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Abstract

We revisit the scale evolution of the quark and gluon spin contributions to the proton spin, 1
2
∆Σ

and ∆G, using the three-loop results for the spin-dependent evolution kernels available in the

literature. We argue that the evolution of the quark spin contribution may actually be extended

to four-loop order, and that to all orders a single anomalous dimension governs the evolution of

both ∆Σ and ∆G. We present analytical solutions of the evolution equations for ∆Σ and ∆G
and investigate their scale dependence both to large and down to lower “hadronic” scales. We

find that the solutions remain perturbatively stable even to low scales, where they come closer

to simple quark model expectations. We discuss a curious scenario for the proton spin, in which

even the gluon spin contribution is essentially scale independent and has a finite asymptotic value

as the scale becomes large. We finally also show that perturbative three-loop evolution leads to a

larger spin contribution of strange anti-quarks than of strange quarks.

http://arxiv.org/abs/1902.04636v1


1 Introduction

The decomposition of the proton spin in terms of the contributions by quarks and anti-quarks,

gluons, and orbital motion is a key focus of modern nuclear and particle physics. As has become

well-known [1, 2, 3], in a gauge theory the decomposition is not unique. The two physically most

relevant spin sum rules for the proton are the Ji decomposition [2], which ascribes the proton spin

to gauge-invariant contributions by quark spins and orbital angular momenta, and total gluon

angular momentum, and the Jaffe-Manohar decomposition [1], in which there are four separate

pieces corresponding to quark and gluon spin and orbital contributions, respectively. The two

sum rules have in common only the quark spin piece, and there is no relation among the other

pieces. In particular, in the gauge-invariant definition of Ref. [2] only the total gluon angular

momentum is well defined and cannot be split in a physically meaningful way into helicity and

orbital angular momentum contributions.

The Jaffe-Manohar sum rule corresponds to the canonical decomposition of the proton’s an-

gular momentum. It may be regarded as a “partonic” spin sum rule, since both the quark and

gluon spin pieces are related to parton distributions measurable in inelastic ℓp or pp scattering

processes. The sum rule reads

1

2
=

1

2
∆Σ(Q2) + ∆G(Q2) + Lq(Q

2) + Lg(Q
2) , (1)

where 1
2
∆Σ and ∆G are the quark and gluon spin contributions and Lq and Lg the orbital

ones. ∆Σ and ∆G may be obtained from the first moments of the helicity parton distributions

∆q(x,Q2), ∆q̄(x,Q2) (where q = u, d, s, . . .) and ∆g(x,Q2) of the proton:

∆Σ(Q2) =

Nf
∑

q

∫ 1

0

dx
(

∆q(x,Q2) + ∆q̄(x,Q2)
)

,

∆G(Q2) =

∫ 1

0

dx∆g(x,Q2) , (2)

where in the first line the sum runs over all active quark flavors whose number we denote by Nf .

In the following we will mostly use the simplified notation

∆q(Q2) ≡

∫ 1

0

dx∆q(x,Q2) , (3)

and likewise for the anti-quarks. We note that although the parton distribution ∆g(x,Q2) and

hence its first moment are gauge-invariant, the identification with the gluon spin contribution is

only valid in the light-cone gauge. The same is true for the orbital angular momentum pieces.

As indicated in Eq. (1), the contributions to the proton spin are all scale dependent, although

the dependence cancels in their sum. The dependence on Q2 is given by spin-dependent QCD

evolution equations. The kernels relevant for the evolution of the first moments ∆q(Q2), ∆q̄(Q2),
∆G(Q2) have been derived to lowest order (LO) in Refs. [4, 5], to next-to-leading order (NLO) in

Refs. [6, 7, 8, 9], and recently to next-to-next-to-leading order (NNLO) in Refs. [10, 11, 12]. The

kernels for the separate evolution of Lq and Lg in the Jaffe-Manohar decomposition are known
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only to LO [13, 14, 15], although the evolution of their sum is known from Eq. (1) to the same

order as that of 1
2
∆Σ+∆G, that is, to NNLO.

In this letter, we will discuss some features of the higher-order scale evolution of the first mo-

ments, starting from the NNLO results of [10, 11, 12] for the evolution kernels. We will first study

the singlet evolution, where we will extend previous arguments by Altarelli and Lampe [16] to

show that the evolution of ∆Σ may actually be determined even to next-to-next-to-next-to-leading

order (N3LO). The evolution equations for ∆Σ and ∆G may straightforwardly be decoupled and

solved in closed form. We present the solutions in analytical form and show numerical results

for their evolution at various perturbative orders. We note that studies along these lines were first

presented to LO in Refs. [17, 18, 19, 20]. The paper [21] considered the NNLO evolution of

∆Σ. In our paper we go beyond the previous work by extending the results for the evolution of

∆Σ to N3LO and that of ∆G to NNLO. Apart from the intrinsic value of this, we believe that

our results could also have interesting applications in comparisons to models and in studies of

nucleon spin structure in lattice QCD [22]: Although nowadays renormalization on the lattice

is typically performed at nonperturbative level, comparison to high-order perturbative evolution

should be valuable as a benchmark.

As is well-known [16, 23, 24] the gluon spin contribution ∆G(Q2) in general evolves as the

inverse of the strong coupling constant and thus rises logarithmically with growing scale, either

to large positive or negative values, depending on the input ∆G(Q2
0),∆Σ(Q2

0) at some scale Q0.

However, in between there is a unique solution for which the gluon spin contribution remains

almost flat inQ2 and tends to a finite asymptotic value. Such a “static” solution in fact occurs [25]

in the early NLO DSSV analysis [26, 27]. We show that static solutions may be found at every

order in perturbation theory and determine the asymptotic values for the gluon spin contribution

at LO, NLO, and NNLO.

