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Abstract. We prove the existence of nontrivial solutions to the system

∆pu = |u|p−2u, ∆qv = |v|q−2v,

on a bounded set of RN , with nonlinear coupling at the boundary given by

|∇u|p−2 ∂u

∂ν
= Fu(x, u, v), |∇u|q−2 ∂v

∂ν
= Fv(x, u, v).

The proofs are done under suitable assumptions on the potential F , and based on vari-
ational arguments. Our results include subcritical, resonant and critical growth on F .

1. Introduction.

In this paper we study the existence of nontrivial solutions of the quasilinear elliptic
system

(1.1) ∆pu = |u|p−2u, ∆qv = |v|q−2v in Ω,

with nonlinear coupling at the boundary given by

(1.2) |∇u|p−2 ∂u

∂ν
= Fu(x, u, v), |∇v|q−2 ∂v

∂ν
= Fv(x, u, v) on ∂Ω .

Here Ω is a bounded domain in RN with smooth boundary, ∆pu = div(|∇u|p−2∇u) is
the p−Laplacian, ∂

∂ν is the outer normal derivative and (Fu, Fv) is the gradient of some
positive potential F : ∂Ω× R× R→ R with precise hypotheses that we state below.

Existence results for nonlinear elliptic systems have deserved a great deal of interest in
recent years, in particular when the nonlinear term appears as a source in the equation
complemented with Dirichlet boundary conditions. For this type of result see, among
others, [2, 3, 7, 9, 10, 11] and the survey [8]. There are two major classes of systems
that can be treated variationally: Hamiltonian and gradient systems. Here we deal with
a gradient problem. The Hamiltonian case (for p = q = 2) was analyzed in [13, 14, 22].
Problems with no variational structure can be treated via fixed-point arguments. For
example (1.1) with nonlinear boundary conditions, p = q = 2 and without variational
assumptions has been studied in [15].
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For (weak) solutions of (1.1)–(1.2) we understand critical points of the functional

(1.3) F(u, v) =
∫

Ω

|∇u|p
p

+
|u|p
p

dx +
∫

Ω

|∇v|q
q

+
|v|q
q

dx−
∫

∂Ω
F (x, u, v) dσ.

where dσ is the boundary measure.

The geometry of F is similar to the one of the functional

F1(u) =
1
p

∫

Ω
|∇u|p + |u|p dx−

∫

∂Ω
F (x, u) dσ

which corresponds to a single quasilinear equation with nonlinear boundary conditions.
The functional F1 was studied in [16] where essentially the case F (x, u) = |u|r was consider.
Recently, in [12], the functional F1 was studied where the potential F was allowed to
change sign.

However, some interesting phenomena appear in (1.3) due to the coupling in the system
(1.1)–(1.2). Our results for (1.1)–(1.2) generalize the ones in [16] both to systems and to
more general potentials.

In [2] the functional

F̄(u, v) =
∫

Ω
|∇u|p + |∇v|q dx−

∫

Ω
F̄ (x, u, v) dx

was analyzed. In this paper we extend their results to the nonlinear boundary condition
case and moreover some new results are obtained. For instance, multiplicity results in the
subcritical case with an oddness condition on F and, mainly, existence results with critical
growth.

Let us introduce the precise assumptions of F . From now on, we fix 1 < p, q < N ,
and so the functional F will be defined in the Banach space W 1,p(Ω) × W 1,q(Ω). Of
course, the growth of F has to be controlled in order for F to make sense for (u, v) ∈
W 1,p(Ω)×W 1,q(Ω). According to the Sobolev trace embedding, we impose

(F1) |F (x, u, v)| ≤ C(1 + |u|p∗ + |v|q∗),
where p∗ = p(N − 1)/(N − p) and q∗ = q(N − 1)/(N − q) are the critical Sobolev trace
exponents and C is some positive constant. With (F1), as W 1,p(Ω) → Lp∗(∂Ω) and
W 1,q(Ω) → Lq∗(∂Ω) by the Sobolev trace Theorem, we have that F is well defined.

In order to apply variational techniques, we need the functional F to be C1. To this
end, (F1) is not enough. One has to consider the stronger assumption

|Fu(x, u, v)| ≤ C

(
1 + |u|p∗−1 + |v|

q∗(p∗−1)
p∗

)

|Fv(x, u, v)| ≤ C

(
1 + |v|q∗−1 + |u|

p∗(q∗−1)
q∗

)
.

(F2)

One can easily check that (F2) implies (F1) and under (F2), it follows that critical points
of F are weak solutions of (1.1)–(1.2).

Now, the geometry of F depends strongly on the precise growth of the potential F .
That is, on the exponents r and s in the inequality

(F3) |F (x, u, v)| ≤ C (1 + |u|r + |v|s) ,
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where r ≤ p∗ and s ≤ q∗.

We will distinguish mainly four different cases:

(1) r < p and s < q. (Sublinear-like)
(2) r = p and s = q. (Resonant)
(3) p < r < p∗ and q < s < q∗. (Superlinear-like, subcritical)
(4) r = p∗ and s = q∗. (Critical)

Of course, the case of interest is

(F4) F (x, 0, 0) = Fu(x, 0, 0) = Fv(x, 0, 0) = 0, for x ∈ ∂Ω,

then u ≡ v ≡ 0 is a trivial solution of the system (1.1)-(1.2).

First, we turn our attention to the superlinear and subcritical case (3).

In order to verify the Palais-Smale condition, we need to impose the following assump-
tion: There exist R > 0, θp and θq with

θp <
1
p
, θq <

1
q
,

such that

(F5) 0 < F (x, u, v) ≤ θpuFu(x, u, v) + θqvFv(x, u, v),

for all x ∈ ∂Ω and |u|, |v| ≥ R.

We have,

Theorem 1.1. Assume that the potential F satisfies (F2), (F3) with r, s as in (3), (F4)
and (F5). Assume moreover that there exists constants c > 0 and ε > 0 and p∗ > r̄ > p,
q∗ > s̄ > q such that

(F6) |F (x, u, v)| ≤ c(|u|r̄ + |v|s̄), for x ∈ ∂Ω, |u|, |v| ≤ ε.

Then F has a critical point. If, moreover, F is even then F has infinitely many critical
points which are unbounded in W 1,p(Ω)×W 1,q(Ω).

Case (1) is similar in nature to a sublinear problem for the usual Laplacian. So, direct
minimization yields a nontrivial solution. However, under a hypothesis similar to (F5) we
can show the existence of infinitely many solutions (of course, with an oddness assumption
on F ). The condition is: There exists R > 0, θp and θq with

θp <
1
p
, θq <

1
q
,

such that

(F7) θpuFu(x, u, v) + θqvFv(x, u, v)− F (x, u, v) ≥ −c(|u|r + |v|s),
for all x ∈ ∂Ω and |u|, |v| ≥ R.

We have the following.

Theorem 1.2. Assume that the potential F satisfies (F2), (F3) with r, s as in (1) and
(F4). Then F has a nontrivial critical point providing there exists a constant R > 0, θ < 1
and a continuous function K : ∂Ω× R× R→ R such that

(F8) F (x, t
1
p u, t

1
q v) ≥ tθK(x, u, v), for x ∈ ∂Ω, |u|, |v| ≤ R, and small t > 0.
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If, moreover, F is even and (F7) holds, then F has infinitely many critical points which
form a compact set in W 1,p(Ω)×W 1,q(Ω).

The case (2) is a resonant problem. So there is an underlying (nonlinear) eigenvalue
problem. In this case, it is natural to assume a condition on F that implies that the
functional F satisfies the so-called Cerami condition (see (5.5)). This assumption is, there
are positive constants c,R, a, b with 0 < a < p, 0 < b < q such that

(F9)
1
p
uFu(x, u, v) +

1
q
vFv(x, u, v)− F (x, u, v) ≥ c(|u|a + |v|b),

for x ∈ ∂Ω, |u|, |v| > R. This type of condition was introduced, for the Dirichlet boundary
condition case, by [5, 6].

