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a b s t r a c t

The adsorption–desorption process occurring on heterogeneous surfaces is studied by
considering a special case where a fractal is used as adsorbent. The fractal surface is the
spanning cluster corresponding to the random deposition of objects that occupy more
than one site (k-mers) on a square lattice. Such a surface is characterized according to
the deposited k-mer. Then, the adsorption of repulsively interacting particles adsorbed on
the fractal surface is studied by using Monte Carlo simulations. Different thermodynamic
quantities (adsorption isotherms, coverage susceptibility, etc.) are calculated and explained
in terms of the characteristics of the substrate. A scheme to characterize the structure of
the substrate by just considering the adsorption isotherm is presented and discussed.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Adsorption of particles on heterogeneous surfaces is one of the most important surface phenomena and plays a decisive
role as a controlling mechanism in many other physical and chemical processes taking place on two-dimensional systems
[1]. In addition, the study of themain features of adsorption isotherms emerges as an important tool in order to characterize
solid surfaces [2].
Real surfaces are heterogeneous because of a large number of contributing factors that can be sorted into two different

classes: geometrical heterogeneity (cracks, pits, vacancies, etc.) and chemical heterogeneity (impurities, substitutional
atoms, etc.). The description of thermodynamic phenomena taking place on such a heterogeneous substrate is a challenging
topic in surface science. Moreover, it is still an open problem to characterize the surface structure by means of the study
of the surface process taking place on it. The present paper follows this line of thinking with particular attention given to
geometrical heterogeneities.
On the other hand, the random sequential adsorption (RSA) of particles of different sizes on solid surfaces is a subject of

considerable practical importance [3,4]. In Refs. [5,6] and Ref. [7] the percolation behavior of an RSA of linear segments with
different size and the percolation of dissociative dimers have been studied, respectively. More recently, the percolation of
k-mers with different structures and shapes deposited on a square lattice have been studied [8–11]. In the cases above, the
dependency of the percolation threshold with the parameters of the problem and the universality of the phase transition
present in the system have been discussed. In particular, it is interesting to note that for different k-mers, the spanning
cluster has the same fractal dimension, df . However, the percolation clusters present morphological differences according
to the percolating species from which they were originated.
In the present paper we study the adsorption of repulsively interacting particles (monomers) on spanning clusters of

percolating species of different sizes. Adsorption phenomenon on heterogeneous surfaces has been widely treated in the
literature and it is recognized as an open challenge in modern surface science. One of the most important problems is how
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to represent a heterogeneous surface to be theoretically and/or experimentally treated and several simple approximations
have been used in the past few decades. In many contributions the authors recognize the importance of determining
the main parameters which influence the behavior of physical phenomena occurring in such a surface due to their
practical importance. For example, the analysis of data for adsorption and chemisorption on the surfaces of heterogeneous
microporous materials has been a key problem in surface science and catalysis. In this context, we mimic the heterogeneity
as generated by a topological disorder in the substrate. In this context, a particular fractal is proposed as the adsorbate: the
spanning cluster. However, the obtained results are expected to be useful beyond a particular choice of the fractal adsorbate.
It is important to emphasize that we do not consider the adsorption on a surface formed by particles dropped on a surface at
the critical threshold; we use a particular fractal as a model of heterogeneous surface. Thus, the main aims of the work are
to: (a) evaluate the adsorption isotherms of repulsively interacting particles on such fractal structure; (b) collect the main
features of the isotherms; (c) determine a correlation between those findings and the characteristics of the substrate; and
(d) draw general conclusions for using adsorption isotherms in order to characterize surfaces which present non-controlled
heterogeneities. Adsorption on fractal surfaces has been discussed in the literature by usingMonte Carlo simulations [12,13]
as well as experimental studies [14,15].
The outline of this paper is as follows: the substrate on which the repulsively interacting particles are deposited is

described in Section 2.1. Details of the simulation technique used for mimicking the adsorption process are presented in
Section 2.2. Results are discussed in Section 3 and, finally, we give our conclusions in Section 4.

