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In a recent work (Borras et al., Phys. Rev. A 79 (2009) 022108), we have determined, for various
decoherence channels, four-qubit initial states exhibiting the most robust possible entanglement.

Here, we explore some geometrical features of the trajectories in state space generated by the

decoherence process, connecting the initially robust pure state with the completely decohered

mixed state obtained at the end of the evolution. We characterize these trajectories by recourse
to the distance between the concomitant time-dependent mixed state and di®erent reference

states.
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1. Introduction

Entanglement and decoherence are two closely related phenomena that lie at the

core of quantum physics.1�3 Entanglement is nowadays regarded as the most dis-

tinctive feature of quantum mechanics, and in recent years it has been the subject

of intense and increasing research e®orts. The phenomenon of decoherence consists,

basically, of a set of e®ects arising from the interaction (and concomitant entan-

glement development) between quantum systems and their environments.2,3 Every

physical system is immersed in an environment and interacts with it in some way.

Undesirable e®ects due to this interaction constitute some of the main obstacles to

the practical implementation of quantum technologies based on the controlled

manipulation of entangled states such as quantum computing.2 The decoherence

process leads the system from a pure state to a (usually less entangled) mixed

state. This decay of entanglement has recently attracted the interest of many

researchers.4�15 It has also been shown that in some cases, entanglement can vanish

in ¯nite times. This phenomenon is known as entanglement sudden death and it has

been the focus of numerous contributions.16�21 This abrupt disappearance of

entanglement is closely related to the sudden birth of entanglement between the

reservoirs.22

Recently, several dynamical properties of entanglement, like asymptotic birth of

entanglement and entanglement sudden death, have been discussed from a geome-

trical point of view.23,24 These geometrical interpretations allow for the explanation

of the necessary and su±cient conditions for the last phenomenon to take place.23

Various examples according to di®erent possibilities for the geometrical details of the

set of time asymptotic states are provided in Ref. 24.

We have recently studied the decay of entanglement under di®erent paradigmatic

noisy channels, identifying the initial states exhibiting the most robust entangle-

ment.4

The aim of the present contribution is to explore characteristic traits of those

state-space trajectories associated to robust states, with emphasis on the study, from

a geometrical point of view, of optimal-ones. This will hopefully shed some light on

the existence and behavior of robust states. The paper is organized as follows. In

Sec. 2, we brie°y review the local decoherence models for multi-qubit systems and the

entanglement and distance measures that will be used in the present work. In Sec. 3,

we investigate the evolution trajectories in state space of highly entangled four-qubit

states. Finally, some conclusions are drawn in Sec. 4.

2. Preliminaries

The systems under consideration in the present study consist of an array of N

independent qubits initially entangled due to a previous, arbitrary interacting pro-

cess. Each qubit in the composite system is coupled to its own environment. In such a

local-environment formulation there is no communication among qubits and the
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entanglement between the subsystems cannot increase because of the locality of the

involved operations.We assume that all qubits are a®ected by an identical decoherence

process. The dynamics of any of these qubits is governed by a master equation from

which one can obtain a completely positive trace-preserving map "which describes the

corresponding evolution: �iðtÞ ¼ "�ið0Þ. In the Born�Markov approximation these

maps (or channels) can be described using its Kraus representation

"i�ið0Þ ¼
XM
j¼1

Eji�ið0ÞE y
ji; ð1Þ

where Ej j ¼ 1; . . . ;M are the so called Kraus operators, M being the number of

operators needed to completely characterize the channel.25 Using the Kraus operators

formalism it is possible to describe the evolution of the entire N-qubit system,

�ðtÞ ¼ "�ð0Þ ¼
X
i���j

Ei1 � � � � � EjN�ð0Þ½Ei1 � � � � � EjN �y: ð2Þ

2.1. Decoherence models

We concentrate our e®orts in the study of the following family of decoherence

channels: the bit °ip (BF), phase °ip (PF), and bit-phase °ip (BPF). These channels

represent all the possible errors in quantum computation, the usual BF 0 $ 1, the

PF, and the combination of both, BPF. The corresponding pair of Kraus operators

fE0;E1g for each channel is given by:

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p=2

p
I; Ei

1 ¼
ffiffiffiffiffiffiffiffi
p=2

p
�i; ð3Þ

where I is the identity matrix, �i are the Pauli matrices, and i ¼ x give us the BF,

i ¼ z the PF, and i ¼ y the BPF. Following Salles et al.,11 the factor 2 in Eq. (3)

guarantees that at p ¼ 1 the ignorance about the occurrence of an error is maximal,

and as a consequence, the information about the state is minimum. The results

obtained with the phase damping channel are the same as those of the PF channel,

actually they can be shown to represent the same process, under a proper change of

variables.2

We also consider the depolarizing channel (D) which can be viewed as a process in

which the initial state is mixed with a source of white noise with probability p. For a

d-dimensional quantum system, it can be expressed as

"� ¼ p

d
I þ ð1� pÞ�: ð4Þ

The Kraus operators for this process, including all Pauli matrices are

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p 0p

I; Ei ¼
ffiffiffiffiffi
p 0

3

r
�i; ð5Þ

State-Space Trajectories and Four-Qubit States 507



where p 0 ¼ 3p=2. Under this process, the state turns separable after a ¯nite time,

because this channel is the only one considered in this work exhibiting the

phenomenon of entanglement sudden death. We remember here that due to the high

symmetry of the depolarizing channel, the evolution of the entanglement depends

only on the amount of entanglement of the initial state. Then, according to this

process, we obtain equivalent evolutions of the entanglement for initial states which

are equivalent under local unitary operation.4 Some results for this channel will be

commented on at the end of Sec. 3.

The parameter p in the channels (3) and (4) is a natural parameterization of time,

larger values of p corresponding to later times. In particular, p ¼ 0 corresponds to the

initial time, when the map � given in Eqs. (1) and (2) coincides with the identity map

and no decoherence has taken place. On the other hand, p ¼ 1 refers to the asymp-

totic limit t ! 1.

2.2. Multipartite entanglement quanti¯cation

One of the most popular measures proposed to quantify multipartite entanglement is

based on the use of a bipartite measure, which is averaged over all possible biparti-

tions of the system. It is mathematically expressed in the fashion

E ¼ 1

½N=2�
X½N=2�

m¼1

E ðmÞ; ð6Þ

E ðmÞ ¼ 1

Nm
bipart

XN m
bipart

i¼1

EðiÞ: ð7Þ

Here, EðiÞ stands for the entanglement associated with one single bipartition of the

N-qubit system. The quantity E ðmÞ gives the average entanglement between subsets

of m qubits and the remaining N �m qubits that constitute the system. The average

is performed over the ensuingN
ðmÞ
bipart nonequivalent bipartitions. If one uses the linear

entropy SL of the reduced density matrix of the smaller bipartition to compute EðiÞ,
E

ð1Þ
L turns out to be the well-known Meyer�Wallach multipartite entanglement

measure.26 This measure was later generalized by Scott to the case where all possible

bipartitions of the system were considered.27 The Meyer�Wallach multipartite

entanglement measure has recently been related to the regularized quantum Fisher

information measure which gives the estimation of the strength of low-noise locally

depolarizing channels.28

We will use the negativity as our bipartite measure of entanglement because we

are dealing with mixed states. The negativity is proportional to the sum of the

negative eigenvalues �i of the partial transpose matrix associated with a given

bipartition. The properly normalized negativity reads

Neg ¼ 2

2m � 1

X
i

j�ij: ð8Þ

508 A. P. Majtey et al.



2.3. Distance measures

Distance measures between quantum states constitute important tools in quantum

information theory.29�33 In the present work, in order to characterize the trajectories

of decohered states, we compute the distances between the state of interest and

several reference states, such as the initial, ¯nal, and maximally mixed ones. We

measure the distance between two di®erent quantum mixed states by recourse to the

quantum Jensen Shannon divergence (QJSD), which can be de¯ned in terms of the

relative entropy as29

dJSð�; �Þ ¼
1

2
S �;

�þ �

2

� �
þ S �;

�þ �

2

� �h i
; ð9Þ

that can be recast in terms of the von Neumann entropy HNð�Þ ¼ �Trð� log �Þ in the

fashion

dJSð�; �Þ ¼ HN

�þ �

2

� �
� 1

2
HNð�Þ �

1

2
HNð�Þ: ð10Þ

The metric character of the square root of the QJSD has been ascertained recently for

pure states, and strong numerical evidences have also been found for the mixed states

case.30,31 To avoid an exclusive dependence on the above distance measure, we also

use the Hilbert�Schmidt distance.32

dHSð�; �Þ ¼ jj�� �jj2HS ¼ Tr½ð�� �Þ2�: ð11Þ
We will be able to appreciate the fact that the results obtained with both distance

measures are qualitatively the same.