In order to avoid resonance, we need to understand the underlying eigenvalue problem.
A similar eigenvalue problem for the Dirichlet boundary condition case, was introduced in
[2]. Let G : R2 → [0,∞) be a C1 positive even function such that

(G1) G(t
1
p u, t

1
q v) = tG(u, v).

(G2) G(u, v) ≤ k(|u|p + |v|q)

The eigenvalue problem is

(1.4)
∆pu = |u|p−2u, ∆qv = |v|q−2v, in Ω,

|∇u|p−2 ∂u
∂ν − aGu = λ|u|p−2u, |∇v|q−2 ∂v

∂ν − aGv = λ|v|q−2v, on ∂Ω,

where a ∈ L∞(∂Ω).

We will see that problem (1.4) has a first eigenvalue λ1(a). So in order to avoid res-
onance, we assume that there exists positive numbers R and ε, and a, b ∈ L∞(∂Ω) such
that

λ1(a) < 0, F (x, u, v) ≥ a(x)G(u, v), |u|, |v| ≥ R,

λ1(b) > 0, F (x, u, v) ≤ b(x)Ḡ(u, v), |u|, |v| ≤ ε,
(F10)

where G and Ḡ satisfy (G1).

We have the following,

Theorem 1.3. Assume that the potential F satisfies (F2), (F3) with r and s as in (2),
(F4), (F9) and (F10). Then the functional F has a nontrivial critical point.

Now we turn our attention to the critical case (4). As it is well known, the compactness
in the immersion W 1,p(Ω)×W 1,q(Ω) → Lp∗(∂Ω)×Lq∗(∂Ω) fails, so the functional F does
not verify the Palais-Smale condition. However, by applying the compensated compactness
method (see [18, 19]), we can prove that F satisfy a local Palais-Smale condition that will
suffices to apply the usual variational techniques.

The hypotheses on the potential F in order to apply the compensated compactness
method are

(F11) F (x, u, v) = Fλ(x, u, v) = F c(x, u, v) + λF s(x, u, v),
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where F c is the critical part of Fλ and F s is a subcritical perturbation, that verifies (F3)
with r and s as in (1) or (3).

The hypotheses on the critical part F c are: there exist two constants c, C > 0 such that

(Fc
1) c(|u|p∗ + |v|q∗) ≤ F c

u(x, u, v)u + F c
v (x, u, v)v ≤ C(|u|p∗ + |v|q∗).

(Fc
2) c(|u|p∗ + |v|q∗) ≤ θpF

c
u(x, u, v)u + θqF

c
v (x, u, v)v − F c(x, u, v),

where θp and θq are defined for the two cases in (F5) and (F7).

For the subcritical perturbation F s, we need also to impose the following condition,

(Fs
1) F s

u(x, u, v)u + F s
v (x, u, v)v ≤ C(1 + |u|r + |v|s).

We have the following theorem.

Theorem 1.4. Assume that Fλ satisfies (F11) with F s satisfying (F2), (F3) with r and
s as in (3), (F4), (F5) and (Fs

1) and F c satisfying (Fc
1) and (Fc

2). Then there exists a
constant Λ̄ > 0 such that, if λ > Λ̄, F has a critical point in W 1,p(Ω)×W 1,q(Ω).

Finally, for sublinear perturbations we have,

Theorem 1.5. Assume that Fλ satisfies (F11) with F s satisfying (F2), (F3) with r and
s as in (1), (F4), (F7) and (Fs

1) and F c satisfying (Fc
1) and (Fc

2). Then there exists a
constant Λ > 0 such that, if 0 < λ < Λ, F has a nontrivial critical point. Moreover, if F
is even then F has infinitely many critical points in W 1,p(Ω)×W 1,q(Ω).

The rest of the paper is organized as follows: In section 2 we show some classes of poten-
tials that verifies our hypotheses in each case. In section 3, we deal with the superlinear-like
and subcritical case (Theorem 1.1). In section 4, we analyze the sublinear-like case (The-
orem 1.2). Then, in section 5 we study the resonant case (Theorem 1.3) and also the
eigenvalue problem (1.4). Finally, in the last two sections, section 6 and section 7, we deal
with the critical cases (Theorem 1.4 and Theorem 1.5 respectively).

2. Examples of potentials

In this section we exhibit examples of potentials that fulfil our hypotheses. Most of our
examples are borrowed from [2].

Example 2.1. F (x, u, v) = a(x)|u|r +b(x)|v|s, where a, b ∈ L∞(∂Ω) are positive. Of course,
these potentials are of little interest because they give rise to two uncoupled PDEs.

Example 2.2. F (x, u, v) = a(x)|u|α|v|β, where a ∈ L∞(∂Ω) is positive. This potential
verifies (F1)–(F4) if

α

p∗
+

β

q∗
≤ 1.

Now, if we have strict inequality, we are in the subcritical cases (1)–(3). To avoid resonance,
we need

α

r
+

β

s
= 1

where r 6= p and s 6= q. In this case the hypotheses (F1)–(F8) are satisfied. Theorem 1.1
and Theorem 1.2 hold true for these potentials.
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Example 2.3. F (x, u, v) = c(x)|u|p + d(x)|v|q + e(x)|u|α|v|β, where c, d, e ∈ L∞(∂Ω) are
positive functions and

α

p
+

β

q
= 1.

In this case, hypotheses (F1)–(F4) and (F9) are satisfied. To see that (F10) is also verified,
we can take G(u, v) = Ḡ(u, v) = 1

p |u|p + 1
q |v|q and a(x) = −M , b(x) = M where M is a

(large) positive number. Then λ1(a) = min{λ1,p, λ1,q}−M and λ1(b) = min{λ1,p, λ1,q}+M
where λ1,p is the first eigenvalue of

{
∆pu = |u|p−2u in Ω
|∇u|p−2 ∂u

∂ν = λ|u|p−2u on ∂Ω.

For properties of this eigenvalue problem we refer to [16, 20].

Example 2.4. F (x, u, v) = Fλ(x, u, v) = F c(x, u, v) + λF s(x, u, v) and F s(x, u, v) is as in
Example 2.2 and F c(x, u, v) = b(x)|u|p∗ + c(x)|v|q∗ + d(x)|u|α|v|β, where b, c, d ∈ L∞(∂Ω)
are positive functions and

α

p∗
+

β

q∗
= 1.

It is now easy to check that Fλ verifies our hypotheses needed in Theorems 1.4 and 1.5,
provided that the perturbation F s is either sublinear-like or either superlinear-like and
subcritical.

3. Superlinear and subcritical case. p < r < p∗ and q < s < q∗

The following Lemma, that will be helpful in order to prove the Palais-Smale condition,
was proved in [16].

Lemma 3.1 ([16], Lemma 2.1). Let φ ∈ W 1,p(Ω)′ (the topological dual space of W 1,p(Ω)).
Then there exists a unique weak solution u ∈ W 1,p(Ω) of

−∆pu + |u|p−2u = φ.

Moreover, the operator Ap : φ 7→ u is continuous.

With this Lemma we can verify the Palais-Smale condition for F .

Lemma 3.2. The functional F satisfies the Palais-Smale condition.

Proof. Let (uk, vk)k≥1 ⊂ W 1,p(Ω)×W 1,q(Ω) be a Palais-Smale sequence, that is a sequence
such that

(3.1) F(uk, vk) → c and F ′(uk, vk) → 0.