We will finally also study the evolution in the flavor non-singlet sector. Higher-order evolution

is known to generate interesting patterns of flavor- or charge-symmetry breaking in the nucleon

sea. It was shown a long time ago [28, 29, 30] that NLO evolution leads to an asymmetry ū 6= d̄
both in the unpolarized and the helicity parton distributions. At NNLO, a new type of valence

splitting function emerges [31, 12, 32], which gives rise to a difference in the strange and anti-

strange parton distributions in the nucleon [33], just from the fact that the nucleon carries net up

and down valence distributions. In Ref. [33] estimates for the spin-averaged s(x,Q2)− s̄(x,Q2)
were given that showed that the asymmetry resulting from evolution is not as small as might be

expected from a three-loop effect. Of course, non-perturbative physics may well be the dominant

source of the strangeness asymmetry in the nucleon [34]. In the present paper we will extend

the perturbative study in [33] to the spin-dependent case. An interesting difference with respect

to the spin-averaged asymmetry is that the first moment
∫ 1

0
dx
(

∆s(x,Q2) − ∆s̄(x,Q2)
)

does

not have to vanish, whereas
∫ 1

0
dx
(

s(x,Q2) − s̄(x,Q2)
)

= 0 due to the fact that the nucleon

does not carry net strangeness. As a result, strange quarks and anti-quarks may make different

contributions to the proton spin. Indeed, as will be a result of this paper, such a net strangeness

helicity asymmetry arises from NNLO evolution.
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2 Evolution equations

We start by considering the generic evolution equation for the first moment of a spin-dependent

parton distribution a, b ≡ u, ū, d, d̄, s, s̄, . . . , G:

d∆a(Q2)

d lnQ2
=
∑

b

∆Pab

(

as(Q
2)
)

∆b(Q2) , (4)

where ∆Pab describes the splitting b→ a (it is the first moment of the usual x-dependent splitting

function). The ∆Pab are perturbative in the strong coupling αS; their perturbative series starts at

O(αS):

∆Pab = as∆P
(0)
ab + a2s∆P

(1)
ab + a3s∆P

(2)
ab +O

(

a4s
)

. (5)

with as ≡ αS/(4π). The running coupling obeys the renormalization group equation

d ln as(Q
2)

d lnQ2
≡
β(as)

as
= −β0as − β1a

2
s − β2a

3
s +O

(

a4s
)

, (6)

where

β0 =
11

3
CA −

2

3
Nf ,

β1 =
34

3
C2

A −
10

3
CANf − 2CFNf ,

β2 =
2857

54
C3

A −
1415

54
C2

ANf −
205

18
CFCANf + C2

FNf +
79

54
CAN

2
f +

11

9
CFN

2
f , (7)

with CF = 4/3 and CA = 3. Keeping just the first term in each of Eqs. (5) and (6) yields the

leading order (LO) evolution of the parton distributions. Taking into account also the second,

or the second and third, terms corresponds to next-to-leading order (NLO) and next-to-next-to-

leading order (NNLO) evolution, respectively.

The evolution equations may be simplified by introducing non-singlet and singlet combina-

tions of the quark and antiquark distributions; see e.g. Ref. [29]. Following the notation of

Ref. [31] and using charge conjugation invariance and flavor symmetry of QCD, we first write

the evolution kernels ∆Pab as

∆Pqiqk = ∆Pq̄iq̄k ≡ δik ∆P
V
qq +∆P S

qq ,

∆Pqiq̄k = ∆Pq̄iqk ≡ δik ∆P
V
qq̄ +∆P S

qq̄ . (8)

The splitting functions ∆P S
qq and ∆P S

qq̄ thus describe splittings in which the flavor of the quark

changes. Starting from NNLO, ∆P S
qq and ∆P S

qq̄ differ [29, 33, 12].

We now introduce three types of flavor non-singlet combinations of parton densities:

∆q(V ) ≡
∑

q

(∆q −∆q̄ ) , ∆q(±) ≡ ∆q ±∆q̄ −
1

Nf

∑

q′

(∆q′ ±∆q̄ ′) , (9)

which turn out to diagonalize the evolution equations in the non-singlet sector. (Up to NLO it

would be sufficient to consider only two non-singlet combinations; owing to ∆P S
qq 6= ∆P S

qq̄, it
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becomes necessary to introduce a third combination at NNLO and beyond.) Each of the three

combinations evolves in a simple closed form:

d∆q(A)(Q2)

d lnQ2
= ∆P (A)

(

αS(Q
2)
)

∆q(A)(Q2) , (A = V,±) , (10)

where the corresponding evolution kernels are

∆P (V ) = ∆P V
qq −∆P V

qq̄ +Nf

(

∆P S
qq −∆P S

qq̄

)

, ∆P (±) = ∆P V
qq ±∆P V

qq̄ . (11)

The decoupled non-singlet equations are trivial to solve; we will present the solutions later.

In the singlet sector defined by Eq. (2) we have coupled evolution equations for ∆Σ and ∆G:

d

d lnQ2

(

∆Σ(Q2)

∆G(Q2)

)

=

(

∆PΣΣ

(

as(Q
2)
)

2Nf ∆PqG

(

as(Q
2)
)

∆PGq

(

as(Q
2)
)

∆PGG

(

as(Q
2)
)

) (

∆Σ(Q2)

∆G(Q2)

)

, (12)

where

∆PΣΣ ≡ ∆P V
qq +∆P V

qq̄ +Nf

(

∆P S
qq +∆P S

qq̄

)

, (13)

and with the first moments of the splitting functions involving gluons, ∆PqG, ∆PGq, ∆PGG. As

we shall discuss below, thanks to the simplicity of the evolution kernels in the spin-dependent

case the singlet equation may also be solved analytically in a simple way.

