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Abstract In this paper, we consider a general regression model where missing data
occur in the response and in the covariates. Our aim is to estimate the marginal dis-
tribution function and a marginal functional, such as the mean, the median or any
α-quantile of the response variable. A missing at random condition is assumed in
order to prevent from bias in the estimation of the marginal measures under a non-
ignorable missing mechanism. We give two different approaches for the estimation
of the responses distribution function and of a given marginal functional, involving
inverse probability weighting and the convolution of the distribution function of the
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observed residuals and that of the observed estimated regression function. Through a
Monte Carlo study and two real data sets, we illustrate the behaviour of our proposals.

Keywords Fisher consistency ·Kernel weights · L-estimators ·Marginal functionals ·
Missing at random · Semiparametric models

Mathematics Subject Classification 62F10 · 62G08

1 Introduction

Missing observations are a challenge that data scientists have to face very often inmany
statistical applications in different areas, such as biology, genetics, chemistry, social
and environmental sciences, among others. A wide literature has grown in the last
decades addressing the estimation and inference problems that arise when missing
data occur, due to the possible bias that they may introduce in different regression
models, both parametric and nonparametric ones.

In this paper, we focus on the estimation of the marginal distribution function when
we deal with a regression model where the responses and some of the covariates are
subject to missingness. It is clear that once the responses distribution is obtained, esti-
mators of amarginal functional, such as themean, themedian or anyα-quantile, can be
obtained. As mentioned in Díaz (2017), estimation of quantiles in missing data mod-
els is an appealing statistical problem with applications in many areas. For instance,
in medicine quantiles are of interest either when studying the effect of a treatment or
when establishing the standard growth parameters of a given population. Furthermore,
quantiles are also used for diagnostic purposes, for instance, through boxplots which
are a useful tool to describe a data set and to identify possible atypical data. Díaz (2017)
considers the situation in whichmissing data arise only on the responses. However, the
situation of missing data on both responses and covariates arises in many biological
experiments where some explanatory variables can be controlled and others not. In
epidemiology and biomedical sciences, for example, missing values at the covariate
data often occur in studies performing multivariate survival analyses. When treated
inappropriately, the presence of missing covariate values inhibits the formulation of
a reliable model, introducing a potential bias that may mislead to wrong conclusions.
Indeed, the naive practice of simply excluding any case with missing values, either in
the responses or in the covariates, known as the complete-case analysis, may seriously
bias the estimation.

Let us consider a random sample (yi , xti )
t, 1 ≤ i ≤ n, where yi ∈ R are the

responses and xi ∈ R
d the covariates or design points, satisfying

yi = μ(xi ) + εi , (1)

with the errors εi i.i.d., independent of xi and such that E(εi ) = 0 andVar (εi ) = σ 2
0 .

Note thatμ(xi ) stands for a general regression functionwhichmay relate the responses,
for instance, linearly or nonparametrically with xi or either through a semiparametric
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108 A. M. Bianco et al.

model. We assume that missing values may occur in the responses and some fixed
components of xi , while other components of the covariate vector are always observed.

As it is well known, most of the statistical methods in parametric, nonparametric
and semiparametric regression models are designed for complete data sets, but these
procedures may be not valid when missing observations are present. There are several
approaches to tackle missing data (see Little and Rubin 2002). As Burton and Altman
(2004) notice these strategies include: (a) themere deletion approach of complete-case
analysis, where only the complete cases for all collected variables are included in the
analysis, (b) the available case analysis, where the cases with complete data for the
variables in the fitted model are analysed using the largest possible data set, and (c) the
variable omission approach, where the incomplete variables are omitted in the model.
Other possible methods to handle missing values involve imputation techniques. We
refer to Chen et al. (2008) for an in-depth analysis of the effect of missing data on
the bias and asymptotic efficiency of different estimators, including strategies (a)–
(c), under a non-ignorable missing scheme. For instance, the complete data analysis
may lead to biased estimators if the data are not missing completely at random. The
usual missing at random (MAR) condition that is introduced to prevent from bias
assumes that the missingness mechanism is related to the observed data, but not to the
unobserved values. Furthermore, nowadays, when handling high-dimensional data it
is very usual to deal with datasets where responses and covariates are observed only
partially. The effect of missing values in this context can be emphasized due to the
very nature of this kind of data, in terms of mass and sparsity.

The goal of this paper is to provide estimators of marginal quantities related to the
distribution of y, say θ , such as, the marginal mean or the marginal quantiles when
there are missing values both in the responses and partially in the covariates xi . For
that purpose, we introduce estimators for the marginal responses distribution using
the predictive capability of the covariates at hand. The study of quantile estimators is
motivated by the fact that quantiles may be used as an alternative to the mean when
studying the causal effect of a treatment on an outcome whose distribution exhibits
heavy tails or asymmetry. We introduce different methods for handling missing data
under the missing model described in Chen et al. (2015). These procedures generalize
several well-known estimators described in the literature for missing responses only.
As mentioned above, to reduce bias and obtain more efficient estimators some strate-
gies, as imputation or inverse probability weighting (IPW), have been developed in
order to include the information of partially observed data. In order to estimate the
responses distribution, our first method is based on the nonparametric IPW approach
introduced in Horvitz and Thompson (1952), where observations are weighted accord-
ing to the inverse of the estimated probability of dropouts. Our second method extends
the approach given in Müller (2009) and Sued and Yohai (2013). For this purpose, we
first estimate the regression functionμ given in (1) by a stepwise procedure based on a
propensity weighting approach to define estimators of the parametric and nonparamet-
ric components in the partial linearmodel.With these estimators we estimate the errors
distribution and the distribution ofμ(x1). Finally, by considering their convolution, we
obtain an estimator of the responses distribution function, Fy , that allows to estimate
any marginal quantity T (Fy), given through a functional T . In this sense, even when
we are not interested in estimating the conditional quantiles, the available covariate
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Plug-in marginal estimation... 109

information is used to correctly identify the unconditional quantiles under the missing
at random assumption. It is worth noticing that most of the literature on missing data
focuses on estimating the mean or a linear functional of the responses. One exception
is the paper by Zhang et al. (2012) that deals with the estimation of any quantile associ-
atedwith the distribution of counterfactual variables. In this paperwe follow a different
point of view which takes into account that the study of an estimate of the responses
distribution provides amore global picture of the effect ofmissing data.More precisely,
the novelty of this paper is that marginal quantities estimators are obtained, through a
plug-in approach, from an accurate consistent estimator of the responses distribution
function when missing values arise on the responses and some of the covariates.

The paper is organized as follows. Section 2 presents some marginal measures
of interest as functionals of the marginal distribution function. The estimators when
missing data occur in the responses and some of the covariates are introduced in
Sect. 3. Section 3.3 studies some particular cases of regression models. A numerical
study is carried out in Sect. 4 to examine the small sample properties of the proposed
procedures, under the partial linear model. Section 5 considers two real data examples,
while somefinal comments are given in Sect. 6. All proofs are relegated to “Appendix”.

2 Marginal estimation

Let us denote by θ = T (Fy) any marginal functional, where we will use indistinctly
the notation T (Fy) or T (Qy) with the related probability measure Qy , i.e., Fy(s) =
Qy((−∞, s]). Some examples of usual interest are the marginal mean of y1, the
marginal quantile functional, in particular, any α-quantile for fixed α, the α-trimmed
mean or more generally, a given L-functional.

Recall that an L-functional is defined as

T (Fy) = TM (Fy) =
∫

F−1
y (s) dM(s) ,

where M is a signed measure on (0, 1) and F−1
y (s) = inf{x : Fy(x) ≥ s}, for

0 < s < 1 is the quantile function. When M has a density m, the functional TM can
be written as

T (Fy) = TM (Fy) =
∫

s m(Fy(s)) dFy(s) .

Interesting usual cases arise for different choices of M leading to some location func-
tionals. In particular, the mean corresponds to the situation m ≡ 1, that is, M(s) = s
the Lebesgue measure. On the other hand, the α-quantile, including the median, cor-
responds to the point mass at α denoted Δα , while the α-trimmed mean is related to
a measure with density m(s) = I[α,1−α](s). An example of a signed measure M is
given by m(s) = cos(2π s) [cos(2π s) − 1], which is negative if |s − 0.5| > 0.25,
that corresponds to the L-estimator with maximum efficiency when Fy is the Cauchy
distribution.
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110 A. M. Bianco et al.

Note that themean, themedian and theα-quantiles also correspond to theminimizer
ofEρ ((y1 − a)), for some suitableρ-function. For theα-quantile,wehave thatρ(u) =
ρα(u) = αmax(u, 0) + (1 − α)max(−u, 0), while ρ(u) = u2 for the mean. The
resulting minimizer is also the solution of λ(a) = Eψ ((y1 − a)) = 0 for a suitable
ψ-function and will be denoted as Tψ(Fy). For instance, for the mean ψ(u) = u,
while for the median, ψ(u) = ψ0.5(u) = sg(u) = I(0,∞)(u) − I(−∞,0)(u).

Given a sample y1, . . . , yn , estimators of θ = T (Fy) can be computed plugging-
in an estimator F̂y of the marginal distribution function Fy , such as the empirical
distribution, denoted F̂y,n , that is θ̂ = T (F̂y,n). In particular, using the empirical
distribution, the L-estimators of

∫
s m(Fy(s)) dFy(s) can be written as

∑n
i=1 ai y(i),

where y(1) ≤ · · · ≤ y(n) is the ordered sample and ai = ∫ i/n
(i−1)/n m(s)ds. For the

α-sample quantile, y([[nα]]), with [[u]] the integer part of u, Bahadur (1966) provides
a representation of y([[nα]]) that is useful to obtain joint asymptotic normality of the
sample quantiles. A smooth alternative to the conventional sample quantile function
as a nonparametric estimator of a population quantile function is proposed in Yang
(1985). The proposed estimator is essentially a kernel type estimator and corresponds
to the choice m(s) = mh(s) = Kh(s − α), where Kh(u) = K (u/h)/h with K a
density function symmetric about zero and h = hn → 0. This estimator has the
same asymptotic distribution as the conventional sample quantile. Note that for the
smoothed L-estimators, themeasureM is not fixed, but varies with the sample size. As
mentioned in Yang (1985), an alternative smooth family of estimators for the quantiles
can be defined as F̂−1

y (s) with

F̂y(s) =
∫ s

−∞
1

n

n∑
i=1

Kh (yi − t) dt = 1

n

n∑
i=1

K̃

(
s − yi
h

)

=
∫

K̃

(
s − u

h

)
dF̂y,n(u) , (2)

where K̃ (u) = ∫ u
−∞ K (t)dt . In this case, the measure M = Δα as above. This

smoothedversion of the empirical distribution functionwas studied inFernholz (1993).
Let M = M+ − M− with M+ and M− positive measures. If the supports of M+

and M− are proper subsets of (0, 1), that is, contained in a compact set [η, 1 − η],
0 < η < 1, then the target L-functional TM is weakly continuous at Fy provided that
M does not put any point mass on a discontinuity point of F−1

y (see Theorem 3.1 in
Huber and Ronchetti (2009). In particular, if M has a densitym and a compact support
[η, 1 − η] ⊂ (0, 1), TM is weakly continuous, so that θ̂ = TM (F̂y) will be consistent
for any weakly consistent sequence of estimators F̂y . Analogously, a similar result is
obtained if Fy has a density and M has support strictly included in (0, 1).

