,∫
Ωε

|∇u|
p dx = (1 + O(ε(a−1)))

∫
Ω

|∇v|
p dx̄,∫

Ωε

|u|
p dx = (1 + O(εa))

∫
Ω

|v|
p dx̄

and ∫
∂Ωε

|u|
q dS = (1 + O(ε(a−1)))

∫
∂Ω

|v|
q dS.

Thus we obtain, as a > 1,

Qε(u) = Q0(v) + δε, with δε → 0, as ε → 0. (2.1)

Since ϕ and f have bounded derivatives, it can be checked that δε can be taken uniformly on bounded sets of W 1,p(Ω).
Then,

Qε(u) ≥ S(0) + δε.

Now let uε be an extremal for (1.1) normalized by (1.2). Taking u ≡ 1 in (1.1) we get

‖uε‖
p
W 1,p(Ω)

=

∫
Ωε

|∇uε|
p

+ u p
ε dx ≤

|Ωε|

|∂Ωε|
p/q ≤ C.

When we change variables we get that vε is bounded in W 1,p(Ω) independently of ε, from where it follows that

lim inf
ε→0

S(ε) ≥ S(0). (2.2)

To obtain the upper bound, given ρ > 0 we take a C1(Ω) function v such that

Q0(v) ≤ S(0) + ρ.

From (2.1) we obtain

S(ε) ≤ Qε(u) = Q0(v) + δε ≤ S(0) + ρ + δε.

Therefore

lim sup
ε→0

S(ε) ≤ S(0) + ρ.

Since this inequality holds for every ρ > 0, we have

lim sup
ε→0

S(ε) ≤ S(0). (2.3)

Combining (2.2) and (2.3) we conclude

lim
ε→0

S(ε) = S(0).

Now we deal with the convergence of the extremals. Let uε be an extremal for Qε. From our previous arguments
we have that the rescaled functions vε are bounded in W 1,p(Ω). Therefore we can extract a subsequence (that we still
call vε) such that vε ⇀ v weakly in W 1,p(Ω). We have

1 =

∫
∂Ωε

|uε|
q dS = (1 + O(ε(a−1)))

∫
∂Ω

|vε|
q dS.

Hence, by the compactness of the embedding W 1,p(Ω) ↪→ Lq(∂Ω),∫
∂Ω

|v|
q dS = 1.

Please cite this article as: Julián Fernández Bonder et al., The best Sobolev trace constant in a domain with oscillating boundary, Nonlinear
Analysis (2006), doi:10.1016/j.na.2006.07.005.
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Moreover,

‖v‖
p
W 1,p(Ω)

≤ lim inf
ε→0

‖vε‖
p
W 1,p(Ω)

= S(0) ≤ ‖v‖
p
W 1,p(Ω)

.

Therefore,

lim
ε→0

‖vε‖
p
W 1,p(Ω)

= ‖v‖
p
W 1,p(Ω)

,

and we conclude that the sequence vε converges strongly to an extremal of S(0).

2.3. Critical case. a = 1

Since the size of the oscillations is small the perturbations of Ω are contained in a small neighborhood of the
perturbed portion of the boundary. In fact, the perturbations lie in the set

Aε = {x ∈ U ∩ Ω : dist(x, ∂Ω) < ε}.

Observe that |Aε| ∼ ε.
As before, taking u ≡ 1 in (1.1) we get that S(ε) is bounded independently of ε. Thus, the W 1,p(Ωε) norm of the

normalized extremals uε is bounded independently of ε.
The key point to handle this case is to perform a change of variables like the one that is used in the supercritical

case, but now with a cut-off function ϕ depending on ε. Let

x̄ ′
= x ′, x̄1 = x1 − ε f (x ′/ε)ϕε(x1, x ′),

where ϕε is a smooth cut-off function supported in Aε such that ϕε ≡ 1 on ∂Ωε ∩ Aε. For u ∈ C1(Ωε) consider

u(x1, x ′) = v(x̄1, x̄ ′).

The derivatives of v and u are related by

ux1 = vx̄1(1 − ε f (x ′/ε)(ϕε)x1)

and

∇x ′u = −vx̄1(∇x ′ f (x ′/ε)ϕε + ε f (x ′/ε)∇x ′ϕε) + ∇x̄ ′v.