2. Basic definitions and simulation details

2.1. The substrate

In this subsection we shall describe how the fractal used as substrate is built. In addition, its main properties will be
analyzed, which will justify the particular choice of spanning clusters of different k-mers as a substrate where repulsive
interacting monomers are adsorbed.
Let us consider a periodic square lattice of linear size L on which k-mers are deposited at random. For k-mers deposition,

the following scheme is considered. A k-uple of nearest-neighbor sites is randomly selected; if it is vacant, the k-mer is then
deposited on those sites (we call this polyatomics the tortuous k-mer). Otherwise, the attempt is rejected. In any case, the
procedure is iterated until N ′k-mers are deposited and the desired concentration [given by p = (kN ′)/L2] is reached. In
addition, the particular case when linear k-uples of sites (aligned along one of the lattice axes) are dropped onto the lattice
has received special attention.
The central idea of the percolation theory is based on finding the minimum concentration p for which a cluster [a group

of occupied sites in such a way that each site has at least one occupied nearest-neighbor site] extends from one side to the
opposite one of the system. This particular value of the concentration rate is named the critical concentration or percolation
threshold and determines a phase transition in the system. In the random percolation model, a single site is occupied with
probability p. For the precise value of pc , the percolation threshold of sites, at least one spanning cluster connects the borders
of the system [indeed, there exist a finite probability of finding n (>1) spanning clusters [16–19]]. In that case, a second order
phase transition appears at pc which is characterized bywell defined critical exponents. Thismapping to critical phenomena
made percolation a full part of the theoretical framework of collective phenomena and statistical physics [20–23].
Here, the spanning cluster calculated by using the standard Hoshen and Kopelman algorithm [24] is considered while in

Refs. [8,9] details of the evolution of the percolation threshold with k are presented. It is our first interest to measure the
characteristic dynamic exponents for the different spanning clusters as a function of the k-mer size.
Let us suppose the motion of a particle (‘‘an ant’’) which performs a Pólya random walk (unbiased, nearest-neighbor

random walk) on the sites belonging to a spanning cluster (‘‘the labyrinth’’). The root-mean-square displacement R of the
random walk is related to time t through the relation [25]:

R ∼ tν, (1)

where ν is a constant that depends only on the dimensionality d of the system. A fractal dimension dw is defined for the
random walk by dw = 1/ν. Whether this process is performed on a two dimensional regular lattice dw = 2. However,
on fractal structures R grows slower with time, and dw is usually larger than 2. According to Eq. (1) the root-mean-square
displacement of a random walker on a spanning cluster, as a function of the reduced lattice size L/k in a log–log scale, is a
linear function whose slope allows one to determine dw . This analysis has been done for the complete range of the studied
parameters (i.e. 1 ≤ k ≤ 16) and the reported exponent is ν = 1/dw = 0.370± 0.004.
Another intrinsic property of a fractal structure is the well-known spectral dimension ds, which can be calculated from

[26,27]:

S0(t) ∼ tds/2, (2)

where S0(t) is themean number of distinct sites visited by the randomwalker. Thus, from the slope of So plotted as a function
of time by using a log–log scale, the exponent ds can be obtained for different k-mer sizes. In the studied range, 1 ≤ k ≤ 16,
the reported exponent is ds = 1.333 ± 0.002. Typically 105 different random walkers have been used for averaging the
above mentioned quantities.
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Finally, it is well known that the mass of the spanning cluster (number of elements belonging to such island, sperc), which
is also the largest cluster, increases with the lattice size L as a power law:

〈sperc〉 ∼ Ldf , (3)
where the angular brackets denote an average over the ensemble of different spanning clusters and df is the fractal
dimension of the system. According to Eq. (3), df is determined from the slope of the ‘‘mass’’ of the fractal spanning cluster
as a function of L (in a log–log scale). Here, the reported value for the fractal dimension of the cluster is df = 1.896± 0.002.
In all considered cases the numerical results are very well correlated with the relationships Eqs. (1)–(3). The values

obtained for the exponents dw , ds and df coincide with the reported ones for the case k = 1 [25].
In summary, the findings presented in the section lead to the conclusion that the dynamic exponents (dw and ds) and the

fractal dimension (df ) are not sufficiently useful for distinguishing differences between the spanning clusters of polyatomic
species with different k-mer sizes. In order to characterize them, it is our purpose to use the reversible adsorption of
repulsively interacting monomers on such substrates.