2.4. Robust maximally entangled four-qubit states

In a previous work, we have performed an iterative numerical search based on the

simulating annealing algorithm and determined the initial states that evolve (via the

just described noisy channels) to mixed states with the larger possible amount of

entanglement.4 The proof by Higuchi and Sudbery that a four-qubit pure state

exhibiting the theoretically maximum amount of entanglement (that is, having all its

marginal density matrices maximally mixed) does not exist constituted a landmark in

the study of multiqubit entanglement.34 In Ref. 34, a promising candidate for

achieving the maximally entangled state status was also proposed, namely,

j�4
robi ¼ jHSi ¼ 1ffiffiffi

6
p ½j1100i þ j0011i

þ!ðj1001i þ j0110iÞ þ !2ðj1010i þ j0101iÞ�;
ð12Þ

with ! ¼ �1=2þ �
ffiffiffi
3

p
=2. This conjecture has later received support from several

numerical studies36�38 and the jHSi state has also been shown to constitute a local

maximum of the von Neumann entanglement entropy.35 In our previous work, the

jHSi was found to be a robust state. The concept of robustness used in this work can
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be easily explained from Fig. 1. The jHSi state is considered to be the most robust

state because, for any value of p, it leads to decohered states exhibiting more

entanglement than those associated with other initial states. In this graph, we plot

the entanglement evolution of the jHSi state under the action of the BF channel

and compare it to the entanglement decay of the well-known entangled states jGHZi
and jWi

jGHZi ¼ 1ffiffiffi
2

p ðj0000i þ j1111iÞ; ð13Þ

jWi ¼ 1

2
ðj0001i þ j0010i þ j0100i þ j1000iÞ: ð14Þ

We also found that, for six-qubit systems the robust state j� 6
robi turns out to be

precisely the maximally entangled state encountered by some of the authors of a

previous work.36 For ¯ve-qubit systems, the robust state j�5
robi that we found is not

as good as the one detected in the four or six qubits instance. For BF and BPF

channels, its entanglement becomes lower than that of other states for large p values.4

The entanglement decays of j�4
robi and j�6

robi are quite similar and their entangle-

ments are always larger than that of any other state tested in our samplings.

3. Optimal Trajectories

In order to compare the behavior of the entanglement decay for the di®erent channels

we compute it in terms of the degree of mixedness, given by the linear entropy of the

density matrix of the system (whose evolution is described as a function of the

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
E

p

HS

GHZ

W

Fig. 1. Entanglement evolution for several four-qubits states under the action of the BF channel. All

shown quantities are dimensionless.
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parameter p)

SLð�Þ ¼
N

N � 1
ð1� Tr½�2�Þ; ð15Þ

where N ¼ 2n and n is the number of qubits. Here, we display only the results

corresponding to four-qubit systems, although similar results are obtained for sys-

tems with di®erent number of qubits.

We study the decay of entanglement for di®erent initial states undergoing several

decoherence processes. We note that, for those channels for which a given state is

robust, the decay of entanglement in terms of the degree of mixedness is the same. In

Fig. 2, we plot the decay of entanglement for di®erent four-qubits initial states for

BF, PF, and BPF decoherence channels. The entanglement evolution for the jHSi
state coincides for the three considered channels. Remember that the jHSi state was
found to be robust under the action of the three channels studied in this work. In

contraposition, the entanglement evolution of the jGHZi and jWi states under the
PF channel is not equivalent to that under BF and BPF processes because these

states are not robust for the former development.