Let us first prove that (3.1) implies that (uk, vk) is bounded. From (3.1) it follows that
there exists a sequence εk → 0 such that

|F ′(uk, vk)(w, z)| ≤ εk(‖w‖W 1,p(Ω) + ‖z‖W 1,q(Ω)), ∀(w, z) ∈ W 1,p(Ω)×W 1,q(Ω).
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Now we have, by (F5),

c + 1 ≥ F(uk, vk)−F ′(uk, vk)(θpuk, θqvk) + F ′(uk, vk)(θpuk, θqvk)

≥
(

1
p
− θp

)
‖uk‖p

W 1,p(Ω)
+

(
1
q
− θq

)
‖vk‖q

W 1,q(Ω)
+ F ′(uk, vk)(θpuk, θqvk)

≥
(

1
p
− θp

)
‖uk‖p

W 1,p(Ω)
+

(
1
q
− θq

)
‖vk‖q

W 1,q(Ω)

− εk(θp‖uk‖W 1,p(Ω) + θq‖vk‖W 1,q(Ω))

hence, (uk, vk) is bounded in W 1,p(Ω)×W 1,q(Ω).

By compactness we can assume that (uk, vk) ⇀ (u, v) weakly in W 1,p(Ω) × W 1,q(Ω)
and (uk, vk) → (u, v) strongly in Lr(∂Ω) × Ls(∂Ω) and a.e. in ∂Ω. Then, as p < r < p∗
and q < s < q∗, it follows that, Fu(x, uk, vk) → Fu(x, u, v) in Lp′∗(∂Ω) and Fv(x, uk, vk) →
Fv(x, u, v) in Lq′∗(∂Ω) and hence in W 1,p(Ω)′ ×W 1,q(Ω)′. Therefore, according to Lemma
3.1,

(uk, vk) → (Ap(Fu(x, u, v)), Aq(Fv(x, u, v))), in W 1,p(Ω)×W 1,q(Ω).
This completes the proof. ¤

Proof of Theorem 1.1. Existence part. The fact that F is C1 is a straightforward adap-
tation of the results in [21]. The Palais-Smale condition was already checked in Lemma
3.2.

Hypotheses (F3), (F4), (F6) guarantee that we are in the geometrical assumptions
needed to apply the Mountain Pass Lemma (see [21]). In fact, from the Sobolev im-
mersion theorem, we obtain

F(u, v) =
1
p
‖u‖p

W 1,p(Ω)
+

1
q
‖v‖q

W 1,q(Ω)
−

∫

∂Ω
F (x, u, v) dσ

≥1
p
‖u‖p

W 1,p(Ω)
+

1
q
‖v‖q

W 1,q(Ω)
− C(1 + ‖u‖r

W 1,p(Ω) + ‖v‖s
W 1,q(Ω))

=g(‖u‖W 1,p(Ω), ‖v‖W 1,q(Ω))

where g(x, y) = 1
pxp + 1

qyq − C(xr̄ + ys̄). As r̄ > p and s̄ > q, F(u, v) > 0 in 0 <

‖u‖W 1,p(Ω) + ‖v‖W 1,q(Ω) < ρ and F(u, v) ≥ c > 0 on ‖u‖W 1,p(Ω) + ‖v‖W 1,q(Ω) = ρ.

As in [2], one can check that (F5) implies that there exists a positive function K(x, u, v)
such that

(3.2) F (x, tθpu, tθqv) ≥ tK(x, u, v),

from where it follows that there exists (u0, v0) ∈ W 1,p(Ω) ×W 1,q(Ω) with F(u0, v0) < 0.
Therefore we have a nontrivial critical point of F . ¤

Now, in order to prove the multiplicity result when F is even, we introduce a topological
tool, the genus, that was introduced in [17] but we will use an equivalent definition due
to [4]. Given a Banach Space X, we consider the class

Σ = {A ⊂ X : A is closed, A = −A}.
Over this class we define the genus, γ : Σ → N ∪ {∞}, as

γ(A) = min{k ∈ N : there exists ϕ ∈ C(A,Rk − {0}), ϕ(x) = −ϕ(−x)}.
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We will use the following Theorem whose proof can be found in [1],

Theorem 3.1 ([1], Theorem 2.23). Let F : X → R verifying

(1) F ∈ C1(X) and even.
(2) F verifies the Palais-Smale condition.
(3) There exists a constant r > 0 such that F(u) > 0 in 0 < ‖u‖X < r, and F(u) ≥

c > 0 if ‖u‖X = r.
(4) There exists a closed subspace Em ⊂ X of dimension m, and a compact set Am ⊂

Em such that F < 0 on Am and 0 lies in a bounded component of Em − Am in
Em.

Let B be the unit ball in X, we define

Γ = {h ∈ C(X, X) : h(0) = 0, h is an odd homeomorphism and F(h(B)) ≥ 0},
and

Km = {K ⊂ X : K = −K, K is compact, and γ(K ∩ h(∂B)) ≥ m for all h ∈ Γ}.
Then,

cm = inf
K∈Km

max
u∈K

F(u)

is a critical value of F , with 0 < c ≤ cm ≤ cm+1 < ∞. Moreover, if cm = cm+1 = · · · =
cm+r then γ(Kcm) ≥ r + 1 where Kcm = {u ∈ X : F ′(u) = 0, F(u) = cm}.

End of the proof of Theorem 1.1 . We need to check the hypotheses of Theorem 3.1. Hy-
pothesis (1) is a direct consequence of the oddness assumption on F . Hypotheses (2) and
(3) were already verified. Finally, to verify (4), let us consider a sequence of subspaces
Em ⊂ W 1,p(Ω) ×W 1,q(Ω) of dimension m such that Em ⊂ Em+1 and |u|, |v| 6≡ 0 on ∂Ω
for (u, v) 6= (0, 0), (u, v) ∈ Em. Hence,

min
(u,v)∈Bm

∫

∂Ω
K(x, u, v) dσ > 0

where Bm = {(u, v) ∈ Em :
∫
∂Ω K(x, u, v) dσ = 1}. Now we observe that, using (3.2),

F(tθpu, tθqv) ≤ tθpp

p
‖u‖p

W 1,p(Ω)
+

tθqq

q
‖v‖q

W 1,q(Ω)
− min

(u,v)∈Bm

∫

∂Ω
F (x, tθpu, tθqv) dσ

≤ tθpp

p
‖u‖p

W 1,p(Ω)
+

tθqq

q
‖v‖q

W 1,q(Ω)
− Ct.

for all (u, v) ∈ Bm, and then for t ≥ t0, (4) follows by taking Am = t0Bm. ¤

To end this section, let us see that the critical points of F that we have found are
unbounded in W 1,p(Ω) × W 1,q(Ω). The arguments follow closely the ones given in [16].
We only sketch them for the convenience of the reader.

The result will follow from the next lemma,

Lemma 3.3. Let (cm) ⊂ R be the sequence of critical values given by Theorem 3.1. Then
limm→∞ cm = ∞.



GRADIENT ELLIPTIC SYSTEM 9

Proof. Let

M =
{

(u, v) ∈ W 1,p(Ω)×W 1,q(Ω) : u, v 6= 0,

1
λp
‖u‖p

W 1,p(Ω)
≤ ‖u‖r

Lr(∂Ω),
1
λq
‖v‖q

W 1,q(Ω)
≤ ‖v‖s

Ls(∂Ω)

}
.

By the Sobolev trace Theorem, there exists a constant θ > 0 such that

(3.3) θ < ‖u‖r
Lr(∂Ω), θ < ‖v‖s

Ls(∂Ω) ∀(u, v) ∈ M.

Let us define
bm = sup

h∈Γ
inf

{(u,v)∈∂B∩Ec
m−1}

F(h(u, v)).

It is proved in [1] that bm ≤ cm, hence to prove our result it is enough to show that
bm →∞.