2.2. Monte Carlo simulations in grand canonical ensemble

One can define a set of occupation numbers {ni} for each site corresponding to the spanning cluster according to

ni =
{
1, if site i is occupied
0, if site i is empty. (4)

A given set of numbers specifies a configuration of the whole system of adparticles. In thermodynamic equilibrium, the
system is described by the statistical operator ρ,

ρ = Q−1 expβ(µN − H), (5)
where µ, N =

∑
i ni, Q and H denote the chemical potential, the number of adparticles, the partition function and the

Hamiltonian of the system, respectively. The latter is given by

H = −εN + wnn
∑
nn

ninj. (6)

Here wnn is the pair interaction energy of adparticles in the nearest-neighbor (nn) sites and β ≡ 1/kBT . In this case, the
adsorption energy of the site, ε, can be chosen equal zero without losing generality.
Adsorption–desorption processes on the spanning clusters described above are simulated by putting such a substrate in

contact with an ideal gas phase of monomers at temperature T . Particles are characterized by their chemical potential µ. It
is assumed that the surface as well as the adsorbate are inert upon adsorption. The grand partition functionΞ of interacting
particles withinM (beingM the number of sites of the considered spanning cluster) is [28]:

Ξ(µ, T ,M) =
∞∑
N=1

exp (βNµ)
N!Λ3N

∫
Ω

exp [−βU (xN)] dxN , (7)

where U is the total interaction energy of N particles with coordinates specified by xN = {x1, . . . , xN},Ω the phase space
of the system, andΛ the thermal wave-length of the particle.
The probability of finding the system in a state specified by xN is given by:

P (xN) =
exp (βNµ) exp [−βU (xN)]

N!Λ3NΞ
. (8)

Following the Metropolis scheme [29], the transition probability from a state xN to a new state xN ′ , W (xN → xN ′), is
defined by

W (xN → xN ′) = min
{
1,
P (xN ′)
P (xN)

}
(9)

in order to satisfy the Principle of Microscopic Reversibility.
In adsorption–desorption equilibrium, there are two elementary ways to perform a change of the system state:

either adsorbing one particle onto the surface or desorbing one particle. The corresponding transition probabilities are,
respectively,

Wa (xN → xN+1) = min {1, exp [−β1H + βµ]} (10)
= min {1, exp [−β(H(xN+1)− H(xN))+ βµ]} ;

and
Wd (xN → xN−1) = min {1, exp [−β1H − βµ]} (11)

= min {1, exp [−β(H(xN−1)− H(xN))− βµ]} .
Given a spanning cluster ofM sites, the algorithm to carry out an elementary Monte Carlo (1MCS), is the following:
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Fig. 1. Adsorption isotherms (surface coverage as a function of the reduced chemical potential βµ) for repulsively interacting monomers on a spanning
cluster built by dropping monomers (k = 1) and for several representative values of K as indicated.

(1) Set the value of p∗ (p∗ ≡ exp [βµ], proportional to the gas phase pressure) and temperature β .
(2) Set an initial state xN by adsorbing N particles onto the lattice defined by the spanning cluster.
(3) Choose randomly one of theM sites, and generate a random number ξ ∈ [0, 1]

(i) if the site is empty then adsorb a particle if ξ ≤ Wa (xN → xN+1).
(ii) if the site is occupied then desorb the particle if ξ ≤ Wd (xN → xN−1).

(4) Repeat from step (3)M times.

The first m′ Monte Carlo steps (MCS) of each run were discarded to allow the reaching of the equilibrium state and the
nextmMCS were used to compute averages.
Thermodynamic quantities, such as mean coverage, θ , and mean adsorption energy per site, u, are obtained by simple

averaging:

θ =
1
M

M∑
i

〈ni〉; u =
1
M
〈H〉. (12)

The equilibrium state was reached after discarding 105 MCS, and averages were taken over the next 105 MCS. At low
temperatures, and in case of ordering, up to 106 MCS had to be used in order to let the system relax frommetastable states.
In addition, to obtain accurate values of the desired quantities averaging up to 103 different clusters generated in the same
conditions has been considered.