The evolution of the helicity parton distributions is in itself closed and not affected by contri-

butions from orbital angular momentum. On the other hand, Lq and Lg in Eq. (1) are both scale

dependent and have their own evolution equations. As it turns out, their evolution is not closed

but is partly driven by ∆Σ(Q2) and ∆G(Q2). This has to be the case since the left-hand-side of

Eq. (1) needs to remain independent of the scale. Presently, the evolution of Lq and Lg is known

only to lowest order [13, 14, 15]∗. Beyond LO, we therefore cannot separate the evolution of the

two orbital components. However, we can still consider the evolution of the total orbital angular

momentum L ≡ Lq + Lg by simply taking the derivative of Eq. (1):

dL(Q2)

d lnQ2
= −

1

2

d∆Σ(Q2)

d lnQ2
−
d∆G(Q2)

d lnQ2

= −

(

1

2
∆PΣΣ +∆PGq

)

∆Σ(Q2)− (Nf ∆PqG +∆PGG)∆G(Q
2) . (14)

This relation will serve as an important cross-check for future calculations of the separate evolu-

tion of Lq and Lg at higher orders. We note that, like for the helicity quark and antiquark distri-

butions, there will be a separate angular momentum piece Lqi for each flavor, and full evolution

equations will require introduction of non-singlet and singlet combinations. Lq as appearing in

the spin sum rule is the singlet.

∗We note that the evolution for the total quark and gluon angular momenta in the Ji decomposition may be

derived by profiting from the relation between the total angular momentum operators and the quark and gluon

energy momentum tensors [2] and is actually known up to NNLO accuracy [35, 36]. Unfortunately, since there is no

direct connection between the Ji and Jaffe-Manohar spin decompositions (except for the quark spin piece), it is not

possible to use these results to obtain the higher-order evolutions of Lq and Lg.
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3 First moments of the splitting functions

We now collect the various ∆Pab as available from the literature. At lowest order we have [4, 5]

∆P (0)± = ∆P (0)S
qq = ∆P

(0)S
qq̄ = 0 ,

∆P
(0)
qG = 0 ,

∆P
(0)
Gq = 3CF ,

∆P
(0)
GG = β0 . (15)

The second-order results in the MS scheme may be found in Refs. [7, 8, 9].

∆P (1)+ = 0 ,

∆P (1)− = CF (CA − 2CF ) (−13 + 12ζ2 − 8ζ3) ,

Nf

(

∆P (1)S
qq +∆P

(1)S
qq̄

)

= −2Nf ∆P
(0)
Gq ,

Nf

(

∆P (1)S
qq −∆P

(1)S
qq̄

)

= 0 ,

∆P
(1)
qG = 0 ,

∆P
(1)
Gq =

71

3
CFCA − 9C2

F −
2

3
CFNf ,

∆P
(1)
GG = β1 , (16)

with ζi ≡ ζ(i) the respective value of Riemann’s zeta function. Finally, at NNLO we have from

Refs. [6, 11, 12]:

∆P (2)+ = 0 ,

∆P (2)− =

{

CF

(

145

2
− 62ζ2 + 164ζ3 − 372ζ4 + 48ζ2ζ3 + 208ζ5

)

+ CA

(

1081

36
+

245

3
ζ2 −

3214

9
ζ3 +

1058

3
ζ4 − 48ζ2ζ3 − 112ζ5

)

− Nf

(

76

9
+

44

3
ζ2 −

448

9
ζ3 +

68

3
ζ4

)

}

CF (CA − 2CF ) ,
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Nf

(

∆P (2)S
qq +∆P

(2)S
qq̄

)

= −2Nf ∆P
(1)
Gq ,

Nf

(

∆P (2)S
qq −∆P

(2)S
qq̄

)

=
8Nf

CA

dabcdabc
(

23− 12ζ2 − 16ζ3
)

,

∆P
(2)
qG = 0 ,

∆P
(2)
Gq =

1607

12
CFC

2
A −

461

4
C2

FCA +
63

2
C3

F

+

(

41

3
− 72ζ3

)

CFCANf −

(

107

2
− 72ζ3

)

C2
FNf −

13

3
CFN

2
f ,

∆P
(2)
GG = β2 . (17)

In the above equations,CF = 4/3,CA = 3,Nf is the number of flavors, and dabcdabc/CA = 5/18.

There are systematic patterns among the above results which may be understood from general

arguments. First of all, ∆P+ has to vanish to all orders in the strong coupling. As follows from

Eqs. (9,10), ∆P+ governs the evolution of combinations such as ∆u+∆ū− (∆d+∆d̄), which

correspond to matrix elements of flavor non-singlet axial currents. Such matrix elements are not

renormalized and are hence scale independent [37] to all orders, consistent with the Bjorken sum

rule [38].†

As is well known (see Eqs. (12,13)), the vanishing of ∆P+ immediately implies that the

evolution of the singlet ∆Σ is to all orders driven by the “pure-singlet” anomalous dimension

Nf

(

∆P S
qq +∆P S

qq̄

)

. The explicit results shown in the above equations suggest that

Nf

(

∆P (j+1)S
qq +∆P

(j+1)S
qq̄

)

= −2Nf ∆P
(j)
Gq , (18)

or, generalized to all orders,

∆PΣΣ = −2Nf as∆PGq . (19)

Furthermore, we deduce from Eqs. (16,17)

∆PqG = 0 ,

∆PGG = −
β(as)

as
. (20)

The all-order results just given may in fact be understood by an argument given in Ref. [16].