These results suggest that the estimation of a marginal quantile or any marginal
continuous functional can be accomplished by plugging-in a prior estimator of the
marginal distribution of the responses and this is the essence of our approach.However,
whenmissing data arise either only in the responses or jointly in the responses and some
covariates, the estimators described above cannot be computed in practice since the
empirical distribution function or its smooth version given in (2) cannot be computed.
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Section 3 describes some alternatives to solve this problem. It is worth noticing that
even when we mainly focus on marginal location or on quantile parameters, scale or
dispersion measures could also been considered, among others.

3 Marginal estimators under missing covariates and responses

This section focuses on estimation of the responses distribution function, Fy , and
of a marginal parameter θ = T (Fy) under the regression model (1), when both the
responses and some of the covariates xi have missing observations. As mentioned
above, our interest may be, for instance, the marginal location of y1 or the marginal α-
quantile, so among the missing variables we will always include the responses. When
missing data arise only on the responses, a common practice in regression is to impute
the incomplete observations and then proceed to carry out the estimation of themean of
the response variablewith the complete sample. Themethods considered include linear
regression (Yates 1933), kernel smoothing (Cheng 1994; Cheng andChu 1996) nearest
neighbour imputation (Chen and Shao 2000), semiparametric estimation (Wang et al.
2004), nonparametric multiple imputation (Aerts et al. 2002), empirical likelihood
over the imputed values (Wang and Rao 2002), among others. Wang et al. (2004)
consider inference on the mean of y under regression imputation of missing responses
based on a partly linear model regression model. Under a quantile regression model,
Chen et al. (2015) consider a missing at random model in which the responses and/or
some covariates are jointly missing, whereas previous proposals can handle only one
of them but not both. On the other hand, for general regression models, Chen et al.
(2008) provide a depth theoretical investigation for inference with missing responses
and covariates. In particular, a careful analysis of the bias is given for the case in which
only the complete cases are used to estimate the regression parameter. As iswell known
when only regression covariates aremissing, the complete-case (CC) analysis is direct,
but has two potential drawbacks: the loss of efficiency due to discarding data and the
bias introduced in the parameter estimators. However, as mentioned in Little (1992),
CC analysis gives valid inferences if themissingness depends only on xi and not on the
responses. For regression models, Chen et al. (2008) study several missing models in
which the missing variable has two components δi,x and δi,y indicating respectively, if
the covariates or the responses are not available.However, in this paperwewill consider
marginal estimators only under the missingness model defined in Chen et al. (2015).

More precisely, throughout this paper, we deal with an incomplete data set(
yi , xti , δi

)t
, 1 ≤ i ≤ n, where (yi , xti ) = (z(m)t

i , zti ) with zi the k-dimensional

vector containing all the variables observed, 0 < k ≤ d, and z(m)
i the vector contain-

ing the variables subject to missingness. The binary variable δi = 1 if all the values in
z(m)
i are observed and 0 otherwise, and the conditional expectation of δi is modelled as

P (δi = 1|(yi , xi )) = P (δi = 1|zi ) = p(zi ) . (3)

This missing model corresponds to that introduced in Chen et al. (2015). However, in
this paper, instead of a quantile regressionmodel that concerns the conditional distribu-
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112 A. M. Bianco et al.

tion, we assume the regressionmodel (1) and we aim to estimate a marginal parameter.
For that reason, the natural situation of interest is when yi is one of the components of
z(m)
i , hence the probability of missingness p(zi ) given in (3) does not depend on yi .
Model (3) includes the framework in which only responses are missing taking δi = 1
when yi is observed and z(m)

i = yi , since in this case, all the covariates xi are available.
Thus, as done inChen et al. (2015), using (3)we include in a unified approach the situa-
tions inwhichmissing data occur only among the responses and those inwhichmissing
values are missing are in the responses and also in a subset (but not all) the covariates.

As mentioned above, we focus on the estimation of the responses distribution func-
tion that will allow to provide estimators of any marginal parameter θ = T (Fy) as
described in Sect. 2. Two families of estimators for the marginal probability Qy can be
considered: the weighted simplified which corrects the bias caused in the estimation
by the missing mechanism using an estimator of the missingness probability p̂(z) and
a convolution type estimator that uses the information given by the assumed regression
model. The convolution-based estimators to be considered below generalize, to the
setting in which missing covariates arise, the proposal given in Sued and Yohai (2013)
for a fully parametric model with missing values only in the responses (see alsoMüller
2009).

3.1 The weighted simplified estimator

Using the complete sample and inverse probability weighting, Qy can be estimated
by

Q̂y,ws =
{

n∑
=1

δ

p̂(z)

}−1 n∑
i=1

δi

p̂(zi )
Δyi =

n∑
i=1

τiΔyi , (4)

where Δa is the point mass at point a and p̂ is an estimator of the missing probability
p.

Theorem 3.1 ensures consistency of any weighted simplified marginal estimator
T (Q̂y,ws) based on a continuous functional T if the estimator of the missingness
probability is uniformly strong consistent. Its proof is given in “Appendix”.

Theorem 3.1 Let
(
yi , xti , δi

)
, 1 ≤ i ≤ n be i.i.d. random vectors over (Ω,A,P),

xi ∈ R
d , such that (yi , xti ) = (z(m)t

i , zti ), zi ∈ R
k , 0 < k ≤ d, and (3) holds. Assume

that

(i) infz∈Sz p(z) = i p > 0, where Sz is the support of the distribution of z1.

(ii) supz∈Sz
| p̂(z) − p(z)| a.s.−→ 0.

Then, ΠK (Q̂y,ws, Qy)
a.s.−→ 0 and Π(Q̂y,ws, Qy)

a.s.−→ 0, where ΠK and Π stand
for the Kolmogorov and Prohorov distance, respectively.

Remark 3.1 It is worth noticing that assumptions (i) and (ii) in Theorem 3.1 are stan-
dard conditions when dealing with missing data. In particular, assumption (i) ensures
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Plug-in marginal estimation... 113

that locally at least some responses and covariates, i.e., some values of the vector z(m)
i

are observed, which is a common assumption in the literature. In fact, it was required,
among others, in Zhou et al. (2008), Chen and Keilegom (2013), Bravo (2015) and
Chen et al. (2015). As noted in Liang et al. (2004), who deal with inference under a
partial linear model with missing covariates, condition (ii) is easily verified for a prop-
erly parametrized model with compact support for z, when the parameter estimators
are consistent. On the other hand, for purely nonparametric models, multidimensional
smoothing of δi is needed when k > 1. One possibility is to consider a kernel method,
that is,

p̂(z) =
⎧⎨
⎩

n∑
j=1

L

(
z j − z

b

)⎫⎬
⎭

−1
n∑

i=1

L

(
zi − z
b

)
δi ,

with L : Rk → R a kernel function and b = bn the smoothing parameter. In this case,
uniform convergence may be obtained if L(z) = (‖z‖)with  a monotone decreasing
function on [0,∞), the propensity p(z) is uniformly continuous and b → 0 and
n bk/ log(n) → ∞ which are the usual conditions for kernel estimators (see Example
38 and Exercises 26 and 28 in Pollard 1984). A different point of view was considered
in Hirano et al. (2003) who considered a sieve approach using a series logit estimator
and derived uniform consistency in their Lemma 1.

Remark 3.2 One of the most frequently used graphical techniques for analysing a
univariate data set is the boxplot, proposed by Tukey (1977). It provides a graphical
tool for visualizing information regarding the location, spread, skewness as well as the
tails for continuous unimodal data. However, whenmissing data arise in the responses,
the boxplot cannot be constructed from the data at hand without taking into account
the missingness effect. For that reason, we recommend to use the defined inverse
probability weighting quantiles, i.e., those defined as F̂−1

y,ws(α) for α = 0.25, 0.50
and 0.75 to construct a boxplot adapted to the presence ofmissing data. Note that using
the weighted simplified estimators avoids imposing any regression model where the
estimation of its parameters that may be influenced by atypical responses.We illustrate
the benefits of the adapted boxplots in the first dataset analysed in Sect. 5.

3.2 The convolution-based estimator

Another estimator of Fy may be obtained using that Fy is the convolution of the
distributions of the errors and of the regression function. Let Fε and Qε denote the
distribution and the related probability measure of the errors εi and let Fμ and Qμ

correspond to those of the true regression function μ(x1). Using consistent estimators
F̂ε and F̂μ of Fε and Fμ, respectively, a consistent estimator for Fy can directly be
constructed. In fact, the convolution-based estimator introduced in Sued and Yohai
(2013) can be adapted to the present setting as follows. Let μ̂(x) be a consistent
estimator of μ(x).
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114 A. M. Bianco et al.

As in the situation in which only responses are missing, define

Q̂μ =
{

n∑
=1

δ

p̂(z)

}−1 n∑
i=1

δi

p̂(zi )
Δμ̂(xi ) =

n∑
i=1

τiΔμ̂(xi ) ,

where the weights τi are normalized to guarantee that Q̂μ is a probability measure.
As shown in Theorem 3.2 below, under mild conditions, Q̂μ is a consistent estimator
of Qμ, since condition (3) holds. It is worth noticing that, when missing data arise
only in the responses, one may take τi = 1, for any 1 ≤ i ≤ n, and in this case, we
recover the proposal considered in Sued and Yohai (2013). However, to the best of
our knowledge the situation in which both responses and some covariates are missing
has not been considered and the inverse probability weighting allows to construct
consistent estimators of Qμ.

When δi = 1, both the response and covariates are observed for the i th individual,
so the residuals can be effectively computed as ε̂i = yi − μ̂(xi ), so that an estimator
of Qε can be computed as

Q̂ε =
{

n∑
=1

δ

}−1 n∑
i=1

δiΔε̂i =
n∑

i=1

κiΔε̂i .

It is worth noticing that if we consider an inverse probability weighting to estimate
Qε , that is, if κi = τi , the estimators of Qε will still be consistent.

Finally, we estimate Qy by

Q̂y,conv = Q̂ε ∗ Q̂μ .

Note that Q̂y,conv is a weighted empirical distribution

Q̂y,conv =
n∑

i=1

n∑
j=1

κiτ jΔŷi j , (5)

with

ŷi j = μ̂(x j ) + ε̂i i, j ∈ {δ = 1} .

As in Theorem 3.1, in Theorem 3.2 we derive, under mild assumptions, the con-
vergence in Prohorov distance of the convolution-based response distribution function
estimator to the marginal distribution function, which entails the strong consistency of
T (F̂y,conv) when the functional T is continuous. In particular, M-location marginal
estimators with bounded score function and α-marginal quantile estimators based on
F̂y,conv turn out to be strongly consistent. The proof of Theorem 3.2 is given in
“Appendix”.
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Theorem 3.2 Let
(
yi , xti , δi

)
, 1 ≤ i ≤ n be i.i.d. random vectors over (Ω,A,P),

xi ∈ R
d , such that (yi , xti ) = (z(m)t

i , zti ), zi ∈ R
k , 0 < k ≤ d, and (1) and (3) hold.

Assume that

(i) infz∈Sz p(z) = i p > 0, where Sz is the support of the distribution of z1.