Now, bm+1 ≥ inf{(u,v)∈∂B∩Ec
m}F(h(u, v)) for all h ∈ Γ. Using (3.3) and following [16]

one can construct h̃m ∈ Γ such that limm→∞ inf{(u,v)∈∂B∩Ec
m}F(h̃m(u, v)) = ∞. This

ends the proof of the lemma. ¤

4. Sublinear case. r < p and s < q

In this case, a nontrivial solution can be found easily by direct minimization.

Proof of Theorem 1.2. Existence part. By a standard compactness argument, an absolute
minimizer of F in W 1,p(Ω) × W 1,q(Ω) exists. We need to show that this minimizer is
nontrivial. In fact, let (u, v) ∈ W 1,p(Ω) × W 1,q(Ω) such that K(x, u, v) 6= 0. Then, by
(F8),

F(t1/pu, t1/qv) ≥ t(‖u‖p
W 1,p(Ω)

+ ‖v‖q
W 1,q(Ω)

)− tθ
∫

∂Ω
K(x, u, v) dσ.

Then, taking t small enough we obtain inf F < 0. ¤

For the multiplicity part, we begin by showing that the Palais-Smale condition still
holds.

Lemma 4.1. The functional F is bounded below and verifies the Palais-Smale condition.

Proof. First, by the Sobolev-trace inequality and (F3), we have

F(u, v) ≥ 1
p
‖u‖p

W 1,p(Ω)
+

1
q
‖v‖q

W 1,q(Ω)
− C

(
1 + ‖u‖r

W 1,p(Ω) + ‖v‖s
W 1,q(Ω)

)

≡ h(‖u‖W 1,p(Ω), ‖v‖W 1,q(Ω)),
where

h(a, b) =
1
p
ap +

1
p
bq − C(1 + ar + bs).

As r < p and s < q, h(a, b) is bounded below and therefore we conclude that F is bounded
below.

Now to prove the Palais-Smale condition, let (uk, vk) ∈ W 1,p(Ω) × W 1,q(Ω) a Palais-
Smale sequence. As c = limk→∞F(uk, vk), using that

|F ′(uk, vk)(w, z)| ≤ εk(‖w‖W 1,p(Ω) + ‖z‖W 1,q(Ω))
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where εk → 0 in W 1,p(Ω)′ ×W 1,q(Ω)′ and (F7) we have that, for k large enough,

c + 1 ≥ F(uk, vk)−F ′(uk, vk)(θpuk, θqvk) + F ′(uk, vk)(θpuk, θqvk)

≥
(

1
p
− θp

)
‖uk‖p

W 1,p(Ω)
+

(
1
q
− θq

)
‖vk‖q

W 1,q(Ω)
− C(‖uk‖r

W 1,p(Ω) + ‖vk‖s
W 1,q(Ω))

+ F ′(uk, vk)(θpuk, θqvk)

≥
(

1
p
− θp

)
‖uk‖p

W 1,p(Ω)
+

(
1
q
− θq

)
‖vk‖q

W 1,q(Ω)
− C(‖uk‖r

W 1,p(Ω) + ‖vk‖s
W 1,q(Ω))

− εk(θp‖uk‖W 1,p(Ω) + θq‖vk‖W 1,q(Ω))

and using that r < p and s < q it follows that ‖uk‖W 1,p(Ω) ≤ C and ‖vk‖W 1,q(Ω) ≤ C.
Therefore, the result follows as in Lemma 3.2. ¤

Now we need the following lemma.

Lemma 4.2. For every n ∈ N there exists a constant ε > 0 such that

γ(F−ε) ≥ n,

where Fc = {(u, v) ∈ W 1,p(Ω)×W 1,q(Ω) : F(u, v) ≤ c}.

Proof. Let En ⊂ W 1,p(Ω) ×W 1,q(Ω) be a n−dimensional subspace such that u, v |∂Ω 6≡ 0
for all (u, v) ∈ En, u, v 6= 0.

Hence, using (F8) we have, for (u, v) ∈ En, ‖u‖W 1,p(Ω) = 1, ‖v‖W 1,q(Ω) = 1,

(4.1)

F(t1/pu, t1/qv) =
t

p
+

t

q
−

∫

∂Ω
F (x, t1/pu, t1/qv)

≤ t

(
1
p

+
1
q

)
− tθ

∫

∂Ω
K(x, u, v)

≤ t

(
1
p

+
1
q

)
−Antθ.

where

An = inf
{∫

∂Ω
K(x, u, v) : (u, v) ∈ En, ‖u‖W 1,p(Ω) = 1, ‖v‖W 1,q(Ω) = 1

}
.

Observe that An > 0 because En is finite dimensional. As θ < 1 we obtain from (4.1) that
there exists positive constants ρ and ε such that

F(u, v) < −ε for (u, v) ∈ En, ‖u‖W 1,p(Ω) = ‖v‖W 1,q(Ω) = ρ.

Therefore, if we set Sρ,n = {(u, v) ∈ En : ‖u‖W 1,p(Ω) = ‖v‖W 1,q(Ω) = ρ}, we have that
Sρ,n ⊂ F−ε. Hence by the monotonicity of the genus

γ(F−ε) ≥ γ(Sρ,n) = n,

as we wanted to show. ¤

Finally, the following two Theorems end the proof of Theorem 1.2.
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Theorem 4.1. Let

Σ = {A ⊂ W 1,p(Ω)×W 1,q(Ω) : A is closed, A = −A,

and u, v|∂Ω 6= 0, ∀(u, v) ∈ A},

Σk = {A ∈ Σ : γ(A) ≥ k},
where γ stands for the genus. Then

ck = inf
A∈Σk

sup
(u,v)∈A

F(u, v)

is a negative critical value of F and moreover, if c = ck = · · · = ck+r, then γ(Kc) ≥ r + 1,
where Kc = {(u, v) ∈ W 1,p(Ω)×W 1,q(Ω) : F(u, v) = c, F ′(u, v) = 0} .

Proof. The proof follows closely the one from Theorem 3.1 of [16]. According to Lemma
4.2 for every k ∈ N there exists ε > 0 such that γ(F−ε) ≥ k. As F is even and continuous
it follows that F−ε ∈ Σk therefore ck ≤ −ε < 0. Moreover by Lemma 4.1, F is bounded
below so ck > −∞. Let us now see that ck is in fact a critical value for F . To this end
let us suppose that c = ck = · · · = ck+r. As F is even it follows that Kc is symmetric.
The Palais-Smale condition implies that Kc is compact, therefore if γ(Kc) ≤ r by the
continuity property of the genus (see [21]) there exists a neighborhood of Kc, Nδ(Kc) =
{(u, v) ∈ W 1,p(Ω)×W 1,q(Ω) : d((u, v),Kc) ≤ δ}, such that γ(Nδ(Kc)) = γ(Kc) ≤ r.

Now if ck is not a critical value of F , using a standard deformation argument we arrive
to a contradiction. See [16] for the details. ¤

We end the section showing that the critical points of F form a compact set of W 1,p(Ω)×
W 1,q(Ω).

Theorem 4.2. The set K = {(u, v) ∈ W 1,p(Ω)×W 1,q(Ω) : F ′(u, v) = 0} is compact in
W 1,p(Ω)×W 1,q(Ω).

Proof. As F is C1 it is immediate that K is closed. Let (uj , vj) be a sequence in K. We
have that, by (F3) and the Sobolev trace theorem,

0 = F ′(uj , vj)(uj , vj) ≥ ‖uj‖p
W 1,p(Ω)

+ ‖vj‖q
W 1,q(Ω)

− C(1 + ‖uj‖r
W 1,p(Ω) + ‖vj‖s

W 1,q(Ω)).