The quark singlet combination ∆Σ corresponds to the proton matrix element of the flavor-singlet

axial current,

Sµ∆Σ = 〈P, S | ψ̄ γµγ5 ψ |P, S〉 ≡ 〈P, S | jµ5 |P, S〉 , (21)

where S is the proton’s polarization vector. Because of the axial anomaly, the singlet axial current

†Evidently, in a perturbative calculation, one could in principle choose a factorization scheme in which ∆P+

becomes non-zero at NLO or beyond. However, such a scheme would be unphysical [30].
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is not conserved:

∂µ j
µ
5 = 2Nf asTr

[

Fµν F̃
µν
]

= 2Nf as ∂µ

{

εµνρσ Tr

[

Aν

(

F ρσ −
2

3
AρAσ

)]}

≡ 2Nf as ∂µK
µ . (22)

In the first line, F µν is the gluonic field strength tensor and F̃ µν its dual. In the second line we

have used that Tr[FF̃ ] may be written as the divergence of the “anomalous current” that we

denote by K. From Eq. (22) we conclude that jµ5 − 2Nf asK
µ is conserved:

∂µ

(

jµ5 − 2Nf asK
µ
)

= 0 . (23)

The relation ∂µ j
µ
5 = 2Nf as Tr[FF̃ ] holds to all orders in perturbation theory. As a result,

Eq. (23) holds to all orders as well. As was discussed in [16], in perturbation theory we may

relate matrix elements of Kµ to the gluon spin contribution: Sµ∆G = −〈P, S |Kµ |P, S〉.
AlthoughK depends on the choice of gauge, its forward proton matrix element is gauge invariant,

except for topologically nontrivial gauge transformations that change the winding number. (The

latter feature makes the identification of ∆G with the matrix element of K impossible beyond

perturbation theory [1].) From the conservation law in (23) we may thus conclude

d

d lnQ2

(

∆Σ(Q2) + 2Nf as(Q
2)∆G(Q2)

)

= 0 . (24)

Inserting the general evolution equations for ∆Σ and ∆G in (12), as well as the renormalization

group equation for as(Q
2) in (6), we find, on the other hand,

d

d lnQ2
(∆Σ + 2Nf as ∆G) =

(

∆PΣΣ + 2Nfas ∆PGq

)

∆Σ

+

(

2Nf∆PqG +∆PGG +
β(as)

as

)

2Nfas∆G . (25)

The right-hand-side vanishes when the all-order relations given in Eqs. (19) and (20) are satisfied.

Equivalent results are found when studying the renormalization of the axial anomaly in dimen-

sional regularization in [39]. One may object that Eqs. (20) do not follow from (25) in a strict

mathematical sense; however, there is little (if any) freedom physically to obtain results other

than (20) from the last term in (25). In particular, the CA parts in PGG can only be canceled by

those in the β-function. The explicit verification to three loops by the results of [11, 12] is of

course a strong argument for the all-order validity of (20). In addition, the vanishing of ∆PqG in

any physical scheme is a consequence of helicity conservation.

We note that as seen in Refs. [11, 12, 30] relations like ∆P+ = 0 and (19) and (20) may

not emerge automatically in an actual higher-loop calculation of the splitting functions, where

dimensional regularization and a prescription for γ5 and the Levi-Cività tensor have to be adopted.

They may then be reinstated by a factorization scheme transformation, so that the correct physical

splitting functions are obtained.
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It is now clear that in the MS scheme a single anomalous dimension, ∆PΣΣ, resulting from the

axial anomaly, governs the evolution of the quark and gluon spin contributions and (via Eq. (14))

of the total orbital angular momentum. Inserting our findings into Eq. (12), we obtain

d

d lnQ2

(

∆Σ

∆G

)

=

(

∆PΣΣ(as) 0

− 1
2Nfas

∆PΣΣ(as) −β(as)
as

) (

∆Σ

∆G

)

, (26)

where we have dropped the ubiquitous argument Q2. We may further simplify this equation by

defining [16]

∆Γ(Q2) ≡ as(Q
2)∆G(Q2) . (27)

From (26) we then have

d

d lnQ2

(

∆Σ

∆Γ

)

=

(

∆PΣΣ(as) 0

− 1
2Nf

∆PΣΣ(as) 0

) (

∆Σ

∆Γ

)

. (28)

The lower right entry of the evolution matrix now vanishes since in the product as(Q
2)∆G(Q2)

the evolution of the strong coupling exactly cancels the ∆PGG part of the evolution of ∆G.

Clearly, Eq. (28) is straightforward to solve, and we will return to the equation shortly.

Thanks to Eq. (19) we may now determine the four-loop (N3LO) contribution to the anoma-

lous dimension ∆PΣΣ from the three-loop value ∆P
(2)
Gq computed in Ref. [12]:

∆P
(3)
ΣΣ = −2Nf ∆P

(2)
Gq = −2NfCF

[

1607

12
C2

A −
461

4
CFCA +

63

2
C2

F

+

(

41

3
− 72ζ3

)

CANf −

(

107

2
− 72ζ3

)

CFNf −
13

3
N2

f

]

.(29)

4 Higher-order solutions in the singlet sector

We now proceed to solve the singlet evolution equation (28). Changing d lnQ2 to das via Eq. (6),

we have for the evolution of ∆Σ, up to N3LO:

d ln∆Σ(Q2)

das(Q2)
= −

∆P
(0)
ΣΣ + as∆P

(1)
ΣΣ + a2s ∆P

(2)
ΣΣ + a3s ∆P

(3)
ΣΣ

asβ0 + a2s β1 + a3s β2

= −
∆P

(1)
ΣΣ + as∆P

(2)
ΣΣ + a2s ∆P

(3)
ΣΣ

β0 + as β1 + a2s β2
, (30)

where in the second line we have used that ∆P
(0)
ΣΣ = 0, since the evolution of ∆Σ starts only at

NLO. Expanding the right-hand side of Eq. (30) up to second order it becomes

d ln Σ(Q2)

das(Q2)
=

[

−
∆P

(1)
ΣΣ

β0
+

as
β2
0

(

β1∆P
(1)
ΣΣ − β0∆P

(2)
ΣΣ

)

+
a2s
β3
0

(

− β2
1 ∆P

(1)
ΣΣ + β0β2 ∆P

(1)
ΣΣ + β0β1∆P

(2)
ΣΣ − β2

0 ∆P
(3)
ΣΣ

)]

. (31)
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This equation is readily solved analytically. The solution gives the first moment of the singlet at

scale Q in terms of its boundary value at the “input” scale Q0:

∆Σ(Q2)

∆Σ(Q2
0)

= exp [0] × exp

[

−
aQ − a0
β0

∆P
(1)
ΣΣ

]

× exp

[

a2Q − a20
2β2

0

(

β1∆P
(1)
ΣΣ − β0∆P

(2)
ΣΣ

)

]

× exp

[

a3Q − a30
3β3

0

(

−β2
1 ∆P

(1)
ΣΣ + β0β2∆P

(1)
ΣΣ + β0β1∆P

(2)
ΣΣ − β2

0 ∆P
(3)
ΣΣ

)

]

≡ K(LO) × K(NLO) × K(NNLO) × K(N3LO) , (32)

where aQ ≡ as(Q
2) and a0 ≡ as(Q

2
0). For completeness, we have included the LO term, which

predicts a constant ∆Σ.