(ii) supz∈Sz
| p̂(z) − p(z)| a.s.−→ 0.

(iii) sup
x∈K

|μ̂(x) − μ(x)| a.s.−→ 0, for any compact set K ∈ R
d .

Then, we have that

(a) Π(Q̂μ, Qμ)
a.s.−→ 0

(b) Π(Q̂ε, Qε)
a.s.−→ 0

implying that Π(Q̂y,conv, Qy)
a.s.−→ 0.

Remark 3.3 Assumptions (i) and (ii) of Theorem 3.2 are also required in Theorem
3.2; some comments on them are given in Remark 3.1. On the other hand, condition
(iii) allows to replace the estimated regression function by the true one. It is worth
noticing that the regression function μ(x) in model (1) is a very general one. The only
restriction given in Theorem 3.2 to ensure consistency of the marginal distribution
estimators is the uniform strong convergence of the regression estimator stated in (iii).
A related requirement was considered in Chen and Keilegom (2013) who deal with
missing values only in the responses (see their assumption A3 that also requires order
of convergence). Conditions ensuring the validity of (iii) are discussed below.

3.3 Some examples of regression models

Asmentioned above, one key point to compute the convolution estimators is to provide
consistent estimators of the regression function under a given regression model. The
considered regressionmodelmay be parametric, nonparametric or semiparametric and
in the parametric case, linear or nonlinear models may be adequate. In this section, we
illustrate the estimation of the regression function in some particular examples. Other
possible models not considered here are the linear quantile regressionmodel studied in
Chen et al. (2015), the generalized partial linear varying coefficient model considered
in Bravo (2015) when some of the covariates are missing at random, but the responses
are totally observed, and in Bravo and Jacho-Chávez (2016) when only responses are
missing. However, the development, under a partial linear varying coefficient model,
of a modified version of these estimators adapted to missing responses and covariates
and the study of their uniform strong consistency is beyond the scope of the paper.

Throughout this section, we deal with an incomplete data set
(
yi , xti , δi

)t
, 1 ≤

i ≤ n, where (yi , xi )t = (z(m)t
i , zti ), that is, yi is one of the components of z(m)

i .
Furthermore, zi ∈ R

k contains the coordinates of xi that are always observed, so
k > 0. On the other hand, δi = 1 if all the values in z(m)

i are observed and 0 otherwise
and the mar assumption (3) holds.
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It is worth noticing that the estimation of the regression function when missing val-
ues arise has its own interest and was extensively studied in the literature, under
different frameworks including situations where missing values arise only in the
responses or when only some covariates are subject to drop-out. As for the condi-
tional quantile regression model studied in Chen et al. (2015), an appealing feature
of the proposals given below is their skill to save the existing gap to handle missing
response and/or partially missing covariates, whereas most existing techniques can
manage only one or the other, but not both. Thus, we take advantage of this section to
discuss in the framework of regression all these missingness possibilities.

To give this global approach, we introduce some notation. Let ξi = δi/q(zi )
and ξ̂i = δi/q̂(zi ) be random variables. To obtain simplified estimators, the prac-
titioner takes q(z) = q̂(z) = 1 and takes q(z) = p(z) and q̂(z) = p̂(z) to
consider inverse probability weighting procedures. From now on, when considering
the inverse probability weighting, we will assume that supz∈Sz

| p̂(z) − p(z)| a.s.−→ 0
and infz∈Sz p(z) > 0 which corresponds to assumptions (i) and (ii) of Theorems 3.1
and 3.2 discussed in Remark 3.1.

3.3.1 The fully parametric regression model

Our first example deals with a fully parametric model and our goal is to show that
estimators can be provided to ensure that (iii) holds. Let us consider the situation of
the nonlinear regression model

yi = μ(xi ) + εi = G
(
xi ,β0

)+ εi 1 ≤ i ≤ n , (6)

where the function G is known and β0 is the parameter to be estimated. It is worth
noticing that this model includes the usual linear regression model as well as the
nonlinear ones.

Note that after some algebra and taking conditional expectation we have that

E

{
ξ1 [y1 − G(x1, b)]2

}
= E ξ1 ε21 + E

[
ξ1 Δ2 (x1, b)

]

+2E

{
Δ(x1, b)E

[
δ1

q(z1)
ε1|x1

]}
,

where Δ(x1, b) = G
(
x1,β0

)− G(x1, b). The mar condition entails that

E

(
δ1

q(z1)
ε1|x1

)
= E

{
E

[
δ1

q(z1)
ε1|(ε1, x1)

]
|x1
}

= E

[
p(z1)
q(z1)

ε1|x1
]

. (7)

When y1 is one of the components of z(m)
1 , for any function q(z) we have that

E

[
p(z1)
q(z1)

ε1|x1
]

= p(z1)
q(z1)

E ( ε1|x1) = p(z1)
q(z1)

E (ε1) = 0 ,
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since the error ε1 and the vector of covariates x1 are independent. On the other hand,
when the function q(z) equals the propensity p(z), from (7), using again the indepen-
dence between ε1 and x1, we get that

E

(
δ1

q(z1)
ε1|x1

)
= E (ε1|x1) = E (ε1) = 0 .

Summarizing, when y1 is one of the components of z(m)
1 or when y1 is fully observed

and the function q(z) equals the propensity p(z)

E

(
δ1

q(z1)
ε1|x1

)
= 0 . (8)

In other words, when missing values occur only among some of the covariates, the
practitioner is forced to use inverse probability weighting, otherwise the resulting
estimator would not be in general consistent.

Hence,E
{
ξ1 [y1 − G(x1, b)]2

}
isminimized atβ0. Furthermore, ifP

(
G
(
x1,β0

)−
G(x1, b) = 0

)
< 1 for any b �= β0, which is the usual identifiability condition in

nonlinear models, theminimum is unique. Therefore, it is easy to see that the estimator
defined as

β̂ = argmin
b

n∑
i=1

ξ̂i [yi − G (xi , b)]2

is strongly consistent to β0. If the regression function G : R
d × R

d → R is
continuous, straightforward arguments allow to show that supx∈K |μ̂(x) − μ(x)| =
supx∈K |G(x, β̂) − G(x,β0)| a.s.−→ 0, for any compact set K ∈ R

d , showing that
condition (iii) in Theorem 3.2 holds.

3.3.2 The fully nonparametric regression situation

Consider now the fully nonparametric regression model in which the regression func-
tion μ(x) in (1) is a smooth, but otherwise unknown function. Note that the mar
assumption entails that

μ(x) = E (ξ1 y1|x1 = x)

E (ξ1|x1 = x)
,

since (8) holds.
Let K a kernel function, i.e., a nonnegative integrable function on R

d and h = hn

the bandwidth parameter. Based on the incomplete data set
(
yi , xti , δi

)t
, 1 ≤ i ≤ n a

consistent estimator of μ(x) may be defined as
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μ̂(x) =
{

n∑
i=1

wi (x)

}−1 n∑
i=1

wi (x)yi ,

where wi (x) = K ((xi − x)/h) ξ̂i , meaning that the estimator uses only the informa-
tion at hand.

Let K ⊂ R
d be any compact set and Kz its projection over Rk . In this framework,

the uniform convergence supx∈K |μ̂(x)−μ(x)| a.s.−→ 0may be derived using analogous
arguments to those considered in Proposition 2 of Collomb (1979) and in Proposition
3.2.1 of Boente et al. (2009). In fact, to derive condition (iii) in Theorem 3.2 we need
that the covariates density fx1 and the propensity function p(z1) are continuous in
a neighbourhood of K and Kz, respectively, infx∈K fx1(x) > 0, infz∈Kz p(z) > 0,
the kernel K is a Lipschitz function such that ‖u‖d K (u) → 0 as ‖u‖ → ∞ and
the bandwidth h converges to 0 in such a way that nhd/log n → ∞. This set of
assumptions is standard when dealing with kernel estimators.

3.3.3 The partly linear regression model

In this section, we provide estimators for the regression function under a partly linear
regressionmodel that combines the parametric and nonparametric approaches given in
the previous two subsections. Partial linear regression models provide a more flexible
setting than the parametric ones by assuming that the regression function can be
modelled linearly on some covariates, while it depends nonparametrically on some
others. This model assume that

yi = μ(xi ) + εi = vti β0 + g0 (ti ) + εi 1 ≤ i ≤ n , (9)

where xi = (vti , ti )
t and vi ∈ R

d−1. When missing values arise, the covariates ti are
usually assumed to be always observed, that is, ti is one of the components of zi .

For fully observed data sets, two important viewpoints have been followed in the
literature to supply estimators under the partly linear model (9), one is based on
kernels and the other on B-splines, see for instance, Robinson (1988), Chen and Chen
(1991), Härdle et al. (2000) and He et al. (2002).

A kernel approach: We first describe a three-step kernel-based procedure, where we
combine a propensity estimator with a kernel smoothing.

Step 1 Consider preliminary kernel estimators of the quantities

η(t) = E(ξ1v1|t1 = t)

E(ξ1|t1 = t)
η0(t) = E(ξ1y1|t1 = t)

E(ξ1|t1 = t)

denoted η̂(t) = (̂η1(t), . . . , η̂d−1(t))t and η̂0(t), respectively. For instance,
one may choose the kernel estimators
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η̂0(t) =
{

n∑
i=1

wi (t)

}−1 n∑
i=1

wi (t)yi , η̂ j (t) =
{

n∑
i=1

wi (t)

}−1 n∑
i=1

wi (t)vi j .

where now wi (t) = K ((ti − t)/h) ξ̂i .
Step 2 Note that using (3), δ1 is conditionally independent of z(m)

1 and ε1. As in (8),

when p(z) = q(z) or when y1 is one of the components of z(m)
1 , this fact

implies that E(ξ1ε1|t1 = t) = 0 since E (ε1) = 0. Hence, taking conditional
expectations in ξ1y1 = ξ1vt1β0 + ξ1g0(t1) + ξ1ε1 we get that

E(ξ1y1|t1) = E(ξ1vt1β0|t1) + E [ξ1g0(t1)|t1] + E(ξ1ε1|t1)
= E(ξ1v1|t1)tβ0 + g0(t1)E(ξ1|t1) ,

so η0(t) = η(t)tβ0 + g0(t). Replacing g0(t) in the model we obtain that
yi − η0(ti ) = [vi − η(ti )]t β0 + εi . Plugging-in the estimators η̂0 and η̂ of η0
and η and using the approach given in Sect. 3.3.1 an estimator of β0 may be
defined as β̂ = argminβ Hn(β) where

Hn(β) = 1

n

n∑
i=1

ξ̂i

{
[yi − η̂0(ti )] − [vi − η̂(ti )]

t β
}2 = 1

n

n∑
i=1

ξ̂i

(̂
ri − r̂tv,iβ

)2
,

with r̂i = yi − η̂0(ti ) and r̂v,i = vi − η̂(ti ).
Step 3 The nonparametric component may be estimated as ĝ(t) = η̂0(t) − η̂(t)tβ̂

and the estimator of the regression function is then μ̂(x) = vtβ̂ + ĝ(t).