As 1 < r < p and 1 < s < q, we conclude that (uj , vj) is bounded in W 1,p(Ω)×W 1,q(Ω).
Now we can use Palais-Smale condition to extract a convergent subsequence. ¤

5. Resonant case. r = p and s = q

In this section we deal with the resonant case, i.e. we assume r = p, s = q in (F3).
First we need to study the eigenvalue problem (1.4). This problem is related to the one
introduced in [2]. Our proofs follows closely the ones in [2], but since in our case the
eigenvalue appears on the boundary condition, we include the details.

Lemma 5.1. Given a ∈ L∞(∂Ω), there exists λ1(a) ∈ R and (φ, ψ) ∈ W 1,p(Ω)×W 1,q(Ω)
such that (φ, ψ) is a nontrivial solution of (1.4) with λ = λ1(a). Moreover

1
p
‖u‖p

W 1,p(Ω)
+

1
q
‖v‖q

W 1,q(Ω)
−

∫

∂Ω
a(x)G(u, v) dσ ≥ λ1(a)

[1
p
‖u‖p

Lp(∂Ω) +
1
q
‖v‖q

Lq(∂Ω)

]
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for all (u, v) ∈ W 1,p(Ω)×W 1,q(Ω).

Proof. Choose M > k‖a‖L∞(∂Ω) where k is the constant in (G2). Then the functional

(5.1)
G(u, v) =

1
p
‖u‖p

W 1,p(Ω)
+

1
q
‖v‖q

W 1,q(Ω)
−

∫

∂Ω
a(x)G(u, v) dσ

+ M
[1
p
‖u‖p

Lp(∂Ω) +
1
q
‖v‖q

Lq(∂Ω)

]

is nonnegative for (u, v) ∈ W 1,p(Ω)×W 1,q(Ω). Let

S =
{

(u, v) ∈ W 1,p(Ω)×W 1,q(Ω) :
1
p
‖u‖p

Lp(∂Ω) +
1
q
‖v‖q

Lq(∂Ω) = 1
}

Let µ = inf{G(u, v) : (u, v) ∈ S}. Let us take (un, vn) ∈ S a minimizing sequence for G.
It follows that (un, vn) is bounded in W 1,p(Ω)×W 1,q(Ω). Then, by taking a subsequence if
necessary, (un, vn) converges weakly in W 1,p(Ω)×W 1,q(Ω) and strongly in Lp(∂Ω)×Lq(∂Ω)
to some (φ, ψ).

Passing to the limit we obtain G(φ, ψ) ≤ µ which is in fact an equality since (φ, ψ) ∈ S.
So the infimum is achieved. It follows then that (φ, ψ) verifies





∆pφ = |φ|p−2φ, in Ω,

|∇φ|p−2 ∂φ
∂ν − a(x)Gu(φ, ψ) + M |φ|p−2φ = µM |φ|p−2φ, on ∂Ω,

∆qψ = |ψ|q−2ψ, in Ω,

|∇ψ|q−2 ∂ψ
∂ν − a(x)Gv(φ, ψ) + M |ψ|q−2ψ = µM |ψ|q−2ψ, on ∂Ω,

where µM is the Lagrange multiplier. It is easy to check that (G1) implies

(5.2) G(u, v) =
1
p
uGu(u, v) +

1
q
vGv(u, v).

From the minimization problem, using (5.2), it is now easy to see that µ = µM so the
lemma follows by taking λ1(a) = µ−M . ¤

Remark 5.1. From the minimization argument both φ and ψ can be taken to be nonnega-
tive. Also, by known regularity results (see for example [23]) the eigenfuntions (φ, ψ) are
C1(Ω). Then, by the maximum principle and Hopf’s Lemma (see [24]), we can assume
that φ and ψ are either positive functions or vanishes identically in Ω. In either case, one
of φ or ψ is strictly positive.

Lemma 5.2. λ1(a) is continuous with respect to a in the L∞–norm.

Proof. Let a, b ∈ L∞(∂Ω) and let Ga and Gb be the associated functionals defined in (5.1).
Given ε > 0, choose (uε, vε) ∈ S such that

(5.3) Ga(uε, vε) ≤ λ1(a) + M +
ε

2
.

Next, using (G2) we obtain

(5.4) |Gb(uε, vε)− Ga(uε, vε)| ≤ ‖b− a‖L∞(∂Ω)K
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where K ≥ max{kp, kq}. Now from (5.3) and (5.4) we obtain

λ1(b) + M ≤ Gb(uε, vε) ≤ Ga(uε, vε)+ K‖b− a‖L∞(∂Ω) ≤ λ1(a) + M +
ε

2
+K‖b− a‖L∞(∂Ω)

from where the continuity follows. ¤

We say that the functional F satisfies the Cerami condition if for every sequence
(un, vn) ∈ W 1,p(Ω)×W 1,q(Ω) such that

(5.5) |F(un, vn)| ≤ C, (1 + ‖un‖W 1,p(Ω) + ‖vn‖W 1,q(Ω))F ′(un, vn) → 0,

there exists a subsequence that converges strongly in W 1,p(Ω)×W 1,q(Ω).

Lemma 5.3. Under the hypotheses (F2), (F3) and (F9), the functional F satisfies the
Cerami condition.

Proof. Let (un, vn) be a sequence that satisfies (5.5). Let us prove that (un, vn) is bounded
in W 1,p(Ω)×W 1,q(Ω).

From (5.5) it follows that

C ≥ −F ′(un, vn)
(

un

p
,
vn

q

)
+ F(un, vn)

=
∫

∂Ω

(un

p
Fu(x, un, vn) +

vn

q
Fv(x, un, vn)− F (x, u, v)

)
dσ.

Now, by (F9) we get ∫

∂Ω
(|un|a + |vn|b) dσ ≤ C.

As a < p < p∗ and b < q < q∗, by interpolation we get
∫

∂Ω
|un|p dσ ≤

(∫

∂Ω
|un|a dσ

) p∗−p
p∗−a

(∫

∂Ω
|un|p∗ dσ

) p−a
p∗−a

≤ C

(∫

∂Ω
|un|p∗ dσ

) p−a
p∗−a

.

Analogously, we get
∫

∂Ω
|vn|q dσ ≤ C

(∫

∂Ω
|vn|q∗ dσ

) q−b
q∗−b

.

By the Sobolev trace inequality,

(5.6)
∫

∂Ω
|un|p dσ ≤ C‖un‖

p∗(p−a)
p∗−a

W 1,p(Ω)
,

∫

∂Ω
|vn|q dσ ≤ C‖vn‖

q∗(q−b)
q∗−b

W 1,q(Ω)
.

Finally, by (F3) and (5.6), we have

F(un, vn) ≥
‖un‖p

W 1,p(Ω)

p
+
‖vn‖q

W 1,q(Ω)

q
− C

(
‖un‖

p∗(p−a)
p∗−a

W 1,p(Ω)
+ ‖vn‖

q∗(q−b)
q∗−b

W 1,q(Ω)

)
.

As F(un, vn) is bounded, p∗(p−a)
p∗−a < p and q∗(q−b)

q∗−b < q the boundedness of the sequence
follows. Now, the proof of the Lemma follows as in the end of Lemma 3.2. ¤

Finally we are ready to prove Theorem 1.3.
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Proof of Theorem 1.3. It remains to show that F has the Mountain Pass Geometry, since
the compactness is implied by Lemma 5.3.

First we prove that (0, 0) is a local minimum. By the second line in (F10) and (F3)
there exists a constant C > 0 such that

F (x, u, v) ≤ b(x)Ḡ(u, v) + C(|u|r̃ + |v|s̃),
for all x ∈ ∂Ω and u, v ∈ R where r̃ > p and s̃ > q.