Figure 1: Evolution of the first moment of the polarized singlet distributions at LO, NLO, NNLO

and N3LO, starting from the initial scale Q = 1 GeV.

Figure 1 shows the quark singlet evolution factor on the right-hand-side of Eq. (32), assuming

a fixed number Nf = 3 in the anomalous dimensions and the beta function, and using the full

NNLO evolution of the coupling constant‡. We choose a relatively low input scale Q0 = 1, with

a value αs(Q0) = 0.404 §. One can see that the NLO evolution affects the quark spin content of

the proton by up to 7% while NNLO evolution adds an extra ∼ 1 − 2% effect. The numerical

impact of the four-loop term ∆P
(3)
ΣΣ reaches only O(0.2%) at the highest scale.

‡Alternatively, one could use at each order a coupling constant defined by truncating the QCD β-function to

that order. This approach would mostly affect the LO results, since the coupling constant at this order is larger. It

would also slightly limit the range of applicability of the LO calculation in the backward evolution since the non-

perturbative regime would be reached already at higher scales. Nevertheless, the main results of this paper would

remain basically unchanged since the values of the coupling constant are quite similar at NLO, NNLO and beyond.
§That value corresponds to the conventional αs(MZ) = 0.1181 for Nf = 5. In this paper we always use the

NNLO expression for the coupling constant, independently of the order considered, as a way of isolating the effect

of the higher order splitting functions in the corresponding evolution.
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Figure 2: Backward evolution of the first moment of the polarized singlet distributions at LO,

NLO, NNLO and N3LO, starting from the initial scale Q = 2 GeV.

Ultimately, as discussed in Ref. [21, 40], one may want to compare helicity parton distribution

functions extracted from experiment or computed on the lattice [22] with calculations performed

in QCD-inspired models of nucleon structure. The latter typically are formulated at rather low

momentum scales of order of a few hundred MeV. Given the high order of perturbation theory

now available for evolution, it is therefore interesting to evolve the singlet spin contributions not

only to large perturbative scales, but also “backward” towards the limit of validity of perturba-

tion theory [21]. In Fig. 2 we show the evolution of ∆Σ at LO, NLO, NNLO and N3LO down

to Q ∼ 0.35 GeV, starting from the initial scale Q = 2 GeV. Since at low scales the approxi-

mate analytical expressions for the running of the coupling constant αs start to deviate from the

exact result, we rely on the accurate numerical solution of Eq. (6) to NNLO accuracy. As can

be observed, and as is expected, the higher order terms affect the evolution of the singlet in a

significant way, much more strongly than what we found for the evolution to larger scales. On

the other hand, a striking feature is that the evolution remains relatively stable even down to such

low scales as considered here: At the lower end of Figure 2 the N3LO contribution enhances

the singlet by a modest 8% compared to the previously known NNLO result, despite the fact

that at Q = 0.35 GeV the coupling constant becomes αs ∼ 1.3, precariously past the bound-

aries of the perturbative domain. In addition, all higher orders (NLO, NNLO, N3LO) go in the

same direction. We note that the upturn of ∆Σ toward small scales – in the direction of large

quark and anti-quark spin contributions to the proton spin – was already observed to NLO and

NNLO in Refs. [40] and [21], respectively. We also remark that results on high-loop evolution

may be useful for lattice-QCD studies of nucleon structure, possibly allowing cross-checks of the

nonperturbative renormalization carried out on the lattice.

The solution of the evolution equation for the gluon spin contribution now follows directly.

From the lower row in Eq. (28) we have by simple integration and using again d lnQ2 =

10



das/β(as)

∆Γ(Q2) = ∆Γ(Q2
0)−

∫ aQ

a0

das
∆PΣΣ(as)

2Nfβ(as)
∆Σ(Q2)

= ∆Γ(Q2
0) +

∫ aQ

a0

das
β(as)

as ∆PGq(as)∆Σ(Q2) , (33)

where again aQ ≡ as(Q
2) and a0 ≡ as(Q

2
0), and where in the second line we have used Eq. (19)

to replace ∆PΣΣ by ∆PGq, which is more natural in the case of the gluon distribution.

An immediate observation is that the integral on the right-hand-side of (33) starts at order

as(Q
2) and as(Q

2
0). Therefore, we arrive at the well-known result [17, 18, 23] that the leading

term in ∆Γ is a constant in Q2, so that the first moment of the gluon spin contribution evolves as

the inverse of the strong coupling. Inserting the solution for ∆Σ(Q2) from Eq. (32) into (33) and

carrying out the integration, we find the full NNLO analytical solution

∆G(Q2) =
as(Q

2
0)

as(Q2)
∆G(Q2

0) + ∆Σ(Q2
0)F

(

as(Q
2), as(Q

2
0)
)

, (34)

where

F (aQ, a0) = F LO

(

a0
aQ

)

+ aQ F
NLO

(

a0
aQ

)

+ a2Q F
NNLO

(

a0
aQ

)