It is worth noticing that, when missing observations arise only in the responses
and q(z) = q̂(z) = 1, these estimators have been studied in Wang et al. (2004) who
established their consistency. Our goal is to derive conditions under which assumption
(iii) in Theorem 3.2 holds when missing responses and/or covariates arise according

to (3). For that purpose, define H(β) = Eξ1

(
r1 − rtv,1β

)2
with r1 = y1 − η0(t1) and

rv,1 = v1 − η(t1). Direct calculations entail that

H(β) = (β0 − β)t E

[
p(z1)
q(z1)

rv,1 rtv,1

]
(β0 − β) + E

[
ε21

p(z1)
q(z1)

]
.

Hence, β0 is the minimizer of H(β) that is unique when the matrix

A = E

{
p(z1)
q(z1)

[v1 − η(t1)] [v1 − η(t1)]
t
}

is positive definite, which is a standard condition in partial linearmodels since it avoids
any linear combination of v1 from being perfectly predicted from ti .

As when dealing with the fully nonparametric model, for any compact set T ⊂
R and any 0 ≤ j ≤ d − 1, we have that supt∈T |̂η j (t) − η j (t)| a.s.−→ 0 if
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h → 0 and n h/ log(n) → ∞, K is as in Sect. 3.3.2, the density of t1, ft1 , and
E [p(z1)/q(z1)|t1] are continuous in a neighbourhood of T , inf t∈T ft1(t) > 0 and
inf t∈T E [p(z1)/q(z1)|t1 = t] > 0. From this result, using standard arguments, it is
easy to see that β̂

a.s.−→ β0.
From the uniform strong consistency of η̂ j and the strong consistency of β̂, we

get that the estimator of the regression function μ̂(x) will converge uniformly over
compact sets to μ(x) = vtβ0 + g0(t), showing that condition (iii) in Theorem 3.2 is
fulfilled.

A B-spline approach We now focus on B-spline estimation of the function g0 that has
been considered in the literature due to their good approximation properties. For that
purpose, we assume that g0 has support on [0, 1] and that t1 has support on an interval
J within [0, 1].

Let  ≥ 1 be the splines order andmn the number of non-null knots.More precisely,
denote as Tn = {τi }mn+2

i=1 , where 0 = τ1 = · · · = τ < τ+1 < · · · < τmn++1 =
· · · = τmn+2 = 1 is a sequence of knots that partition the closed interval [0, 1]
into mn + 1 subintervals Ii = [τ+i , τ+i+1), for i = 0, . . . ,mn − 1 and Imn =
[τmn+, τmn++1]. A spline of order  ≥ 1 with knots Tn is a polynomial of degree
 − 1 within the subintervals Ii .

Denote as Sn(Tn, ) the class of splines of order  with knots Tn . According to
Corollary 4.10 of Schumaker (1981), for any g ∈ Sn(Tn, ), there exists a class
of B-spline basis functions {Bj : 1 ≤ j ≤ kn}, with kn = mn + , such that

g = ∑kn
j=1 λ j B j . This suggests that estimators of (β0, g0) may be obtained as (β̂, ĝ)

where ĝ(t) = ∑kn
j=1 λ̂ j B j (t) and

(β̂, λ̂) = argmin
β∈Rd−1,λ∈Rkn

1

n

n∑
i=1

ξ̂i

⎧⎨
⎩yi −

⎡
⎣xti β +

kn∑
j=1

λ j B j (ti )

⎤
⎦
⎫⎬
⎭

2

.

As above, assume that ft1 is continuous in [0, 1], inf t∈J ft1(t) > 0. Similar arguments
to those considered in the fully observed data case would allow to show that condition
(iii) in Theorem 3.2 holds, when the r -th derivative of the true function g0 is Lipschitz,
the maximum spacing of the knots is of order O(n−ν), with 1/(2r + 2) < ν <

1/(2r) and the ratio between the maximum and the minimum spacings of knots is
uniformly bounded. A complete study of B-spline estimators as well as the finite
sample comparison with the kernel approach is beyond the scope of the paper.

3.3.4 The single-index regression model

One problem of the fully nonparametric model considered above is the well-known
curse of dimensionality. Single-index models are a relevant topic in the broad class
of semiparametric models. They reduce the dimensionality of the covariates through
a suitable projection linked to the parametric component, while at the same time they
capture a possible nonlinear relationship through an unknown smooth function. In this
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section, we consider observations
(
yi , xti , δi

)t
, 1 ≤ i ≤ n, such that

yi = μ(xi ) + εi = g0
(
βt
0xi
)

+ εi , (10)

where g0 and the single-index parameter β0 are unknown. For identifiability purposes,
it is assumed that ‖β0‖ = 1 and the last component of β0 is positive, while to obtain
consistency results, it is usually assumed that the density of βt

0x is uniformly bounded
by below by a positive constant over its the compact support.

For complete data sets, several approaches have been considered (see Härdle et al.
(2004). To face the problem of missing responses, Chen and Keilegom (2013) modify
the semiparametric least squares approach. The semiparametric least squares approach
can also be modified to deal with possible missing values also in some covariates by
including the random variables ξ̂i . More precisely, denote as

ĝβ(u) =
{

n∑
i=1

wi,β(u)

}−1 n∑
i=1

wi,β(u)yi ,

where wi,β(u) = ξ̂i K
(
(βtxi − u)/h

)
. An estimator of β0 adapted to the situation in

which missing responses and/or some fixed covariates arise may be defined as

β̂ = argmin
‖β‖=1

1

n

n∑
i=1

ξ̂i

[
yi − ĝβ(βtxi )

]2
.

Hence, the final estimator of the regression function is obtained as μ̂(x) = ĝβ̂(β̂
t
x).

As noted in Chen and Keilegom (2013), assumptions which guarantee that condition
(iii) in Theorem 3.2 holds can be derived by adapting the arguments used in the fully
nonparametric and the partly linear models to the context of the single-index one.
We leave the complete study of the properties and small sample behaviour of these
estimators for future research.

3.4 Some comments on the plug-in marginal estimators

The response probability measure estimators described above allow to estimate
marginal quantities given through a functional of the marginal distribution. In par-
ticular, if the target is θ = T (Fy), the estimator equals θ̂ = T (F̂y) where F̂y is one of
the estimators defined in Sects. 3.1 or 3.2.

For instance, when the goal is to estimate the marginal mean value of y1, the
weighted simplified and the convolution-based are given by θ̂ws = ∑n

i=1 τi yi and
θ̂conv = ∑n

i=1 κi ε̂i + ∑n
i=1 τi μ̂(xi ) = ∑n

i=1 κi yi + ∑n
i=1 (τi − κi ) μ̂(xi ), with

κi = δi
{∑n

=1 δ

}−1 and τi = {∑n
=1 δ/ p̂(z)

}−1
δi/ p̂(zi ). It is worth noticing that

if we consider an inverse probability weighting to estimate Qε , that is, if κi = τi , then
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θ̂conv = θ̂ws. Consistency of the marginal mean estimators is obtained using similar
arguments to those used in the proof of Theorems 3.1 and 3.2

Note that if the target is the median or any other quantile, a simple expression is not
available and the related quantity may be estimated using the median or quantile of F̂y .
Furthermore, in these last situations the functional T is continuous, so that Theorems
3.1 and 3.2 entail that the marginal estimators are consistent.

4 Monte Carlo study: the particular case of the partial linear model

A simulation study was carried out to show the performance of the marginal esti-
mators proposed in Sect. 3, under the partial linear regression model (9) when the
regression parameter β ∈ R

D has dimension D = d − 1 = 1 and 2. We consider the
kernel smoothing approach described in Sect. 3.3.3. To choose the smoothing param-
eter used in Step 1, a cross-validation procedure based on response predictions was
implemented.

Since our target is to estimate marginal quantities it is sensible to consider the
case in which missing values occur also among the responses. For that reason, either
the simplified approach or the inverse probability weighting method can be consid-
ered to provide consistent estimators for β0 and g0. We only report here the results
corresponding to the simplified approach, i.e., q̂(z) = q(z) = 1. Similar results are
obtained when q̂(z) = p̂(z) and q(z) = p(z).

The target marginal parameters are the mean, median and the quantiles 10, 25,
75 and 90%. For each of them, we computed the estimators defined as θ̂ = T (F̂y)

where F̂y is the distribution function related to the probability measures defined in (4)
and (5). As an illustration, in dimension D = 1, we have also computed the responses
distribution function estimators F̂y,ws and F̂y,conv for one of the considered settings,
in order to have a deepest insight of the estimators performance.

We have chosen two errors distributions corresponding to symmetric and asym-
metric errors with null expectations,

– E1: εi ∼ N (0, σ 2) with σ 2 = 0.25.
– E2: εi ∼ 0.25 (χ2

2 − 2).

To describe the missing models to be considered, denote ν1(t) = t − 0.5, ν2(t) =
(t − 0.5)2,

Hα,ν j (t) = 1

1 + exp(α ν j (t))
, H1 = H−2,ν1 and H2 = H−3,ν2 .

Missing responses and covariates were generated, both when D = 1 and 2, according
to the following models

– M(H1): z(m)t
i = (yi , vti )

t and P (δi = 1|ti ) = H1(ti )

– M(H2): z(m)t
i = (yi , vti )

t and P (δi = 1|ti ) = H2(ti ).

In all cases, M(1) stands for the situation in which no missing data arise, that is,
P (δi = 1|(yi , xi )) = 1 and is a benchmark that allows to study the loss of the different
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procedures on the selected missing schemes. Finally,M(H1) andM(H2) correspond
to the model described in Sect. 3 in which the responses and covariates corresponding
to the linear component are missing and the procedures to be compared are those
described therein, that is, those based on Q̂y,ws and Q̂y,conv.

Three settings for the propensity are considered. In the first one, the propensity is
assumed to be known so that p̂ = p, in the second one it is estimated using the true
logistic model which generates the missing observation. Finally, in the last setting, the
missingness probability is estimated using a kernel estimator based on the covariates
ti . When computing the kernel estimators a cross-validation criterion was used.

In all figures, the blue-filled circle corresponds to the estimators based on Qy,ws,
while the green star to those based on the convolution-based probability measure
Q̂y,conv. Besides, first tick corresponds toM(1), the next two ticks on the horizontal
axis indicate that p̂(t) = p(t), while the two subsequent ones correspond to p̂ = p̂log
and the last two to the kernel fit p̂ = p̂K . Note that underM(1) themissing probability
is not estimated. The label indicating the fit for the propensity model is followed either
byM(H2) or M(H1), in this order.

To evaluate the performance of the estimators, we performed nr = 1000 replica-
tions with samples of size n = 100.

4.1 Simulation study when β ∈ R

When the regression parameter is one-dimensional, D = 1, we conduct a simulation
study based on the following partly linear regression model

yi = βvi + 2 sin(4π(ti − 0.5)) + εi 1 ≤ i ≤ n , (11)

where β = 2. The covariates (vi , ti )t were generated under four different distributions

– D1: (vi , ti )t ∼ N2(μ,Σ) with μ = (0, 1
2 )

t and Σ =
⎛
⎝ 1 1/

(
6
√
3
)

1/
(
6
√
3
)

1/36

⎞
⎠.

– D2: vi ∼ N (0, 1) and ti ∼ U(0, 1).
– D3: The distributions of v1 and t1 were U(−0.5, 0.5) and U(0, 1), respectively,
but in this setting, cor(v1, t1) = 0.25.