We obtain that v ∈ C1(Ω). Moreover, the W 1,p(Ω) norm of the rescaled extremals vε is bounded independently of ε.
Hence we may assume, taking a subsequence if necessary, that vε ⇀ v weakly in W 1,p(Ω).

Since the derivatives of ϕε are bounded by C/ε, the Jacobian of the change of variables verifies J−1
= 1 in Ω \ Aε

and J−1
≤ C in Aε. Since f has bounded derivatives, the derivatives of ϕε are bounded by C/ε and the measure of

Aε is of order ε, we obtain

lim
ε→0

∫
Ωε

|∇uε|
p−2

∇uε∇θ dx =

∫
Ω

|∇v|
p−2

∇v∇θ dx̄ (2.4)

and

lim
ε→0

∫
Ωε

|uε|
p−2uεθ dx =

∫
Ω

|v|
p−2vθ dx̄ . (2.5)

Concerning the boundary term we have∫
∂Ωε∩U

|uε|
q−2uεθ dS =

∫
U ′\U ′

ε

|vε|
q−2vεθ

√
1 + |∇Φ(x̄ ′)|2 dx ′

+

∫
U ′

ε

|vε|
q−2vεθ

√
1 +

∣∣∣∣∇Φ(x̄ ′) + ∇ f

(
x̄ ′

ε

)∣∣∣∣2

dx ′.

Please cite this article as: Julián Fernández Bonder et al., The best Sobolev trace constant in a domain with oscillating boundary, Nonlinear
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When ε → 0, we get that U ′
ε → U ′ and√

1 +

∣∣∣∣∇Φ(x̄ ′) + ∇ f

(
x̄ ′

ε

)∣∣∣∣2
∗

⇀

∫
Y

√
1 + |∇Φ(x ′) + ∇ f (y)|2 dy,

∗-weakly in L∞(U ′). Therefore,

lim
ε→0

∫
∂Ωε∩U

|uε|
q−2uεθ dS =

∫
U ′

|v|
q−2 v θ m(x̄ ′)

√
1 + |∇Φ(x̄ ′)|2 dx ′,

where m is given by (1.7). Hence, we get∫
∂Ωε

|uε|
q−2uεθ dS →

∫
∂Ω

|v|
q−2v θ m(x) dS. (2.6)

Since the extremals uε are solutions to (1.3), they satisfy for every θ ∈ C∞(RN )∫
Ωε

|∇uε|
p−2

∇uε∇θ dx +

∫
Ωε

|uε|
p−2uεθ dx = S(ε)

∫
∂Ωε

|uε|
q−2uεθ dS. (2.7)

Using (2.4)–(2.6) we obtain that a weak limit of the sequence vε in W 1,p(Ω) satisfies∫
Ω

|∇v|
p−2

∇v∇θ dx +

∫
Ω

|v|
p−2vθ dx = S̄

∫
∂Ω

m|v|
q−2vθ dS.

That is to say that v is a weak solution to1pv = |v|
p−2v in Ω ,

|∇v|
p−2 ∂v

∂ν
= S̄m(x)|v|

q−2v on ∂Ω .

Therefore∫
Ω

|∇v|
p

+ v p dx = S̄
∫

∂Ω
m(x)|v|

q dS.

Moreover, from our previous calculations, we have

1 = lim
ε→0

∫
∂Ωε

|uε|
q dS =

∫
∂Ω

m(x) |v|
qdS.

Now, for every w ∈ W 1,p(Ω) we define wε ∈ W 1,p(Ωε) thanks to the change of variables wε(x) = w(x̄). These wε

verify

S(ε)

∫
∂Ωε

|wε|
q dS ≤

∫
Ωε

|∇wε|
p

+ |wε|
p dx .

Taking limits in the above inequality, we arrive at

S̄
∫

∂Ω
m(x)|w|

q dS ≤

∫
Ω

|∇w|
p

+ |w|
p dx .

But, v is an extremal for this inequality. We conclude that S̄ = S∗ (given by (1.6)) and that v is an extremal. This
proves that

lim
ε→0

S(ε) = S∗.

Moreover, we have proved that the rescaled extremals vε converge weakly to v in W 1,p(Ω). �
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