, (35)

with

F LO(r) = −(1− r)
∆P

(0)
Gq

β0
,

FNLO(r) =
1− r2

2β2
0

(

β1∆P
(0)
Gq − β0∆P

(1)
Gq

)

+
(1− r)2

2β2
0

∆P
(0)
Gq ∆P

(1)
ΣΣ ,

FNNLO(r) =
1− r3

3β3
0

(

β0β2∆P
(0)
Gq − β2

1 ∆P
(0)
Gq + β0β1∆P

(1)
Gq − β2

0 ∆P
(2)
Gq

)

+
(1− r)2

6β3
0

[

− 3(1 + r)β1∆P
(0)
Gq ∆P

(1)
ΣΣ + (2 + r)β0∆P

(1)
Gq ∆P

(1)
ΣΣ

+ (1 + 2r) β0∆P
(0)
Gq ∆P

(2)
ΣΣ

]

−
(1− r)3

6β3
0

∆P
(0)
Gq

(

∆P
(1)
ΣΣ

)2
. (36)

We note that in contrast to ∆Σ, we can only give the NNLO evolution of ∆G here. This is due to

the fact that ∆Γ is shifted by one power of as relative to ∆G. In order to obtain the N3LO solution

for ∆G one would need the four-loop splitting kernel ∆P
(3)
Gq which is presently still unavailable.

Figure 3 shows the NNLO evolution of the gluon spin contribution to the proton spin, starting

from the values ∆G = 0.102 and ∆Σ = 0.254 at Q0 = 1 as realized in the global analysis [46].

We also show the evolution of 1
2
∆Σ and the evolution of the total orbital angular momentum

L resulting from (14). Notice that both ∆G and L have a divergent behaviour at large scales,

resulting in a rather unphysical cancellation of two very large contributions to fulfill the spin sum

rule.
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Figure 3: Evolution of the quark and gluon spin contributions 1
2
∆Σ and ∆G at NNLO, starting

from the inital scale Q = 1 GeV. We also show the evolution of L following from Eq. (14).

As we discussed above for the singlet contribution, it is also interesting to analyze the behav-

ior of the gluonic spin contribution at lower scales. In Fig. 4 we show the backward evolution

of ∆G at LO (dashes), NLO (dots) and NNLO (solid line) for three different scenarios, corre-

sponding to setting ∆G(Q0) = +1, 0.1,−1 at the initial scale Q0 = 1 GeV ¶. For each scenario,

we observe a striking convergence of the fixed order results down to very low scales, always

towards small gluonic contributions. Even though the ”F ” term in Eq. (34) contains corrections

proportional to positive powers of αs that could spoil the convergence of the expansion in the

non-perturbative region, the evolution of the gluonic contribution is completely dominated by the

leading 1/as term in Eq. (34), as can be observed in Figure 4 where we also present this term

separately for each scenario. Our findings set a strong constraint on the proton spin content car-

ried by gluons at hadronic scales. Within the rather extreme scenarios analyzed here (for which

the gluon contribution accounts for as much as twice the spin of the proton at Q0 = 1 GeV!), we

obtain the requirement |∆G(Q ∼ 0.35GeV)| . 0.3. Indeed, the few available model estimates

of ∆G suggest values of the order 0.2− 0.3 [41, 42, 43, 44, 45] at a low hadronic scale.

5 “Static” value of ∆G

As we have discussed, ∆G(Q2) in general evolves as 1/as(Q
2) for large scales. As inspection

of Eq. (34) shows, depending on the input values of ∆G(Q2
0) and ∆Σ(Q2

0) the evolution can be

towards large positive or negative values. This implies that there is a specific input, a “critical

point”, for which ∆G(Q2) actually remains almost constant [26] and tends to a finite asymptotic

value as Q2 → ∞. This “static” value of ∆G is expected to change from order to order in

perturbation theory. To determine it at a given order, we only need to tune the input such that the

¶∆G(Q0) = 0.1 corresponds to the result of the DSSV fit in [46].
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Figure 4: Backward evolution of the gluon spin contribution ∆G at LO (dashes), NLO (dots)

and NNLO (solid line), starting from three different scenarios at the inital scale Q0 = 1 GeV:

∆G(Q0) = +1, 0.1,−1. The blue solid line corresponds to the leading 1/as term in Eq. (34).

1/as(Q
2) term in the solution for ∆G(Q2) is canceled. Starting from Eq. (34) we demand

as(Q
2
0)∆G(Q

2
0) + as(Q

2)∆Σ(Q2
0)F

(

as(Q
2), as(Q

2
0)
)

= O
(

as(Q
2)
)

. (37)

To LO, using (36), this condition becomes

∆GLO
stat(Q

2
0) = −∆Σ(Q2

0)
∆P

(0)
Gq

β0
= −

4

9
∆Σ(Q2

0) ≃ −0.113 , (38)

where we have used Nf = 3 flavors and again ∆Σ(Q2
0 = 1GeV2) = 0.254. The gluon spin

contribution then remains constant at the value ∆GLO
stat(Q

2
0).

At NLO, the necessary input value for the static solution becomes

∆GNLO
stat (Q

2
0) = −∆Σ(Q2

0)

[

∆P
(0)
Gq

β0
+ a0

−β1 ∆P
(0)
Gq + β0∆P

(1)
Gq +∆P

(0)
Gq ∆P

(1)
ΣΣ

2β2
0

]

= −

[

4

9
+

166

81
a0

]

∆Σ(Q2
0) ≃ −0.13 . (39)

The NLO “static” solution is no longer completely constant in Q2. However, by construction it

does converge asymptotically to a finite value, given by

∆GNLO
stat (∞) = −∆Σ(Q2

0)

[

∆P
(0)
Gq

β0
+ a0

∆P
(0)
Gq ∆P

(1)
ΣΣ

β2
0

]

= −

[

4

9
−

32

27
a0

]

∆Σ(Q2
0) ≃ −0.103 . (40)
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We note that a value of similar size was in fact found in the early NLO DSSV analysis [25, 26, 27].