3. Results and discussions

In this section, we shall present the adsorption isotherms of repulsively interacting particles on spanning clusters
obtainedwith the procedure described in Section 2.1. The only interaction between the adparticles (monomers) is a pairwise
repulsive energy,wnn.
We shall analyze first the different thermodynamical quantities for particles adsorbed on a spanning cluster ofmonomers

(k = 1) and for several representative values of K ≡ βwnn. In Fig. 1, the adsorption isotherms (surface coverage, θ as a
function of the reduced chemical potentialβµ) are presented. For high temperatures, the isotherms are close to the Langmuir
case (homogeneous lattice gas without lateral interactions), i.e.

θ(µ) =
exp (βµ)
1+ exp (βµ)

. (13)

Upon decreasing the temperature, the adsorption isotherms present five plateaus at characteristic coverage. This situation
can be explained as follows. For low values of βµ (clean adsorptive surface) each incoming particle is adsorbed in such away
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Fig. 2. νi (the ratio of adsorbed particles on sites with i nearest-neighbor occupied sites) versus surface coverage for the lowest temperature considered
in Fig. 1, K = 128.

that it does not have any nearest-neighbor occupied site. This occurs until all possible sites with this characteristic are filled.
Then, the first plateau is formed. Due to the substrate being a fractal, the remaining empty sites can be divided into four
groups according to the number of occupied nn sites that they have. Thus, upon increasing the reduced chemical potential
each one of those groups will be sequentially filled. After the saturation of all sites of each group a plateau is formed. This
conclusion is clearly supported by Fig. 2, where νi (the ratio of adsorbed particles on sites with i − nn occupied sites) is
plotted as a function of the surface coverage for the lowest temperature considered in Fig. 1, K = 128. In the figure, it is
clearly seen that in each range of coverage only a definite type of process is taking place. In fact, for each range of coverage
just one νi = 1 and the others are equal to zero, reinforcing the idea of a sequential filling of the lattice.
Another interesting quantity is the isothermal susceptibility, χT . This quantity is equal to the mean square density fluc-

tuations of adparticles (or in magnetic language, to the mean square fluctuations of the magnetization of the corresponding
spin system)

χT =
1
β

(
∂2 f̃
∂µ2

)
T

= 〈(ni − θ)(nj − θ)〉, (14)

where f̃ is the ‘‘free’’ energy per particle of the system introduced by:

f̃ =
lnQ
βN

. (15)

The coverage dependence of the isothermal susceptibility is shown in Fig. 3 for several characteristic temperatures. At high
temperatures (Langmuir case) the mean square density fluctuations are equal to θ(1 − θ). At low temperatures the den-
sity fluctuations are strongly suppressed at half coverage due to repulsion between the adparticles. Any density disturbance
(i.e., the displacement of an adparticle from its stable position in the filled sublattice to any site of the empty sublattice) sub-
stantially increases the free energy of the system and is thermodynamically unfavorable. As the coverage is not equal to half
coverage, there are fluctuations of non-stoichiometric nature that do not require additional energy for their existence and
cannot be removed from the system due to the jumps of adparticles. Therefore χT increases when θ deviates from the half
coverage. The same situation can be observed for the corresponding coverage where the isotherms exhibits a plateau. As Eq.
(14) showsχT is the secondderivative of the free energy over the chemical potential. It is a very sensitivemagnitude to deter-
mine the presence of critical phases present in the problem. A detailed analysis of criticality is out of the scope of the paper.
The thermodynamic factor can be obtained by MC simulations in one of its two equivalent forms:(

∂βµ

∂ ln θ

)
=

[
〈(δN)2〉
〈N〉

]−1
= βθ

(
∂2 f̃
∂µ2

)−1
= θ/χT (16)

either via the differentiation of adsorption isotherms obtained in the grand canonical ensemble [30] or via the normalized
mean square fluctuation 〈(δN)2〉/〈N〉 obtained in the canonical ensemble. Here, we have used both methodologies with
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Fig. 3. Thermodynamic factor vs θ for different temperatures expressed in units of K as indicated.