– D4: The distributions of v1 and t1 were U(−0.5, 0.5) and U(0, 1), respectively,
but in this setting, unlike D3, cor(v1, t1) = 0.10.

Note that under D3 the correlation between the covariates is stronger than under D2
and D4. To generate the correlated uniform distributions given in D3 and D4, we
use copulas as follows. Let Z ∼ N2(0,Σ) be a bivariate Gaussian random vector
where Σ1,1 = Σ2,2 = 1 and Σ1,2 = Σ2,1 = 2 sin(ρ π/6), with ρ ∈ (−1, 1). Let
v1 = v1,0−0.5, v1,0 = Φ(Z1) and t1 = Φ(Z2), whereΦ is the cumulative distribution
function of a standard normal distribution. It follows that the marginal distribution of
both v1,0 and t1 is U (0, 1) with correlation ρ.

As mentioned above, besides the marginal quantile estimators, to illustrate we have
also computed the responses distribution function estimators F̂y,ws and F̂y,conv for
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Table 1 Target marginal values: mean values over replications of the estimated parameters, when D = 1

Mean Median F−1(0.10) F−1(0.25) F−1(0.75) F−1(0.90)

E1
D1 0.0000 −0.0003 −3.2104 −1.7328 1.7325 3.2105

D2 0.0001 −0.0002 −2.7952 −1.4725 1.4726 2.7954

D3 0.0000 −0.0001 −1.4668 −0.8279 0.8279 1.4669

D4 0.0000 0.0001 −1.4137 −0.7746 0.7747 1.4138

E2
D1 −0.0000 −0.0053 −3.2069 −1.7356 1.7276 3.2103

D2 0.0001 −0.0082 −2.7885 −1.4750 1.4660 2.7978

D3 −0.0000 −0.0182 −1.4682 −0.8428 0.8112 1.4279

D4 0.0000 −0.0274 −1.4111 −0.7793 0.7567 1.3865

Fy,ws Fy,conv

y
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Fig. 1 Functional boxplots of the responses distribution function estimators under E1, D2 when D = 1
and no missing data arise. The dashed line corresponds to Fy

the special case of symmetric errors, that is, under E1 and when the covariates have a
distribution given by D2. In this case the true distribution function Fy is given by

Fy(y) = 0.5 + 1

4π

∫ 2π

−2π

{
Φ

[
y − 2 sin(x)√

(β2 + σ 2)

]
− Φ

[
−2 sin(x)√
(β2 + σ 2)

]}
dx (12)

for y > 0 and FY (y) = 1 − Fy(−y) for y < 0 which can be computed numerically.
We evaluated Fy and its estimates over an equally spaced grid of 1000 points between
−3 and 3, that correspond approximately to the 10 and 90% of Fy (see Table 1).
Figures 1, 2 and 3 give the functional boxplots of the obtained estimates underM(1),
M(H1) andM(H2), respectively. The deepest curve is plotted in black, while the true
distribution function Fy is given in dashed lines. As seen in these plots, an advantage
of the convolution-based responses distribution estimators is that they are smoothers
than those obtained with the weighted simplified procedure. Besides, the band defined
by the 50% deepest curves is narrower for F̂y,conv than when using F̂y,ws, showing
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Fig. 2 Functional boxplots of the responses distribution function estimators under E1, D2 when D = 1
and missing data arise according toM(H1). The dashed line corresponds to Fy

that the convolutionmethod providesmore accurate estimates, a result that was already
known for the marginal mean estimators when only responses are missing. Finally,
for this sample size and the considered missing schemes, these plots suggest that
F̂y,ws provides a better fit for large absolute values of y, while F̂y,conv has a better
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Fig. 3 Functional boxplots of the responses distribution function estimators under E1, D2 when D = 1
and missing data arise according toM(H2). The dashed line corresponds to Fy

performance in a neighbourhood of 0. Hence, onemay guess that the extreme quantiles
based on F̂y,ws will be less biased than those based on F̂y,conv.

To summarize the simulation results, the true marginal values are needed. Except
for the marginal mean which is equal to 0 for all the considered cases, the quantiles
should be evaluated numerically. In order to obtain an accurate value, we generate 100
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Table 2 Bias for the marginal estimates computed with the observations at hand, i.e., obtained from
Qn = {∑n

i=1 δi }−1∑n
i=1 δiΔyi , when D = 1

E1 E2 E1 E2
Mean Median Mean Median Mean Median Mean Median

D1 D2

M(1) −0.010 −0.012 −0.013 −0.013 −0.006 −0.008 −0.007 −0.005

M(H1) 0.278 0.304 0.276 0.302 0.145 0.151 0.145 0.147

D3 D4

M(1) −0.001 −0.003 −0.004 −0.004 −0.002 −0.004 −0.004 −0.015

M(H1) 0.195 0.250 0.194 0.257 0.173 0.205 0.171 0.200

samples of size 106 and for each samplewe compute the consideredmarginal quantiles.
With this choice of the sample size and the number of replications, the standard errors
of the computed marginal measures reported in Table 1 do not exceed 6 × 10−4. The
average values over the 100 samples are given in Table 1 and are considered as the
target quantities when computing the bias and the mean square error of our estimators.
It is worth noting that under E1 both the median and the mean of the responses are 0;
however, the values obtained for the median present some disagreement. In this case,
in the comparisons the value 0 was taken as the true one, the same decision was made
when comparing the estimators of the mean under E2.

For the missing model M(H1), the proportion of observed data is around a 50%.
More precisely, to estimate the proportion of observed data we compute the mean over
100 replications of the average number of observed data

∑n
i=1 δi/n with samples of

size 100,000. Under M(H1) this mean value was 0.5 for all the distributions.
Once the target values were computed, as mentioned above, in our simulations

we performed nr = 1000 replications with samples of size n = 100 to evaluate the
performance of the estimators. It is well known that computing themarginal estimators
with the observations at hand may produce biased estimators. Table 2 illustrates this
fact reporting the biases of the marginal estimators θ̃ based on the naive estimator
Q̃n = {∑n

i=1 δi }−1∑n
i=1 δiΔyi . The obtained values show the high bias of both the

mean and the median when missing observations are generated according toM(H1).
The aim is to show that our proposals improve the bias behaviour of the naive approach.

Tables S.1 to S.6 in the supplementary file report the bias (bias), standard deviation
(sd) and mean square errors (mse) of the estimators mentioned above, that is, for
mentioned above for the mean, the median and the 10, 25, 75 and 90% quantiles. On
the other hand, Figures S.1 to S.6 in the supplementary file plot the absolute value of
the bias and the mean square errors under E1, where also similar plots under E2 are
given.

It is clear from all the tables and figures that the convolution estimator based on
Q̂y,conv is the one with the best behaviour in MSE. This behaviour is coherent with
the described performance of the functional boxplots of the responses distribution
function estimators, i.e., the band of the 50% deepest functions are less spread when
using F̂y,conv, under D2. In all cases, the MSE of all estimators are larger when
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the covariate x is normal than when it is uniform. This enlargement is in most cases
due to an increase of the standard deviation under D1 and D2. Neither the different
correlations considered nor the asymmetry of the errors affect the performance of
the estimators. Regarding the bias, the weighted simplified quantile estimators have
smaller biases at a cost of a larger standard deviation. However, as shown in Figure
S.1, Q̂y,conv has similar biases and MSE for the mean, while for the median, the
biases are slightly increased when using the convolution estimator, but the MSE are
always smaller (see Figure S.1) showing the advantage of this proposal.

4.2 Simulation study when β ∈ R
2

The model used for bivariate covariates (D = 2) in the linear regression component
is

yi = βtvi + 2 sin(4π(ti − 0.5)) + εi 1 ≤ i ≤ n ,

where βt = (2, 2). For the covariates
(

vti , ti
)t

we choose the following two distri-

butions, for ρ = 0 and 0.25,

– D1,ρ : xi =
(

vti , ti
)t ∼ N (μ,Σ) with μ = (0, 0, 1

2 )
t and

Σ =

⎛
⎜⎜⎜⎝

1 ρ 1/
(
6
√
3
)

ρ 1 1/
(
6
√
3
)

1/
(
6
√
3
)
1/
(
6
√
3
)

1/36

⎞
⎟⎟⎟⎠

– D2,ρ : vti ∼ N (μ,Σ) with μ = (0, 0)t and Σ =
(
1 ρ

ρ 1

)
while ti ∼ U(0, 1).

As in dimension 1, the proportion of missing was 0.5 for all the distributions,
underM(H2), since it only depends on the distribution of t , while underM(H2), the
proportion was 0.521 underD1,ρ , and 0.561 for the uniform covariates t generated by
model D2,ρ .

As in dimension D = 1, we compute the true marginal values by simulating
100 samples of size 106 to ensure that the standard errors of the computed marginal
measures used when the real ones are unknown do not exceed 6× 10−4. The average
values are given in Table 3 and are taken as the target values when computing the
mean square error and the bias of the different proposals. Again, it is worth noting that
under E1 both the median and the mean of the responses are 0; however, the values
obtained for the median present some disagreement. In this case, in the comparisons
the value 0 was taken as the true one, the same decision was made when comparing
the estimators of the mean under E2.

Tables S.7 to S.12 in the supplementary file report the bias (bias), standard deviation
(sd) and mean square errors (mse) of the estimators mentioned above computed using
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Table 3 Target marginal values: mean values over replications of the estimated parameters, when D = 2

Mean Median F−1(0.10) F−1(0.25) F−1(0.75) F−1(0.90)

E1
D1,0 −0.0001 −0.0004 −4.4452 −2.4260 2.4257 4.4455

D1,0.25 −0.0001 −0.0005 −4.7849 −2.5822 2.5818 4.7851

D2,0 −0.0000 −0.0008 −3.7907 −1.9960 1.9957 3.7913

D2,0.25 −0.0001 −0.0009 −4.2012 −2.2121 2.2116 4.2019

E2
D1,0 −0.0001 −0.0026 −4.4441 −2.4280 2.4233 4.4445

D1,0.25 −0.0001 −0.0026 −4.7834 −2.5837 2.5796 4.7848

D2,0 −0.0001 −0.0051 −3.7871 −1.9981 1.9923 3.7930

D2,0.25 −0.0001 −0.0042 −4.1985 −2.2137 2.2090 4.2033

samples of size n = 100, over nr = 1000 replications. On the other hand, Figures
S.13 to S.18 in the supplementary file plot the absolute value of the bias and the mean
square errors under E1. The figures for the asymmetric distribution E2 are given in
Figures S.14 to S.24 in the supplementary file.

It is worth noticing that, for any marginal quantity, in most situations, the MSE of
both estimators are larger under D1,ρ than under D2,ρ . As in the univariate case, this
enlargement is mainly caused by an increase of the standard deviation even though
in some situations larger biases are obtained under D2,ρ . The different correlations
considered nor the asymmetry of the errors affect notably the performance of the esti-
mators, although underD2,ρ slightly larger MSE values are obtained when ρ = 0.25.
When looking at the bias, for the marginal mean and median, the convolution proce-
dure is competitive or even better than that based on Q̂y,ws. However, it should be
noted that the estimators based on Q̂y,conv show an increased bias when estimating
the 75% quantile, in particular, under D1,ρ . Furthermore, as shown for instance in
Figure S.14, the estimators based on Q̂y,conv have smaller mean square errors than
those based on the weighted simplified when estimating the median and the quantiles,
while similar ones are also obtained when estimating the mean. This shows the advan-
tage of this proposal. The main reason for the decrease in mean square error is that
smaller standard errors are obtained with the convolution-based estimators. Besides,
under D2,ρ , there is an important gain in mean square error when using Q̂y,conv.