For some δ > 0 small to be chosen, we have

F(u, v) ≥ δ

(‖u‖p
W 1,p(Ω)

p
+
‖v‖q

W 1,q(Ω)

q

)

+ (1− δ)

(‖u‖p
W 1,p(Ω)

p
+
‖v‖q

W 1,q(Ω)

q
−

∫

∂Ω

b(x)
1− δ

Ḡ(u, v) dσ

)

− C‖u‖r̃
W 1,p(Ω) − C‖v‖s̃

W 1,q(Ω).

By Lemma 5.2, for δ small enough

‖u‖p
W 1,p(Ω)

p
+
‖v‖q

W 1,q(Ω)

q
−

∫

∂Ω

b(x)
1− δ

Ḡ(u, v) dσ > 0.

Hence

F(u, v) ≥ δ

(‖u‖p
W 1,p(Ω)

p
+
‖v‖q

W 1,q(Ω)

q

)
− C‖u‖r̃

W 1,p(Ω) − C‖v‖s̃
W 1,q(Ω).

So if ‖u‖W 1,p(Ω), ‖v‖W 1,q(Ω) = ρ with ρ small, then F(u, v) > ε > 0.

Finally we use the first line in (F10) to obtain

(5.7) F(u, v) ≤
‖u‖p

W 1,p(Ω)

p
+
‖v‖q

W 1,q(Ω)

q
−

∫

∂Ω
a(x)G(u, v) dσ + C.

Now we take (u, v) = (t1/pφ, t1/qψ) in (5.7) where (φ, ψ) is the eigenfunction of Lemma
5.1 associated to λ1(a) to obtain

F(u, v) ≤ t
‖φ‖p

W 1,p(Ω)

p
+ t

‖ψ‖q
W 1,q(Ω)

q
− t

∫

∂Ω
a(x)G(φ, ψ) dσ + C

= tλ1(a)
(

1
p

∫

∂Ω
|φ|p dσ +

1
q

∫

∂Ω
|ψ|q dσ

)
+ C → −∞,

as t → +∞. This finishes the proof. ¤

6. Critical nonlinearity with superlinear perturbation

In this section we study the critical case with a perturbation. We consider Fλ(x, u, v) =
F c(x, u, v) + λF s(x, u, v) where F c and F s satisfy the assumptions of Theorem 1.4.

To prove our existence result, since we have lost the compactness in the inclusions
W 1,p(Ω) ↪→ Lp∗(∂Ω) and W 1,q(Ω) ↪→ Lq∗(∂Ω), we can no longer expect the Palais-Smale
condition to hold. Anyway we can prove a local Palais-Smale condition that will hold for
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F(u, v) below a certain value of energy. The technical result used here, the concentrated
compactness method, is mainly due to [18, 19].

Let (uj , vj) be a bounded sequence in W 1,p(Ω)×W 1,q(Ω) then there exists a subsequence
that we still denote (uj , vj), such that

uj ⇀ u weakly in W 1,p(Ω), vj ⇀ v weakly in W 1,q(Ω),
uj → u strongly in Lr(∂Ω), vj → v strongly in Ls(∂Ω),
|∇uj |p ⇀ dµp, |uj |∂Ω |p∗ ⇀ dηp, |∇vj |q ⇀ dµq, |vj |∂Ω |q∗ ⇀ dηq,

weakly-* in the sense of measures. We observe that dηp and dηq are measures supported
on ∂Ω.

Now we state the following Lemma due to [18, 19].

Lemma 6.1. Let uj be a weakly convergent sequence in W 1,p(Ω) with weak limit u such
that

|∇uj |p ⇀ dµ and |uj |∂Ω |p∗ ⇀ dη,

weakly-* in the sense of measures. Then there exists x1, ..., xl ∈ ∂Ω such that

(1) dη = |u|p∗ +
∑l

j=1 ηjδxj , ηj > 0,
(2) dµ ≥ |∇u|p +

∑l
j=1 µjδxj , µj > 0,

(3) (ηj)
p

p∗ ≤ µj

Sp
, where Sp = Sp(Ω) is the best constant in the Sobolev trace inequality

Sp‖u‖p
Lp∗ (Ω) ≤ ‖u‖p

W 1,p(Ω)
.

Next, we use Lemma 6.1 to prove a local Palais-Smale condition.

Lemma 6.2. Let (uj , vj) ⊂ W 1,p(Ω) ×W 1,q(Ω) be a Palais-Smale sequence for F , with
energy level c. If

(6.1) c < C min
{

S
p∗

p∗−p
p , S

q∗
q∗−q
q

}
,

where C is a constant that depends only on the bounds for F c, p, q and N but is otherwise
independent of Ω. Then there exists a subsequence (ujk

, vjk
) that converges strongly in

W 1,p(Ω)×W 1,q(Ω).

Proof. From the fact that (uj , vj) is a Palais-Smale sequence it follows, by (F5) and (Fc
2)

that (uj , vj) is bounded in W 1,p(Ω) × W 1,q(Ω) (see Lemma 3.2). By Lemma 6.1 there
exists a subsequence, that we still denote (uj , vj), such that

(uj , vj) ⇀ (u, v) weakly in W 1,p(Ω)×W 1,q(Ω),

(uj , vj) → (u, v) in Lr(∂Ω)× Ls(∂Ω), and a.e. in ∂Ω,

(uj , vj) → (u, v) in Lp(Ω)× Lq(Ω), and a.e. in Ω,

(6.2)
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|∇uj |p ⇀ dµp ≥ |∇u|p +
l∑

k=1

µp,kδxk
,

|∇vj |q ⇀ dµq ≥ |∇v|q +
m∑

i=1

µq,iδyi ,

|uj |∂Ω |p∗ ⇀ dηp = |u |∂Ω |p∗ +
l∑

k=1

ηp,kδxk
,

|vj |∂Ω |q∗ ⇀ dηq = |v |∂Ω |q∗ +
m∑

i=1

ηq,iδyi .

(6.3)

Assume first that there exists xk 6= yi for every i. Then let φ ∈ C∞(RN ) such that

φ ≡ 1 in B(xk, ε), φ ≡ 0 in B(xk, 2ε)c, |∇φ| ≤ 2
ε
,

where xk belongs to the support of dηp.

Consider {(ujφ, vjφ)}. Obviously this sequence is bounded in W 1,p(Ω) ×W 1,q(Ω). As
F ′(uj , vj) → 0 in W 1,p(Ω)′ ×W 1,q(Ω)′, we obtain that

lim
j→∞

〈F ′(uj , vj); (θpφuj , θqφvj)〉 = 0.

By (6.2)–(6.3) we obtain,

lim
j→∞

∫

Ω
|∇uj |p−2∇uj∇φuj + |∇vj |q−2∇vj∇φvj dx

= lim
j→∞

∫

∂Ω
(F c

u(x, uj , vj)uj + F c
v (x, uj , vj)vj)φdσ

+ λ

∫

∂Ω
(F s

u(x, uj , vj)uj + F s
v (x, uj , vj)vj)φdσ

−
∫

Ω
φ (dµp + dµq)−

∫

Ω
(|u|p + |v|q)φdx.

Using (Fs
1) and (6.2)–(6.3) it follows that

lim
j→∞

∫

∂Ω
(F s

u(x, uj , vj)uj + F s
v (x, uj , vj)vj)φdσ

=
∫

∂Ω
(F s

u(x, u, v)u + F s
v (x, u, v)v)φ dσ.