We also compute the distances between the states (at any given time) and some

reference states using the QJSD. We considered as reference states the initial, ¯nal,

and the maximally mixed state (MM). In Fig. 3, we plot the resultant distances

between (i) the mixed state obtained at each time step of the evolution of the initial

robust pure state of four-qubits and (ii) the reference states for the previously

mentioned decoherence processes. Similar coincident curves (not shown) are obtained

for jGHZi and jWi states if we consider only the BF and BPF channels. According to

both graphs, the state with robust entanglement (w.r.t. several decoherence

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

W

GHZ

HS

E

S
L

 BF - BPF
 PF

Fig. 2. Entanglement evolution as a function of the linear entropy of four-qubits representative states

under phase °ip, bit °ip, and bit-phase °ip decoherence models. All depicted quantities are dimensionless.
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channels) apparently evolves in the same manner under the action of such channels.

It is important to note that these trajectories are not actually the same, they are just

equivalent.

Finally, we compute the distances between the three ¯nal states. These resulting

states generated by the PF, BF, and BPF channels when acting upon the initial state

j�robi turn out to be equidistantly distributed, i.e. the distance between any pair of

them is always the same. The distance from any of them to the maximally mixed

state or to the initial state is also always the same. The overall picture is displayed in

Fig. 4. The initial state is represented by the black square, and the three ¯nal states

are represented by the black spots. These ¯nal states are placed at the border of the

set of separable states, represented by the grey sphere. The star placed in the middle

Fig. 3. QJSD between the decohered state (initially j�4
robi) and reference states: maximally mixed state

(solid line), initial robust state (dashed line), and ¯nal separable state (dotted line). All plotted quantities
are dimensionless.

Fig. 4. Equivalent trajectories in Hilbert space, the initial robust four-qubits state is represented by a
black square and the ¯nal states corresponding to di®erent decoherence processes are represented by black

spots at the border of the set of separable states (grey sphere). The star in the center of the sphere

represents the MM state.
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of the sphere denotes the maximally mixed state. The three decohered trajectories are

di®erent but equivalent, and a nice symmetrical con¯guration is observed.

These results can be extended to robust states in higher dimensions and also to the

GHZ and W states under the action of the BF and BPF channels. The results

obtained by using the Hilbert�Schmidt distance instead of the QJSD are equivalent.

The most representative distances that de¯ne the geometry shown in Fig. 3 are given

in the following table:

States dJS dHS

Initial-¯nal 0.6548 0.9129

Initial-MM 0.8285 0.9682
Final-MM 0.4188 0.3227

Final-¯nal 0.6352 0.4546

As already mentioned, due to its highly symmetric character, the depolarizing

channel does not have a single robust state. Any maximally entangled state will be

robust for this decoherence process. All the associated trajectories in state space

leading to these maximally entangled states are equivalent, and the sudden death of

the entanglement always occurs for states with the same degree of mixedness. Sys-

tems undergoing this process evolve to a single asymptotic state, i.e. all initial states

evolve asymptotically to the MM state. Moreover, they do it following equivalent

trajectories. Figure 5 depicts the decay of the entanglement and the linear entropy of

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p

 S
L

 E

Fig. 5. Entanglement evolution (empty dots) and linear entropy of the time evolved state (¯lled dots) for

103 maximally entangled states obtained from jHSi by applying local unitary transformations, under

depolarizing channel. All plotted quantities are dimensionless.
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the decohered state for 103 initial maximally entangled states (equivalent under

unitary operations) due to the action of the depolarizing channel.

4. Conclusion

In the present work, we have investigated the state-space trajectories associated to

previously determined four-qubit robust states undergoing di®erent decoherence

processes. We have characterized these trajectories by computing the distance

between the time-dependent state resultant from the decoherence process and some

¯xed states, namely the initial, ¯nal, and maximally mixed (MM) states. We have

shown that, for states that are robust under decoherence, i.e. those with the maximal

amount of entanglement during the evolution, the trajectories' aspect may look

di®erent. However, by reference to Fig. 4, one detects a signi¯cant degree of equiv-

alence and symmetry among them.

In the case of depolarizing decoherence processes, the ¯nal state is the MM-one,

but the system becomes separable before reaching it, i.e. a sudden death of entan-

glement takes place for this process. According to the symmetry of this channel, all

maximally entangled states are robust, and they evolve in equivalent fashion.

Because of this equivalence, the entanglement's sudden death for any initial maxi-

mally entangled state is always characterized by the same degree of mixedness.
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