4.3 Sensitivity analysis when β ∈ R

A numerical experiment was carried out to study the sensitivity of the marginal esti-
mators proposed in Sect. 3 to the percentage of missingness. The study was performed
under the partial linear regression model (11) considered in Sect. 4.1. As above, the
smoothing parameters involved were chosen through a cross-validation procedure.

For brevity, we only report the results when the errors distribution is E1, i.e., εi ∼
N (0, σ 2) with σ 2 = 0.25 and when the covariates distribution is D2, that is, vi ∼
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N (0, 1) and ti ∼ U(0, 1). In this case, the true distribution function Fy is given by (12),
and therefore, the target values can be found in Table 1. Similar results are obtained in
other situations. We performed nr = 1000 replications with samples of size n = 100.

To conduct the sensitivity analysis, we generate samples with different proportions
of missing data. To describe the missing models, let us consider the logistic function

La,b(t) = 1

1 + exp(−a − b(t − 0.5)2)
.

Missing responses and covariates were generated for different values of the parameters
a and b yielding to a range of presence probabilities π = E(δ). The selected pairs
are (a, b) = (−1,−4.5), (−0.3,−4), (0,−3), (0.2, 5) and (1, 4.5) corresponding
approximately to π = 0.20, 0.35, 0.45, 0.65 and 0.80. For the selected values of
(a, b), missing responses and covariates corresponding to the linear component are
introduced according to P(δi = 1|ti ) = La,b(ti ). Henceforth, these propensity models
will be denoted as M(Hπ ) for π = 0.20, 0.35, 0.45, 0.65, 0.80 with π = P(δ = 1).
Note that model M(H0.45) coincides with M(H2). Besides, as above, in all tables
and figures M(1) stands for the situation in which no missing data arise, that is,
P (δi = 1|(yi , xi )) = 1 and is a benchmark that allows to study the loss of the different
procedures on the selected missing schemes.

As mentioned in Sect. 4.1, besides the marginal quantile estimators, the responses
distribution function has its own interest, since it gives a whole picture of the tar-
get variable behaviour. For this reason, we evaluated Fy and its estimates F̂y,ws and
F̂y,conv over an equally spaced grid of 1000 points between −3 and 3, that corre-
spond approximately to the 10 and 90% of Fy . Figures 4, 5, 6 give the functional
boxplots of the obtained estimates under M(Hπ ). The deepest curve is plotted in
black, while the true distribution function Fy is given in dashed lines. These plots
show that, as expected, when the percentage of missing data increases, i.e., when π

decreases, the central band is enlarged making evident the higher variability of the
estimation procedures. As noted in Sect. 4.1, the band defined by the 50% deepest
curves corresponding to the convolution-based responses distribution estimators are
narrower and smoother than those obtained with the weighted simplified procedure in
all cases. Furthermore, F̂y,conv has a better performance in a neighbourhood of 0,
while F̂y,ws provides a better fit of Fy for large absolute values of y. This behaviour
suggests that the extreme quantiles based on F̂y,ws will be less biased, but with an
increased standard deviation than those based on F̂y,conv as it can be observed in
Tables 5, 6 and 9. It is worth noticing that this behaviour leads to larger values of the
mean square error when considering the marginal estimates θ̂ws.

Tables 4, 5, 6, 7, 8 and 9 exhibit that, as expected, when the percentage of missing
values increases (that isπ decreases), themean squared error and the standard deviation
of the considered marginal estimators tend to raise up. The behaviour of the bias is
slightly more erratic. However, when the propensity is estimated through a kernel fit,
the bias tends to increase with the proportion of missing data. Regarding the behaviour
of the mean squared errors of the estimators θ̂ws and θ̂conv, it becomes evident that
when π varies the estimations based on the convolution procedure attain the lowest
mean square error values. Indeed, the mean squared error of the estimators based on
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Fig. 4 Functional boxplots of the responses distribution function estimators under E1, D2 when p̂ = p
and missing data arise according toM(H2, π), where π = E(δ). The dashed line corresponds to Fy
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Fig. 5 Functional boxplots of the responses distribution function estimators under E1,D2 when p̂ = p̂log
and missing data arise according toM(H2, π), where π = E(δ). The dashed line corresponds to Fy
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Fig. 6 Functional boxplots of the responses distribution function estimators under E1, D2 when p̂ = p̂K
and missing data arise according toM(H2, π), where π = E(δ). The dashed line corresponds to Fy
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Table 4 Summary measures for the marginal mean under D2 and E1, when D = 1

BIAS SD MSE

p̂ Q̂ y,ws Q̂y,conv Q̂y,ws Q̂y,conv Q̂y,ws Q̂y,conv

M(1) −0.006 −0.006 0.227 0.227 0.052 0.052

p M(H0.20) −0.000 −0.001 0.491 0.492 0.242 0.242

M(H0.35) −0.003 −0.003 0.385 0.385 0.148 0.148

M(H0.45) −0.011 −0.011 0.291 0.291 0.085 0.085

M(H0.65) −0.010 −0.010 0.279 0.279 0.078 0.078

M(H0.80) −0.009 −0.009 0.253 0.253 0.064 0.064

p̂log M(H0.20) 0.005 0.004 0.513 0.515 0.263 0.265

M(H0.35) −0.002 −0.003 0.392 0.393 0.154 0.154

M(H0.45) −0.012 −0.012 0.291 0.291 0.085 0.085

M(H0.65) −0.011 −0.011 0.279 0.279 0.078 0.078

M(H0.80) −0.009 −0.009 0.253 0.253 0.064 0.064

p̂K M(H0.20) −0.002 −0.004 0.470 0.470 0.221 0.221

M(H0.350) −0.003 −0.004 0.372 0.372 0.138 0.138

M(H0.45) −0.008 −0.008 0.285 0.285 0.081 0.081

M(H0.65) −0.009 −0.009 0.274 0.274 0.075 0.075

M(H0.80) −0.008 −0.008 0.251 0.251 0.063 0.063

Table 5 Summary measures for the marginal median under D2 and E1, when D = 1

BIAS SD MSE

p̂ Q̂ y,ws Q̂y,conv Q̂y,ws Q̂y,conv Q̂y,ws Q̂y,conv

M(1) −0.009 −0.008 0.281 0.257 0.079 0.066

p M(H0.20) −0.007 −0.012 0.623 0.573 0.388 0.328

M(H0.35) −0.007 −0.007 0.486 0.440 0.237 0.194

M(H0.45) −0.018 −0.018 0.366 0.333 0.134 0.111

M(H0.65) −0.019 −0.014 0.350 0.320 0.123 0.103

M(H0.80) −0.016 −0.012 0.314 0.287 0.099 0.082

p̂log M(H0.20) −0.001 −0.008 0.653 0.602 0.426 0.362

M(H0.35) −0.001 −0.007 0.490 0.449 0.240 0.201

M(H0.45) −0.018 −0.019 0.363 0.332 0.132 0.110

M(H0.65) −0.018 −0.015 0.349 0.320 0.122 0.103

M(H0.80) −0.017 −0.012 0.314 0.287 0.099 0.082

p̂K M(H0.20) −0.007 −0.019 0.605 0.555 0.366 0.308

M(H0.35) −0.015 −0.011 0.477 0.429 0.227 0.184

M(H0.45) −0.012 −0.015 0.361 0.326 0.130 0.106

M(H0.65) −0.016 −0.013 0.344 0.315 0.118 0.099

M(H0.80) −0.016 −0.010 0.311 0.285 0.097 0.081
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Table 6 Summary measures for the marginal 10% quantile D2 and E1, when D = 1

BIAS SD MSE

p̂ Q̂ y,ws Q̂y,conv Q̂y,ws Q̂y,conv Q̂y,ws Q̂y,conv

M(1) 0.004 0.019 0.378 0.342 0.143 0.117

p M(H0.20) 0.025 0.070 0.882 0.796 0.778 0.639

M(H0.35) 0.019 0.037 0.663 0.594 0.440 0.355

M(H0.45) 0.013 0.033 0.524 0.455 0.275 0.208

M(H0.65) 0.001 0.027 0.491 0.425 0.241 0.181

M(H0.80) 0.010 0.025 0.448 0.383 0.201 0.147

p̂log M(H1,0.20) 0.043 0.080 0.892 0.804 0.798 0.652

M(H1,0.35) 0.020 0.030 0.675 0.610 0.456 0.373

M(H1,0.50) 0.008 0.030 0.526 0.458 0.276 0.211

M(H1,0.65) −0.005 0.025 0.491 0.426 0.241 0.182

M(H0.80) 0.011 0.025 0.445 0.383 0.198 0.147

p̂K M(H0.20) 0.030 0.075 0.872 0.772 0.761 0.602

M(H0.35) 0.012 0.027 0.658 0.588 0.433 0.347

M(H0.45) 0.014 0.032 0.522 0.453 0.272 0.207

M(H0.65) −0.001 0.027 0.480 0.420 0.230 0.177

M(H0.80) 0.010 0.026 0.447 0.382 0.200 0.147

Table 7 Summary measures for the marginal 25% quantile D2 and E1, when D = 1

BIAS SD MSE

p̂ Q̂ y,ws Q̂y,conv Q̂y,ws Q̂y,conv Q̂y,ws Q̂y,conv

M(1) −0.000 0.010 0.306 0.282 0.093 0.080

p M(H0.20) 0.019 0.039 0.681 0.632 0.464 0.400

M(H0.35) −0.009 0.013 0.521 0.484 0.272 0.235

M(H0.45) −0.002 0.011 0.401 0.372 0.160 0.139

M(H0.65) −0.007 0.011 0.379 0.347 0.144 0.120

M(H0.80) −0.004 0.011 0.340 0.311 0.116 0.097

p̂log M(H1,0.20) 0.027 0.041 0.709 0.650 0.503 0.424

M(H1,0.35) −0.011 0.007 0.528 0.489 0.279 0.239

M(H1,0.50) −0.007 0.008 0.401 0.372 0.161 0.138

M(H1,0.65) −0.007 0.009 0.380 0.346 0.144 0.120

M(H0.80) −0.005 0.011 0.339 0.311 0.115 0.097

p̂K M(H0.20) 0.026 0.034 0.672 0.616 0.453 0.380

M(H0.35) −0.009 0.009 0.509 0.472 0.259 0.223

M(H0.45) 0.001 0.013 0.398 0.368 0.158 0.136

M(H0.65) −0.002 0.013 0.375 0.342 0.141 0.117

M(H0.80) −0.001 0.013 0.336 0.310 0.113 0.096
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Table 8 Summary measures for the marginal 75% quantile D2 and E1, when D = 1