Also, by (Fc
1) and Lemma 6.1 we have

lim
j→∞

∫

∂Ω
(F c

u(x, uj , vj)uj + F c
v (x, uj , vj)vj)φdσ ≤ C

∫

∂Ω
φ(dηp + dηq)
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Now, by Hölder inequality and weak convergence, we obtain

0 ≤ lim
j→∞

∣∣∣∣
∫

Ω
|∇uj |p−2∇uj∇φuj dx

∣∣∣∣

≤ lim
j→∞

(∫

Ω
|∇uj |pdx

)(p−1)/p (∫

Ω
|∇φ|p|uj |pdx

)1/p

≤ C

(∫

B(xk,2ε)∩Ω
|∇φ|p|u|pdx

)1/p

≤ C

(∫

B(xk,2ε)∩Ω
|∇φ|Ndx

)1/N (∫

B(xk,2ε)∩Ω
|u|pN/(N−p)dx

)(N−p)/pN

≤ C

(∫

B(xk,2ε)∩Ω
|u|pN/(N−p)dx

)(N−p)/pN

→ 0 as ε → 0

and by an analogous argument

0 = lim
j→∞

∫

Ω
|∇vj |q−2∇vj∇φvj dx.

Then

0 ≤ lim inf
ε→0

[
C

∫

∂Ω
φ (dηp + dηq) + λ

∫

∂Ω
(F s

u(x, u, v)u + F s
v (x, u, v)v)φdσ

−
∫

Ω
φ (dµp + dµq)−

∫

Ω
(|u|p + |v|q)φdx

]
≤ Cηp,k − µp,k.

(6.4)

By Lemma 6.1 we have that (ηp,k)
p

p∗ Sp ≤ µp,k, therefore by (6.4) we obtain

(ηp,k)
p

p∗ Sp ≤ Cηp,k.

Then, either ηp,k = 0 or

(6.5) ηp,k ≥ CS
p∗

p∗−p
p .

If (6.5) does indeed occur then, from the fact that (uj , vj) is a Palais-Smale sequence, we
obtain by (Fc

2) and (F5),

c = lim
j→∞

F(uj , vj) = lim
j→∞

F(uj , vj)− 〈F ′(uj , vj); (θpuj , θqvj)〉

≥
∫

∂Ω
c
(|u|p∗ + |v|q∗) dσ + CS

p∗
p∗−p
p

+ λ

∫

∂Ω
(θpF

s
u(x, u, v)u + θqF

s
v (x, u, v)v − F s(x, u, v)) dσ

≥ CS
p∗

p∗−p
p .

Observe that the constant C depends only on the bounds for F c, p and N .

In an analogous way, we can prove that if there exists yi 6= xk for every k then c ≥
CS

q∗
q∗−q
q , where again C depends only on the bounds for F c, q and N .
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Also, if there exists xk = yi it follows that

c ≥ C
(
S

p∗
p∗−p
p + S

q∗
q∗−q
q

)
.

So, if c < C min
{

S
p∗

p∗−p
p , S

q∗
q∗−q
q

}
, we have

∫

∂Ω
|uj |p∗ dσ →

∫

∂Ω
|u|p∗ dσ,

∫

∂Ω
|vj |q∗ dσ →

∫

∂Ω
|v|q∗ dσ

and therefore (uj , vj) → (u, v) in Lp∗(∂Ω)×Lq∗(∂Ω). Now the proof finishes as usual. ¤

Now we are ready to proceed with the proof of Theorem 1.4.

Proof of Theorem 1.4. In view of the previous result, we seek for critical values below level
c. For that purpose, we want to use the Mountain Pass Lemma. Hence we have to check
the following conditions:

(1) There exist constants R, r > 0 such that if

1
p
‖u‖p

W 1,p(Ω)
+

1
q
‖v‖q

W 1,q(Ω)
= R ⇒ F(u, v) > r.

(2) There exists (u0, v0) ∈ W 1,p(Ω)×W 1,q(Ω) such that

‖u0‖W 1,p(Ω) + ‖v0‖W 1,q(Ω) > R and F(u0, v0) < r.

Let us first check (1). By (Fc
1), (F6) and the Sobolev trace Theorem we have,

F(u, v) =
1
p
‖u‖p

W 1,p(Ω)
+

1
q
‖v‖q

W 1,q(Ω)
−

∫

∂Ω
Fλ(x, u, v) dσ

≥1
p
‖u‖p

W 1,p(Ω)
+

1
q
‖v‖q

W 1,q(Ω)
− C

∫

∂Ω
(|u|p∗ + |v|q∗) dσ

− λC

∫

∂Ω
(|u|r̄ + |v|s̄) dσ

≥1
p
‖u‖p

W 1,p(Ω)
+

1
q
‖v‖q

W 1,q(Ω)
− C(‖u‖p∗

W 1,p(Ω)
+ ‖v‖q∗

W 1,q(Ω)
)

− λC(‖u‖r̄
W 1,p(Ω) + ‖v‖s̄

W 1,q(Ω)).

Let

g1(t) =
1
p
tp − Ctp∗ − λCtr̄, g2(t) =

1
q
tq − Ctq∗ − λCts̄.

It is easy to check that gi(R) > r, i = 1, 2 for some R, r > 0.

Now, (2) is immediate as for a fixed (w, z) ∈ W 1,p(Ω) ×W 1,q(Ω) with w, z |∂Ω 6≡ 0 we
have

lim
t→∞F(t1/pw, t1/qz) = −∞.

Now the candidate for critical value according to the Mountain Pass Theorem is

c = inf
φ∈C

sup
t∈[0,1]

F(φ(t)),
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where C = {φ : [0, 1] → W 1,p(Ω) × W 1,q(Ω) ; continuous and φ(0) = (0, 0), φ(1) =
(u0, v0)}. The problem is to show that c verifies (6.1) in order to apply the local Palais-
Smale condition.

We fix (w, z) ∈ W 1,p(Ω)×W 1,q(Ω) with ‖w‖Lp∗ (∂Ω) = 1 and ‖z‖Lq∗ (∂Ω) = 1, and define
h(t) = F(tθpw, tθqz). We want to study the maximum of h. As limt→∞ h(t) = −∞ it
follows that there exists a tλ > 0 such that supt>0F(tθpw, tθqz) = h(tλ). Differentiating
we obtain, using (Fc

1),

0 = h′(tλ) = t
θpp−1
λ θp‖w‖p

W 1,p(Ω)
+ t

θqq−1
λ θq‖z‖q

W 1,q(Ω)
(6.6)

−
∫

∂Ω
∇F (x, t

θp

λ w, t
θq

λ z) · (tθp−1
λ θpw, t

θq−1
λ θqz) dσ

≤ t
θpp−1
λ θp‖w‖p

W 1,p(Ω)
+ t

θqq−1
λ θq‖z‖q

W 1,q(Ω)
− c(tθpp∗−1

λ + t
θqq∗−1
λ ),

from where it follows that, assuming that θpp ≥ θqq,

t
θp(p∗−p)
λ ≤ t

θp(p∗−p)
λ + t

θqq∗−θpp
λ ≤ C(‖w‖p

W 1,p(Ω)
+ t

θqq−θpp
λ ‖z‖q

W 1,q(Ω)
).

Hence tλ is bounded. Then, from (6.6) and our hypotheses (F5) on F s, (Fc
1) on F c and

(3.2), we get

0 ≤ C

(
t
θpp−1
λ + t

θqq−1
λ − t

θpp∗−1
λ − t

θqq∗−1
λ − λtλ

∫

∂Ω
K(x, w, z)

)
.

we obtain that

(6.7) lim
λ→∞

tλ = 0.

On the other hand, it is easy to check that if λ > λ̄ it must be F(tθp

λ̄
w, t

θq

λ̄
z) ≥ F(tθp

λ w, t
θq

λ z),
so by (6.7) we get

lim
λ→∞

F(tθp

λ w, t
θq

λ z) = 0.