Finally, at NNLO, the corresponding values are

∆GNNLO
stat (Q2

0) = −∆Σ(Q2
0)

[

∆P
(0)
Gq

β0
+ a0

−β1 ∆P
(0)
Gq + β0∆P

(1)
Gq +∆P

(0)
Gq ∆P

(1)
ΣΣ

2β2
0

+
a20
6β3

0

(

2β2
1 ∆P

(0)
Gq − 2β0 β2∆P

(0)
Gq − 2β0 β1∆P

(1)
Gq + 2β2

0 ∆P
(2)
Gq

+ 2β0∆P
(0)
Gq ∆P

(2)
ΣΣ − 3β1∆P

(0)
Gq ∆P

(1)
ΣΣ + β0∆P

(1)
Gq ∆P

(1)
ΣΣ +∆P

(0)
Gq

(

∆P
(1)
ΣΣ

)2

)]

= −

[

4

9
+

166

81
a0 −

(

7561

2187
−

160

9
ζ3

)

a20

]

∆Σ(Q2
0) ≃ −0.125 , (41)

with an asymptotic value given by

∆GNNLO
stat (∞) = −∆Σ(Q2

0)

[

∆P
(0)
Gq

β0
+ a0

∆P
(0)
Gq ∆P

(1)
ΣΣ

β2
0

+ a20∆P
(0)
Gq

−β1∆P
(1)
ΣΣ +

(

∆P
(1)
ΣΣ

)2
+ β0∆P

(2)
ΣΣ

2β3
0

]

= −

[

4

9
−

32

27
a0 −

1328

243
a20

]

∆Σ(Q2
0) ≃ −0.102 . (42)

Numerical results for the “static” solutions for ∆G are shown in Fig. 5.

Figure 5: Evolution of the ”static” gluon solutions, starting from the inital scale Q0 = 1 GeV.

14



At NNLO the sum of the contributions by quarks and gluons starts at ∆Σ(Q2
0)/2+G

NNLO
stat (Q2

0) =
0.0025 with an asymptotic result of ∆Σ(∞)/2 + GNNLO

stat (∞) = 0.01335. In that particu-

lar scenario the total orbital angular momentum almost accounts for the entire proton spin,

Lq + Lg ≃ 1/2, and is almost constant in Q2 (from Q2
0 = 1 to ∞ it varies by less than 3%).

As mentioned above, in our study of the “static” ∆G we have for simplicity chosen a fixed

number of flavors, Nf = 3. This will not be entirely adequate when considering the limit of

large Q2, and a matching to Nf = 4 and Nf = 5 should be performed at the charm and bottom

mass scales, respectively. For the inputs∆Gstat(Q
2
0) given explicitly above, each matching would

slightly upset the cancelation of the 1/as term in the solution for ∆G, so that the resulting gluon

spin contribution would not be entirely “static” anymore. However, this is expected to be a small

effect. We have checked that using a fixed number of Nf throughout changes the asymptotic

value of the static ∆G by less than 10%. In any case, it is clear that a static solution for ∆G
exists even if one performs a full matching to Nf = 4 and Nf = 5: One could always start

with an input at the bottom mass, Q2
0 = m2

b , that creates a static solution for all higher Q2 with

Nf = 5. This solution could then be evolved backward to any lower Q2 one desires, even to

Q2 = 1 GeV2 where Nf = 3. This result at Q2 = 1 GeV2 would then be the input to be used to

obtain a static solution with full matching.

We believe these solutions, especially because of the fact that they have a well behaved

asymptotic limit at large scales, deserve further attention since they arise as strong boundaries

on non-perturbative physics from almost purely perturbative considerations.

6 Non-singlet evolution of the valence quark spin contribution

We finally turn to the evolution in the non-singlet sector. As discussed in the Introduction, we

focus here on the strangeness “valence” spin contribution (∆s−∆s̄)(Q2) generated by three-loop

evolution.

Each of the non-singlet evolution equations in Eq. (10) has the solution

∆q(A)(Q2) = U (A)(Q,Q0) ∆q
(A)(Q2

0) , (A = V,±) , (43)

where ∆q(A)(Q2
0) is the corresponding input non-singlet combination and the evolution operator

U (A) is given by

U (A)(Q,Q0) = exp

{

∫ Q2

Q2

0

dq2

q2
∆P (A)(as(q

2))

}

. (44)

We may readily use (43) with A = − and A = V to obtain the solution for a valence quark

contribution ∆q −∆q̄, resulting in [33]

(∆q −∆q̄) (Q2) = U (−)(Q,Q0)

[

(∆q −∆q̄) (Q2
0) +

1

Nf

(

U (V )(Q,Q0)

U (−)(Q,Q0)
− 1

)

∆q(V )(Q2
0)

]

,

(45)

where ∆q(V )(Q2
0) =

∑

q (∆q −∆q̄ ) (Q2
0) is the total spin-dependent valence distribution in

the nucleon as defined in Eq. (9), at the initial scale. The first term on the right represents

the homogenous component of the evolution of the valence distribution, which starts at NLO;
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its explicit expression is identical to the one in Eq. (32) with the change ∆PΣΣ → ∆P (−).

As follows from Eq. (11), ∆P (V ) − ∆P (−) = Nf

(

∆P S
qq −∆P S

qq̄

)

, which (see Eqs. (15)–(17))

becomes nonzero starting from NNLO. Therefore, the second term on the right of (45) will in

general be non-vanishing as well, as long as ∆q(V )(Q2
0) 6= 0, which of course is the case. We

conclude that NNLO evolution generates an asymmetry ∆s 6= ∆s̄ in the contribution by strange

and anti-strange quarks to the proton spin, even if ∆s = ∆s̄ at the initial scale Q0. This is at

variance with the spin-averaged case where the first moment of s− s̄ is protected by the fact that

there can be no net valence strangeness in the proton and remains zero to all orders.