BIAS SD MSE

p̂ Q̂ y,ws Q̂y,conv Q̂y,ws Q̂y,conv Q̂y,ws Q̂y,conv

M(1) −0.017 −0.021 0.292 0.273 0.086 0.075

p M(H0.20) −0.017 −0.028 0.656 0.603 0.431 0.364

M(H0.35) −0.008 −0.015 0.511 0.469 0.262 0.221

M(H0.45) −0.025 −0.033 0.385 0.354 0.149 0.126

M(H0.20) −0.021 −0.032 0.365 0.336 0.133 0.114

M(H0.80) −0.021 −0.031 0.326 0.302 0.107 0.092

p̂log M(H1,0.20) −0.009 −0.022 0.704 0.643 0.496 0.413

M(H1,0.35) 0.002 −0.008 0.536 0.488 0.287 0.239

M(H1,0.50) −0.024 −0.032 0.383 0.354 0.147 0.126

M(H1,0.65) −0.023 −0.032 0.366 0.336 0.134 0.114

M(H0.80) −0.021 −0.031 0.326 0.302 0.106 0.092

p̂K M(H0.20) −0.014 −0.031 0.640 0.577 0.409 0.334

M(H0.35) −0.001 −0.010 0.495 0.454 0.245 0.206

M(H0.45) −0.018 −0.027 0.377 0.347 0.143 0.121

M(H0.65) −0.021 −0.031 0.361 0.330 0.131 0.110

M(H0.80) −0.019 −0.030 0.326 0.301 0.107 0.092

Table 9 Summary measures for the marginal 90% quantile D2 and E1, when D = 1

BIAS SD MSE

p̂ Q̂ y,ws Q̂y,conv Q̂y,ws Q̂y,conv Q̂y,ws Q̂y,conv

M(1) −0.013 −0.028 0.363 0.330 0.132 0.110

p M(H0.20) −0.049 −0.054 0.834 0.745 0.698 0.558

M(H0.35) −0.033 −0.042 0.631 0.574 0.399 0.331

M(H0.45) −0.025 −0.045 0.500 0.438 0.250 0.194

M(H0.65) −0.028 −0.042 0.460 0.412 0.212 0.171

M(H0.80) −0.020 −0.038 0.420 0.365 0.177 0.135

p̂log M(H1,0.20) −0.047 −0.053 0.885 0.788 0.785 0.624

M(H1,0.35) −0.020 −0.033 0.658 0.596 0.433 0.356

M(H1,0.50) −0.018 −0.044 0.499 0.441 0.250 0.196

M(H1,0.65) −0.029 −0.043 0.460 0.412 0.212 0.171

M(H0.80) −0.021 −0.037 0.422 0.367 0.179 0.136

p̂K M(H0.20) −0.038 −0.061 0.818 0.732 0.670 0.540

M(H0.35) −0.007 −0.029 0.645 0.574 0.416 0.330

M(H0.45) −0.020 −0.038 0.495 0.439 0.245 0.194

M(H0.65) −0.021 −0.040 0.457 0.410 0.209 0.170

M(H0.80) −0.020 −0.036 0.416 0.365 0.174 0.134
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Table 10 Refinery data: marginal estimators with the full data set

θ E(y) θ0.5 θ0.10 θ0.25 θ0.75 θ0.90

θ̂ 91.542 91.610 90.320 90.710 92.300 92.680

ŝθ̂ ,j 0.103 0.000 0.106 0.187 0.299 0.186

ŝ
θ̂ ,b 0.104 0.180 0.134 0.186 0.118 0.090

ŝθ̂ ,as 0.103 0.175 0.142 0.176 0.129 0.112

the weighted simplified procedure may be up to 25% larger than the corresponding
counterpart based on the convolution method.

5 Real data analysis

In this section, we consider two data sets. In the first one, missing data are introduced
using a logistic model, while in the second one, the original data set already includes
missing responses and covariates.

5.1 Refinery data

Daniel andWood (1980) considered a data set obtained in a process variable study of a
refinery unit. The response variable y is the octane number of the final product, while
the covariates v = (v1, v2, v3)

t represent the feed compositions and the covariate t
is the logarithm of a combination of process conditions scaled to [0, 1]. Bianco et al.
(2010) fitted to this data set the partial linear model (9).

Daniel and Wood (1980) discussed the presence of three anomalous observations
(labelled 75–77) which correspond to high values of octanes associated with high
leverage points. Besides these three observations that influence the mean estimates,
we have also exclude the observations labelled 71–74 since they correspond to isolated
values of t enlarging the value of the cross-validation bandwidth. Hence, the whole
data set has n = 75 observations. We used the Epanechnikov kernel when considering
semiparametric estimators.

We first compute the estimates of the marginal parameter θ for this data set. The
obtained values θ̂ are reported in Table 10 together with the standard deviations ŝθ̂
evaluated using jackknife (with a subscript j), bootstrap (with a subscript b) and
estimated using its asymptotic variance (with a subscript as). For simplicity in the
tables we denote as θα the marginal α-quantile. It is worth noticing that the standard
error of the median estimated using jackknife equals 0 since three observations in this
data set are equal to the median. For the mean and the 0.25-quantile estimators, the
jackknife and the asymptotic standard deviations are quite close. On the other hand,
as expected the bootstrap and the asymptotic standard errors are close to each other.
For that reason, when missing data are introduced we only report bootstrap standard
deviations. Due to the asymmetry of the marginal distribution, the quantiles are not
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Table 11 Refinery data: marginal k-estimates when missing values are generated in the responses and
covariates according to the model p(v2, v3, t) = 1/(1 + exp(−1.3 (t − 1.58)) and the propensity is
estimated using a kernel estimator

Mean θ̂0.5 θ̂0.10 θ̂0.25 θ̂0.75 θ̂0.90

θ̂ws 91.722 (0.122) 91.880 (0.181) 90.570 (0.229) 91.100 (0.255) 92.220 (0.129) 92.680 (0.167)

θ̂conv 91.734 (0.059) 91.730 (0.083) 90.798 (0.153) 91.203 (0.102) 92.274 (0.099) 92.692 (0.139)

rws 1.002 1.003 1.003 1.004 0.999 1

rconv 1.002 1.001 1.005 1.005 1.000 1

Bootstrap standard deviations are reported in the first two lines between brackets

symmetric with respect to the median and this asymmetry also influences the standard
deviations estimators.

Missing observations in the responses and the covariate v1 were artificially intro-
duced at randomaccording to the followingmodel p(v2, v3, t) = 1/(1+exp(−1.3 (t−
1.58)). Under this propensity model 42 observations are missing. The marginal esti-
mators described in Sect. 3 were computed using a partial linear model when the
propensity is computed through a kernel estimator. Their values are reported in
Table 11 together with their standard deviations computed using the bootstrap proce-
dure, between brackets. With respect to the bootstrap method, we split the sample in
two groups corresponding to δ = 0 and δ = 1 and we resample within each group.
Furthermore, we also report the values rws and rconv that correspond to the ratio
between the marginal estimators computed with the full data set and those obtained
with the reduced sample using the weighted simplified and the convolution procedure,
respectively. Except for the 10 and 25%—quantiles the ratios rconv are closer to 1
than those based on the weighted simplified estimators. This fact together with the
smaller standard errors obtained makes the convolution-based estimator a preferable
choice.

As an illustration on the usefulness of the proposed estimators, over those obtained
considering just the observed responses, Fig. 7 shows the boxplot obtained with the
original 82 observations, labelled Original Data Boxplot, the corresponding one with
the observed responses after introducing missing responses according to the missing
probability p(t) = 1/(1 + exp(−1.3 (t − 1.58)), labelled Reduced Sample and in
blue the boxplot obtained using the weighted simplified quantiles. With this missing
probability almost half of the data were missing. The missing probability was esti-
mated through a kernel estimator. Note that the modified boxplot taking into account
the propensity detects the three atypical observations, while the naive one based only
on the reduced sample without any weighting does not point out the observation
labelled as 77, even when the box is slightly enlarged when missing responses arise.
The obtained values for the weighted simplified first and third quartiles are 90.64 and
92.42, while for the original sample the first and third quartile equal 90.83 and 92.48.
On the other hand, the weighted simplified median equals 91.88 and that of the orig-
inal data set is 91.80. Note that the boxplot may be constructed also considering the
convolution-based quantiles. However, taking into account that outliers arise in the
responses, robust estimators of the regression parameter and the regression function
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Modified Boxplot Original Data Boxplot Reduced Sample

90
92

94
96

Fig. 7 Refinery data: The boxplot on the left corresponds to that based on theweighted simplified quantiles,
the central one is the boxplot of the original sample and the right hand side one corresponds to the boxplot
obtained with the data set {yi : δi = 1}

need to be considered. When missing data arise in the responses, robust proposals
in partial linear models have been considered in Bianco et al. (2010), the exten-
sion to the situation of missing responses and covariates is beyond the scope of this
paper.

5.2 Air quality data

In this second application we illustrate the performance of the proposed methods
on a real data set with missing values at the responses and one of the covariates.
Cleveland (1985) analyses a set of environmental data corresponding to air quality
measurements registered at New York metropolitan area between May 1, 1973 and
September 30, 1973. The data consist in 153 observations that record daily readings
of four air quality variables. Cleveland finds a nonlinear trend between Ozone (ppb)
and Wind Speed (mph), where Ozone (y) decreases as Wind Speed increases. This
behaviour is explained by the effect of ventilation that higher wind speeds produce.

Bianco and Spano (2017) propose an exponential growth model between Ozone
and Wind Speed and apply a weighted MM-estimators of the regression coefficients.
With this robust fit, they identify five outliers corresponding to observations labelled
as 86, 100, 101, 121 and 126. These five observations are excluded from our analysis
since they influence the least squares estimators We also include in our analysis as a
linear component the covariate Solar Radiation. An interesting feature of these data is
that about 24% of the responses are missing, more precisely, 37 values of Ozone are
missing, 7 values of the variable Solar Radiation are also missing, while the variable
Wind Speed is completely observed. Hence, we fit a partly nonlinear model with an
exponential component based on Wind Speed (x1) and that depends linearly on Solar
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Table 12 Air quality data:
marginal estimates and its
bootstrap standard deviations, in
brackets

Mean θ̂0.5

θ̂ws 39.339 (2.847) 29.000 (3.821)

θ̂conv 39.337 (1.707) 32.960 (1.981)

Radiation (x2), given by

y = θ1 exp(θ2x1) + θ3 + θ4x2 + ε .

We fit the regression parameters using the classical least squares estimator and then,
we compute the marginal estimators described in Sect. 3 using a kernel estimator of
the propensity model based on the Epanechnikov function, where the bandwidth is
chosen through a cross-validation criterion.

In this example we focus on the central location marginal parameters, that is,
the marginal mean and median. Table 12 summarizes the obtained estimators of the
marginal mean andmedian, together with their bootstrap standard deviations, between
brackets. The standard deviationswere computed using bootstrap. In the bootstrap pro-
cedure, we use 1000 bootstrap samples obtained by resampling separately the missing
and the completely observed data. Furthermore, when using a regression model the
bootstrap was performed through resampled residuals.