the same accuracy. The thermodynamic factor entering the expression for the chemical diffusion coefficient [31–34] can
be directly obtained from Fig. 3. This quantity exhibits five peaks which are consequence of the plateaus shown by the
adsorption isotherms. Upon decreasing the temperature, these peaks, which correspond to the minima of χT become more
pronounced.
The behavior of the above discussed quantities for adsorption of repulsively interacting monomers adsorbed in

percolating clusters of k-mers (with k > 1) is quite similar to the description of those for k = 1. Figs. 4 and 5 show the
adsorption isotherms and the thermodynamic factors for several values of k and a fixed low value of temperature (K = 128).
In Fig. 4 (Fig. 5) five different plateaus (maxima) can be distinguished, as they are indicated, which can be explained in the
same terms as that above. After the first plateau is formed (as a consequence of each incoming particle being adsorbed in
such a way it does not interact with any previously adparticle) the remaining plateaus are formed after each group of empty
sites (each group characterized by the number of occupied nn sites that they have) is filled. The insets in the figure magnify
and illustrate the dependence of such thermodynamic quantities on k at critical coverage [values of surface coveragewhere a
plateau in the isotherm (or a maximum in the thermodynamic factor) is present]. As is evident from the insets, those critical
coverages depend on k. In other words, the critical coverage depends on the relative abundance of each group of empty sites
(after the first plateaus is formed), which in turn depends on the topology of the cluster. In fact, in Fig. 6 the critical densities
are shown as a function of k. Full symbols denote the critical densities of adsorption isotherms of repulsively interacting
particles adsorbed on spanning clusters of tortuous k-mers. The same, for the case of adsorption on spanning clusters of
linear k-mers, is presented by using empty symbols. It is important to base the understanding of the observed behavior (the
difference between adsorption on a cluster formed by deposition of linear or tortuous k-mers) on an appropriate physical
interpretation.
In order to give answer to this requirement, we start from basic thermodynamic relationship [28]:

µ =

(
∂F
∂N

)
T ,M

, (17)

where F is the free energy. Introducing the free energy per site, f = F/M , the last equation can be written in terms of
intensive variables in the form:µ =

(
∂ f
∂θ

)
T . Accordingly, the area to the left of each adsorption isotherm corresponding to a

topography characterized by k up to a determined coverage θ is given by:

A(θ, k, K) =
∫ θ

0
µ(θ)dθ = f (θ, k, K)− f (0, k, K). (18)

Therefore, this area represents the variation in the free energy per site in filling a surface, with topography characterized by
size and shape (tortuous or linear) of the k-mer. If the upper limit in the integral of Eq. (18) is θ = 1, the area Awill represent
the free energy per site at full coverage [f (0, k)will be considered zero without losing generality] in such a way that:

A(θ = 1, k) = f (θ = 1, k) = 2wnn zeff (k), (19)

where zeff (k) is the effective coordination number for each percolating cluster, which is supposed to be function of k. Note
that at this limit θ = 1, the integral, Eq. (18), does not depend onK because the free energy is not affected by temperature due
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Fig. 4. Adsorption isotherms for several values of k as indicated. The temperature is fixed to K = 128 in all the cases considered. Insets in the figure are
a zoom of the isotherms which illustrate the dependence of such a thermodynamic quantity on k. Each inset corresponds to one of the plateaus in the
isotherm, as labeled.

Fig. 5. Thermodynamic factors for several values of k as indicated. The temperature is fixed to K = 128 in all the cases considered. Insets in the figure
are a zoom of the thermodynamic factors which illustrate the dependence of such a thermodynamic quantity on k. Each inset corresponds to one of the
maxima, as labeled.

to the null entropic contribution of adsorption of monomers. In fact, zeff (k) is determined via two different measurements.
In a direct way, zeff (k) is calculated simply by averaging the number of nearest-neighbor sites of 104 different realizations
of percolating clusters corresponding to the deposition of k-mers, see the full symbols in Fig. 7. Alternatively, zeff (k) can be
obtained fromEq. (19), which is shown by open symbols in Fig. 7. Both strategies to evaluate zeff (k) are nicely consistent. This
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Fig. 6. Critical densities as a function of k for K = 128. Full (empty) symbols denote the critical densities for tortuous (linear) k-mers.