To NNLO accuracy, the evolution factor in the second term in Eq.(45) reduces to

U (V )(Q,Q0)

U (−)(Q,Q0)
− 1 = −

Nf

(

∆P
(2)S
qq −∆P

(2)S
qq̄

)

2β0

(

a2Q − a20
)

, (46)

where, as before aQ = as(Q
2) and a0 = as(Q

2
0). Therefore, assuming ∆s(Q2

0) = ∆s̄(Q2
0) in

order to estimate the purely perturbative effect, we have, to NNLO

(∆s−∆s̄)pert (Q
2) = −

∆P
(2)S
qq −∆P

(2)S
qq̄

2β0

(

a2Q − a20
) (

∆u−∆ū+∆d−∆d̄
)

(Q2
0)

= −
5(23− 12ζ2 − 16ζ3)

72β0π2

(

αs(Q
2)− αs(Q

2
0)
) (

∆u−∆ū+∆d−∆d̄
)

(Q2
0), (47)

where in the second line we have inserted the explicit value of
(

∆P
(2)S
qq −∆P

(2)S
qq̄

)

from Eq. (17).

The last factor on the right is of course just the total valence spin contribution at the initial scale.

We estimate the polarized strange asymmetry generated perturbatively by assuming, for ex-

ample,Q0 = 1 GeV with αs(Q
2
0) = 0.404, and [26, 27, 46]

(

∆u−∆ū+∆d −∆d̄
)

(Q2
0) ∼ 0.5,

for which

(∆s−∆s̄)pert (Q
2 = 10GeV2) ≈ −6 · 10−4 . (48)

Figure 6 shows ∆sV ≡ ∆s−∆s̄ as a function of Q. The difference reaches −0.001 at Q =MZ .

As expected for a three-loop effect, it is small. On the other hand, for the latest extractions of

(∆s+∆s̄) [47] the relative asymmetry |∆s−∆s̄|/|∆s+∆s̄| would be of order 1%. Evidently,

non-perturbative contributions [34] may well be the dominant source of the polarized strangeness

asymmetry. However, the effect we describe here would certainly need to be taken into account

in a full analysis. We emphasize that the perturbative asymmetry is robustly predicted to be

negative, so that ∆s̄ > ∆s.

7 Conclusions

We have presented a set of studies of the evolution of the quark and gluon spin contributions to

the proton spin at higher orders in perturbation theory, motivated by the recent calculations of

the helicity splitting functions at full NNLO [10, 11, 12]. We have argued that the evolution of

∆Σ is known even to four loops, which may prove valuable for lattice studies, as well as for

comparisons to models residing at lower “hadronic” scales. The anomalous dimension relevant

for the evolution of ∆Σ and related to the axial anomaly also turns out to generate the evolution

16



Figure 6: Evolution of the perturbatively generated “valence” strange contribution ∆sV ≡ ∆s−
∆s̄, starting from the inital scale Q0 = 1 GeV.

of ∆G. The same must then be true for the total orbital angular momentum Lq + Lg in the Jaffe-

Manohar sum rule, although the separate evolutions of Lq and Lg are presently only known to

LO.

We have obtained analytical higher-order solutions for ∆Σ and ∆G and presented numeri-

cal results for their evolution. These show a stable upturn of ∆Σ toward low scales, bringing

it actually closer to quark model expectations that favor a large quark spin contribution to the

proton spin. The gluon spin ∆G, when evolved backwards, shows a remarkable focus towards

low values, again in line with quark model assumptions, setting a strong constraint on the gluon

contribution at hadronic scales. We have also shown that at every order of the perturbative evo-

lution, there is a unique solution for which ∆G tends to a finite asymptotic value as the scale

becomes large. We have estimated the values of ∆G in such a scenario.

We have finally also examined the size of the new effect arising from three-loop evolution

in the flavor non-singlet sector, the generation of an asymmetry in the strange and anti-strange

contributions to the proton spin. We have found that perturbative evolution predicts ∆s −∆s̄ to

be negative, with a magnitude of order 1% of the total ∆s+∆s̄.

Acknowledgments

We are grateful to Marco Stratmann for helpful discussions. The work of D.de F. has been

partially supported by Conicet, ANPCyT and the Alexander von Humboldt Foundation.

17



References

[1] R. L. Jaffe and A. Manohar, Nucl. Phys. B 337, 509 (1990).

[2] X. D. Ji, Phys. Rev. Lett. 78, 610 (1997) [hep-ph/9603249].

[3] For review, see: E. Leader and C. Lorc, Phys. Rept. 541, no. 3, 163 (2014) [arXiv:1309.4235

[hep-ph]].

[4] M. A. Ahmed and G. G. Ross, Nucl. Phys. B 111, 441 (1976).

[5] G. Altarelli and G. Parisi, Nucl. Phys. B 126 (1977) 298.

[6] J. Kodaira, Nucl. Phys. B 165, 129 (1980).

[7] R. Mertig and W. L. van Neerven, Z. Phys. C 70 (1996) 637 [hep-ph/9506451].

[8] W. Vogelsang, Phys. Rev. D 54 (1996) 2023 [hep-ph/9512218].

[9] W. Vogelsang, Nucl. Phys. B 475 (1996) 47 [hep-ph/9603366].

[10] A. Vogt, S. Moch, M. Rogal and J. A. M. Vermaseren, Nucl. Phys. Proc. Suppl. 183, 155

(2008) [arXiv:0807.1238 [hep-ph]].

[11] S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys. B 889 (2014) 351 [arXiv:1409.5131

[hep-ph]].

[12] S. Moch, J. A. M. Vermaseren and A. Vogt, Phys. Lett. B 748 (2015) 432 [arXiv:1506.04517

[hep-ph]].

[13] X. D. Ji, J. Tang and P. Hoodbhoy, Phys. Rev. Lett. 76, 740 (1996) [hep-ph/9510304].
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