Table 12 shows the advantages of the convolution estimators in terms of accuracy.
Regarding the estimators of the marginal mean, the weighted simplified and the con-
volution estimators are very close; however, the convolution estimator is much less
deviated; indeed, the ratio between their standard deviations is almost 1.67. Concern-
ing the marginal median, the standard deviation of the convolution estimator is almost
the half of the deviation of the weighted estimator. In this case, the two estimators of
the median look further away; however, the standard deviation of the difference com-
puted by bootstrap is 3.295, showing that the difference between these estimators is
not significant which suggests that the fitted regression model is accurate. Otherwise,
significant differences between the weighted simplified and the convolution-based
procedures are expected. Taking into account the standard deviations, the convolution-
based estimators seem more reliable.

6 Final remarks

One advantage of the marginal estimators proposed in Sect. 3 is their capability to deal
with missing data both in responses and on some of the covariates under a general
missing scheme. Besides, the plug-in approach given allows to handle any marginal
quantity T (Fy), given through a continuous functional T . In particular, the conver-
gence of themarginal distribution estimators given inSect. 3 allows to obtain consistent
estimators for marginal quantities other than those considered in our simulation study,
for instance, for dispersion measures. As shown in our simulation study, when esti-
mating the mean and α-quantiles the convolution-based estimators are more accurate,
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a fact that has been noticed by Müller (2009) for linear functionals, such as the mean,
when missing data arise only in the responses.

7 Appendix

We begin by stating the following Lemma that will be useful in the proofs. Its proof
follows similar arguments to those considered inAppendix III fromBillingsley (1968).
It has been derived in a more general setting for Polish spaces in Varadarajan (1958),
see also Theorem 3.3.1 in Bali (2012). We include its proof for completeness.

Lemma 7.1 Let (Ω,A,P) be a probability space and Qn and Q induced probability

measures overR such that for any borelian set A, Qn(A)
a.s.−→ Q(A), that is, Qn(A) →

Q(A) except for a set NA ⊂ Ω such that P(NA) = 0. Then, Π(Qn, Q)
a.s.−→ 0.

Proof Let us show that given j ∈ N, there exists N j ⊂ Ω such that P(N j ) = 0 and,
for anyω /∈ N j , there exists n j (ω) ∈ N such that if n ≥ n j (ω), thenΠ(Qn, Q) < 1/j .

Let {Ai , 1 ≤ i ≤ k} be a finite class of disjoint sets with diameter smaller than 1
2 j

such that

Q

(
k⋃

i=1

Ai

)
> 1 − 1

2 j
. (13)

Denote by A the class of all the sets that are obtained as a finite union of the Ai ,
i.e., B ∈ A if and only if there exists Ai1 , . . . , Ai such that B = ∪

j=1Ai j . Note
that A has a finite number of elements s. For each 1 ≤ i ≤ s, and Bi ∈ A, let
NBi ⊂ Ω with P(NBi ) = 0 such that if ω /∈ NBi , then |Qn(Bi ) − Q(Bi )| → 0.
Define N j = ⋃s

i=1NBi , then we get P(N j ) = 0.
Fix ω /∈ N j , then |Pn(Bi ) − P(Bi )| → 0, for 1 ≤ i ≤ s. Hence, there exists

n j (ω) ∈ N such that for n ≥ n j (ω) we have that |Qn(B) − Q(B)| < 1
2 j for any

B ∈ A. Let us show that if n ≥ n j (ω), then Π(Qn, Q) < 1/j .
Consider B a borelian set and let A be the union of all the sets Ai that intersect B.

Note that A ∈ A and so |Qn(A) − Q(A)| < 1
2 j . Therefore, B ⊂ A ∪

(⋃k
i=1 Ai

)c
and A ⊂ B1/j , where the last inclusion holds since the sets Ai have diameter smaller
than 1

2 j . Thus, using (13), we get that

Q(B) ≤ Q(A) + Q

⎡
⎣
(

k⋃
i=1

Ai

)c⎤
⎦ = Q(A) + 1 − Q

[(
k⋃

i=1

Ai

)]
< Q(A) + 1

2 j
,

which together with the fact that |Qn(A)−Q(A)| < 1
2 j implies that Q(B) ≤ Q(A)+

1
2 j < Qn(A)+1/j . Using that A ⊂ B1/j , we get that Qn(A)+1/j ≤ Qn(B1/j )+1/j ,

so Q(B) < Qn(B1/j ) + 1/j which implies that Π(Qn, Q) < 1/j , as desired.
To conclude the proof, we will show that Π(Qn, Q) → 0 except for a zero P-

measure set. Consider the previously defined sets N j and let N = ⋃
j∈NN j . It is
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clear that P(N ) = 0. Thus, for any ω /∈ N , we will have that for each j there exists
n j = n j (ω) such that Π(Qn, Q) < 1/j if n ≥ n j , concluding the proof. ��
Proof of Theorem 3.1 We will begin by deriving that ΠK (Q̂y,ws, Qy)

a.s.−→ 0. Using
analogous arguments to those considered in Theorem 3 in Pollard (1984), it is enough
to show that for any borelian set B, Q̂y,ws(B)

a.s.−→ Qy(B). Denote as

Q̃y,ws = 1

n

n∑
i=1

ζiΔyi ,

with ζi = δi/ p̂(zi ). Note that Q̂y,ws(B) = Q̃y,ws(B)/Q̃y,ws(R). We will show
that

Q̂y,ws(B)
a.s.−→ Qy(B) . (14)

Using (14) with B = R, we get that Q̃y,ws(R) = (1/n)
∑n

i=1 ζi
a.s.−→ 1 which leads

to Q̂y,ws(B)
a.s.−→ Qy(B).

Note that Q̂y,ws(B) = S1n + S2n where

S1n = 1

n

n∑
i=1

[
1

p̂(zi )
− 1

p(zi )

]
δi IB(yi )

S2n = 1

n

n∑
i=1

1

p(zi )
δi IB(yi ) .

Using assumptions i) and ii), we have that |S1n| a.s.−→ 0. On the other hand, using the
strong lawof large numbers and themar assumption (3),we have that S2n

a.s.−→ Qy(B),
since Eδ1/p(z1) = 1, concluding the proof of (14).

The proof of Π(Q̂y,ws, Qy)
a.s.−→ 0 is a direct consequence of Lemma 7.1 and the

fact that for any borelian set B, Q̂y,ws(B)
a.s.−→ Qy(B). ��

Proof of Theorem 3.2 We will begin by proving a). As in the proof of Theorem 3.1,
to derive a) it is enough to show that Π(Q̃μ, Qμ)

a.s.−→ 0, where

Q̃μ = 1

n

n∑
i=1

δi

p̂(zi )
Δμ̂(xi )

The proof will be carried out in several steps by showing that

Π(Q̃μ, ˜̃Qμ)
a.s.−→ 0 (15)

Π(˜̃Qμ, Qn,μ)
a.s.−→ 0 (16)

Π(Qn,μ, Qμ)
a.s.−→ 0 , (17)
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where

˜̃Qμ = 1

n

n∑
i=1

δi

p(zi )
Δμ̂(xi ) Qn,μ = 1

n

n∑
i=1

δi

p(zi )
Δμ(xi ) .

Denote as N ⊂ Ω the null-probability set such that for ω /∈ N , supz∈Sz
| p̂(z) −

p(z)| → 0, then using assumption i), we have that infz∈Sz p̂(z) > i p/2, for n ≥ n0.
Fixω /∈ N , n ≥ n0 and a bounded and continuous function f : R → R. Therefore,

we have that

∣∣∣EQ̃μ
( f ) − E ˜̃Qμ

( f )
∣∣∣ =

∣∣∣∣∣
1

n

n∑
i=1

p̂(zi ) − p(zi )
p̂(zi )p(zi )

δi f (μ̂(xi ))

∣∣∣∣∣

≤ ‖ f ‖∞
1

n

n∑
i=1

| p̂(zi ) − p(zi )|
p̂(zi )p(zi )

≤ ‖ f ‖∞
2

i2p
sup
z∈Sz

| p̂(z) − p(z)|

hence EQ̃μ
( f ) − E ˜̃Qμ

( f ) → 0, concluding the (15).

For any ε > 0, there exists a compact sets K ⊂ R
d such that, P(x1 ∈ K) >

1 − i p ε/8. The Strong Law of Large Numbers and assumption (iii) entail that

1

n

n∑
i=1

IKc (xi )
a.s.−→ P(x1 ∈ Kc) and sup

x∈K
|μ̂(x) − μ(x)| a.s.−→ 0 .

Hence, there exists a set N1 ⊂ Ω such that P(N1) = 0 and (1/n)
∑n

i=1 IKc (xi ) →
P(x1 ∈ Kc) and supx∈K |μ̂(x) − μ(x)| → 0 for any ω /∈ N1.

Fix ω /∈ N ∪N1 and n ≥ n0. To derive (16), without loss of generality assume that
‖ f ‖∞ = 1. Note that

∣∣∣E ˜̃Qμ
( f ) − EQn,μ( f )

∣∣∣ =
∣∣∣∣∣
1

n

n∑
i=1

δi

p(zi )
[ f (μ̂(xi )) − f (μ(xi ))]

∣∣∣∣∣

≤ 1

i p

1

n

n∑
i=1

| f (μ̂(xi )) − f (μ(xi ))|

≤ 2

i p

1

n

n∑
i=1

IKc (xi ) + 1

i p

1

n

n∑
i=1

| f (μ̂(xi ))

− f (μ(xi ))| IK(xi ) = S1,n + S2,n

As (1/n)
∑n

i=1 IKc (xi ) → P(x1 ∈ Kc) < i p ε/4, there exists n1 ≥ n0 such that for
n ≥ n1, (1/n)

∑n
i=1 IKc (xi ) < i p ε/4, hence S1,n ≤ ε/2.
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On the other hand, the uniformcontinuity of f overK implies that there exists δ such
that |u−v| < δ , u, v ∈ K entails | f (u)− f (v)| < i p ε/2.As supx∈K |μ̂(x)−μ(x)| →
0, there exists n2 ≥ n1 such that supx∈K |μ̂(x) − μ(x)| < δ, so supx∈K | f (μ̂(x)) −
f (μ(x))| < i p ε/2 leading to S2,n < ε/2. Therefore,

∣∣∣E ˜̃Qμ
( f ) − EQn,μ( f )

∣∣∣ < ε for

any n ≥ n2 and ω /∈ N ∪ N1, concluding the proof of (16).
The proof of (17) follows immediately from Lemma 7.1 and the fact that the mar

assumption yields

E
δ1

p(z1)
IA(μ(x1)) = E

{
E

δ1

p(z1)
IA(μ(x1))|(y1, x1)

}

= E

{
1

p(z1)
IA(μ(x1))Eδ1|(y1, x1)

}

= E

{
1

p(z1)
IA(μ(x1))P (δ1 = 1|z1)

}
= Qμ(A) .

To derive b), it is enough to prove that

Π(Q̂ε, Q̃ε)
a.s.−→ 0 (18)

Π(Q̃ε, Qε)
a.s.−→ 0 (19)

where Q̃ε = ∑n
i=1 κiΔεi . The proof of (18) is analogous to that of (16).

The proof of (19) follows from Lemma 7.1 using that for any borelian set A,
Q̃ε(A)

a.s.−→ Qε(A) since

E δ1IA(ε1) = E (E {δ1IA(ε1)|(y1, x1)}) = E [IA(ε1)E {δ1|(y1, x1)}]
= E IA(ε1)p(z1) = E IA(ε1)Ep(z1)

since the errors are independent of the covariates. ��
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