2.5

2.6

2.7

2.8

z ef
f

102 4 6 8
k

120

Fig. 7. zeff (effective coordination number for each percolating cluster) as a function of k. Open symbols denote data from Eq. (19) while full symbols
represents a direct measurement via MC simulations. Circles (stars) represent data from a surface formed by linear (tortuous) k-mers.

finding allows one to determine zeff (k) from a direct integration of the adsorption isotherms. This result suggests a method
to calculate the effective coordination number of geometric heterogeneous substrates through adsorption measurements.
An interesting point is the different behavior of zeff (k) according to whether the substrate was formed by linear or

tortuous k-mers. The reason of this striking result is as follows. The adsorption of linear segments shows a tendency to
deposit k-mers in clusters with the same orientation along one of the principal axis. These needles tend to form compact
clusters. Upon increasing k, this tendency is enhanced. This behavior produces a linear increment of zeff (k) in the range of k
considered here. This result has already been observed and discussed in Ref.[35] and it is illustrated in Fig. 8a, where clusters
formed by linear k-mers with k = 5 and k = 9 are shown. In contrast, when tortuous k-mers are deposited, this tendency
is not observed and, as a consequence, zeff (k) remains almost constant in the range of k considered here. This is shown in
Fig. 8b, where clusters formed by tortuous k-mers with k = 5 and k = 9 are shown.

4. Conclusions

In the paperwe have consider the spanning clusters obtained from the deposition of k-mers on a homogeneous surface as
the substratewhere repulsively interactingmonomers are adsorbed. The substrate is built in two alternativeways, i.e. either
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(i) (ii)

k = 5 k = 9

a

(i) (ii)

k = 5 k = 9

b

Fig. 8. Clusters formed by (a) linear and (b) tortuous k-mers with (i) k = 5 and (ii) k = 9 are shown. For each figure a small region is shown as a zoom in
order to appreciate the details of the cluster.

via the deposition of linear k-mers (‘‘needles’’ which are deposited along one of the two principal axis of the lattice) or by
depositing k atoms in a k-uple of nearest-neighbor empty siteswhich are randomly selected (tortuous k-mers). The results of
adsorption isotherms, coverage susceptibility, energy, etc. are obtained by means of Monte Carlo simulations. The substrate
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contains a particular heterogeneitywhich is reflected in the study of the parameters needed to characterize it. In all the cases
considered, the fractal dimension, the spectral dimension and the fractal dimension, dw , do not change with k. However, the
morphology of the clusters are quite different and such a difference is better characterized by the mean number of nearest-
neighbor sites,which is clearly a function of k. In addition, this quantity allows one to distinguish between linear and tortuous
k-mers and it governs the behavior of the physical process which occurs on such a surface.
The general behavior at low temperature of the adsorption isotherms of repulsively interacting particles on a fractal can

be described as follows. For low values of βµ each incoming particle is adsorbed in such a way that it does not have any
nearest-neighbor site occupied. Once all the possible sites with this characteristic are filled the first plateau is formed. Due
to the substrate being a fractal, the remaining empty sites can be divided in four groups according to the number of occupied
nn sites that they have. Thus, upon increasing the reduced chemical potential each one of those groups will be sequentially
filled. After the saturation of all sites of each group a plateau is formed and a maximum in the thermodynamic factor is
reached. Due to the relative abundance of elements of each of the mentioned groups with k, the critical coverage depends
on k, as well.
It is important to emphasize that this contribution allows one to establish a criterion to determine the characteristic of

the substrate from a simple analysis of the adsorption isotherms. The idea is as follows. After integrating the adsorption
isotherm according to Eq. (18) one can determine the size of the object used to form the substrate and whether the surface
was created by linear or tortuous k-mers by using the ‘‘calibration’’ curves shown in Fig. 7. It is quite obvious that the model
considered here is highly idealized and is not meant to reproduce a particular experimentally studied system. However,
the intention of this work is: (1) to identify and characterize the most prominent features of the adsorption process on
no deterministic fractal surface; (2) to draw general conclusions on the effects of the mean coordination number on the
problem, and (3) to provide a basis for the evaluation of experimental adsorption studies on fractal surfaces which are built
with ‘‘massive’’ objects.
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