But this identity means that there exists a constant Λ̄ > 0 such that if λ ≥ Λ̄, then

sup
t≥0

F(tθpw, tθqz) < C min
{

S
p∗

p∗−p
p , S

q∗
q∗−q
q

}
,

and the proof is finished if we choose (u0, v0) = (tθp

0 w, t
θq

0 z) with t0 large in order to have
F(tθp

0 w, t
θq

0 z) < 0. ¤

7. Critical nonlinearity with sublinear perturbation

In this section we study the critical case with a sublinear perturbation. We consider
Fλ(x, u, v) = F c(x, u, v) + λF s(x, u, v) with the assumptions of Theorem 1.5.

The existence result is much easier in this case, since direct minimization applies as
for λ > 0 the infimum of F is negative and, for λ small enough the local Palais-Smale
condition can be used. For the multiplicity result, we will use ideas from [16].

We begin, as in the previous section, by using Lemma 6.1 to prove a local Palais-Smale
condition.
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Lemma 7.1. Let (uj , vj) ⊂ W 1,p(Ω) ×W 1,q(Ω) be a Palais-Smale sequence for F , with

energy level c. If c < C min{S
p∗

p∗−p
p , S

q∗
q∗−q
q } − K(λ

p∗
p∗−r + λ

q∗
q∗−s ), where C and K are

positive constants independent of λ, then there exists a subsequence (ujk
, vjk

) that converges
strongly in W 1,p(Ω)×W 1,q(Ω).

Proof. From the fact that (uj , vj) is a Palais-Smale sequence it follows by (F7) and (Fc
2)

that (uj , vj) is bounded in W 1,p(Ω)×W 1,q(Ω) (see Lemma 3.2 and Lemma 6.2).

Now the proof follows exactly as in Lemma 6.2 until we get to

c ≥
∫

∂Ω
c
(|u|p∗ + |v|q∗) dσ + CS

p∗
p∗−p
p

+ λ

∫

∂Ω
(θpF

s
u(x, u, v)u + θqF

s
v (x, u, v)v − F s(x, u, v)) dσ

where (u, v) is the weak limit of (uj , vj) in W 1,p(Ω)×W 1,q(Ω).

Using our hypothesis (F7) and applying Hölder inequality, we find

c ≥ CS
p∗

p∗−p
p + c

(
‖u‖p∗

Lp∗ (∂Ω) + ‖v‖q∗
Lq∗ (∂Ω)

)
− Cλ

(
‖u‖r

Lp∗ (∂Ω) + ‖v‖s
Lq∗ (∂Ω)

)
.

Now, let f(x, y) = c1(xp∗+yq∗)−λc2(xr +ys). This function reaches its absolute minimum
at (x0, y0) =

(
(λc2r

p∗c1 )
1

p∗−r , (λc2s
q∗c1 )

1
q∗−s

)
, that is

f(x, y) ≥ f(x0, y0) ≥ −K(λ
p∗

p∗−r + λ
q∗

q∗−s ),

where K is independent of λ.

Hence c ≥ CS
p∗

p∗−p
p −K(λ

p∗
p∗−r + λ

q∗
q∗−s ), which contradicts our hypothesis. Therefore

lim
j→∞

∫

∂Ω
|uj |p∗ dσ =

∫

∂Ω
|u|p∗ dσ,

and the rest of the proof is as that of Lemma 6.2. ¤

Observe that (Fc
1) implies that

(7.1) c(|u|p∗ + |v|q∗) ≤ F c(x, u, v) ≤ C(|u|p∗ + |v|q∗).

We now observe, using the Sobolev trace Theorem, (7.1) and (F3), that

F(u, v) ≥1
p
‖u‖p

W 1,p(Ω)
+

1
q
‖v‖q

W 1,q(Ω)
− c1

(
‖u‖p∗

W 1,p(Ω)
+ ‖v‖q∗

W 1,q(Ω)

)

− λc2

(
‖u‖r

W 1,p(Ω) + ‖v‖s
W 1,q(Ω) + 1

)

=j1(‖u‖W 1,p(Ω)) + j2(‖v‖W 1,q(Ω))− C,

where j1(x) = 1
pxp − c1x

p∗ − λc2x
r and j2(y) = 1

qyq − c1y
q∗ − λc2y

s. As ji attains a local
but not a global minimum (ji is not bounded below), we have to perform some sort of
truncation. To this end let x0, x1 be such that m < x0 < M < x1 where m is the local
minimum of j1 and M is the local maximum and j1(x1) > j1(m). For these values x0

and x1 we can choose a smooth function τ1(x) such that τ1(x) = 1 if x ≤ x0, τ1(x) = 0 if
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x ≥ x1 and 0 ≤ τ1(x) ≤ 1. Finally, let ϕ1(u) = τ1(‖u‖W 1,p(Ω)). Analogously, we define τ2

and ϕ2 to perform the truncation in j2. We define the truncated functional as follows

F̃(u, v) =
1
p

∫

Ω
|∇u|p + |u|p dx +

1
q

∫

Ω
|∇v|q + |v|q dx

−
∫

∂Ω
F c(x, u, v)ϕ1(u)ϕ2(v) dσ − λ

∫

∂Ω
F s(x, u, v) dσ.

As above, F̃(u, v) ≥ j̃1(‖u‖W 1,p(Ω))+ j̃2(‖v‖W 1,q(Ω))−C where j̃1(x) = 1
pxp− c1x

p∗τ1(x)−
λc2x

r and j̃2(y) = 1
qyq − c1y

q∗τ2(y) − λc2y
s. We observe that if x ≤ x0 and y ≤ y0 then

j̃1(x) = j1(x), j̃2(y) = j2(y) and if x ≥ x1 then j̃1(x) = 1
pxp − λc2x

r and if y ≥ y1 then
j̃2(y) = 1

qyq − λc2y
s.

Now we state a Lemma that contains the main properties of F̃ .

Lemma 7.2. F̃ is C1, if F̃(u, v) ≤ 0 then ‖u‖W 1,p(Ω) < x0, ‖v‖W 1,q(Ω) < y0 and F(w, z) =
F̃(w, z) for every (w, z) close enough to (u, v). Moreover there exists Λ > 0 such that if
0 < λ < Λ then F̃ satisfies a local Palais-Smale condition for c ≤ 0.

Proof. We only have to check the local Palais-Smale condition. Observe that every Palais-
Smale sequence for F̃ with energy level c ≤ 0 must be bounded, therefore by Lemma 7.1

if λ verifies 0 < C min{S
p∗

p∗−p
p , S

q∗
q∗−q
q } −K(λ

p∗
p∗−r + λ

q∗
q∗−s ) then there exists a convergent

subsequence. ¤

Proof of Theorem 1.5. Existence part. As the perturbation F s is sublinear, it is easy to see
that, for any λ, inf F̃(u, v) < 0. In fact, one can check that if t is small enough (depending
on λ) and if u, v|∂Ω 6≡ 0 then F̃(tu, tv) < 0. Now, for λ small, the Palais-Smale condition
holds below level 0, therefore, a minimizing sequence has a convergent subsequence and
the existence of a nontrivial solution follows. ¤

The following Lemma gives the final ingredients needed in the proof of the multiplicity
result of Theorem 1.5.

Lemma 7.3. For every n ∈ N there exists ε > 0 such that γ(F̃−ε) ≥ n, where F̃−ε =
{(u, v) , F̃(u, v) ≤ −ε}.

Proof. The proof is analogous to that of Lemma 4.2. ¤

Finally, we are ready to finish the proof of the Theorem.

Proof of Theorem 1.5. Multiplicity part. The proof is analogous to that of Theorem 1.2,
here we use Lemma 7.1 and Lemma 7.3 instead of Lemma 4.1 and Lemma 4.2 respectively
to work with the functional F̃ and Lemma 7.2 to conclude on F . ¤
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