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Abstract
Major histocompatibility complex class II (MHCII) molecules play an important role in cell-
mediated immunity. They present specific peptides derived from endosomal proteins for
recognition by T helper cells. The identification of peptides that bind to MHCII molecules is
therefore of great importance for understanding the nature of immune responses and identifying T
cell epitopes for the design of new vaccines and immunotherapies. Given the large number of
MHC variants, and the costly experimental procedures needed to evaluate individual peptide–
MHC interactions, computational predictions have become particularly attractive as first-line
methods in epitope discovery. However, only a few so-called pan-specific prediction methods
capable of predicting binding to any MHC molecule with known protein sequence are currently
available, and all of them are limited to HLA-DR. Here, we present the first pan-specific method
capable of predicting peptide binding to any HLA class II molecule with a defined protein
sequence. The method employs a strategy common for HLA-DR, HLA-DP and HLA-DQ
molecules to define the peptide-binding MHC environment in terms of a pseudo sequence. This
strategy allows the inclusion of new molecules even from other species. The method was
evaluated in several benchmarks and demonstrates a significant improvement over molecule-
specific methods as well as the ability to predict peptide binding of previously uncharacterised
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MHCII molecules. To the best of our knowledge, the NetMHCIIpan-3.0 method is the first pan-
specific predictor covering all HLA class II molecules with known sequences including HLA-DR,
HLA-DP, and HLA-DQ. The NetMHCpan-3.0 method is available at http://www.cbs.dtu.dk/
services/NetMHCIIpan-3.0.
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Introduction
Major histocompatibility complex (MHC) molecules play a key role in defining the
specificity of the cellular immune system by presenting antigens to the immune system cells.
In case of MHC class II molecules, these cells are T helper lymphocytes that recognize
peptide–MHC complexes on the surface of antigen-presenting cells. Peptides presented by
MHC class II molecules are derived from proteins taken up from the extracellular
environment. Whereas a large number of peptides can be generated from pathogenic
proteins, only a small part of these trigger an immune response. One of the most important
events defining which peptides will trigger an immune response is binding to MHCII
molecules expressed by the host (Castellino et al. 1997).

The human MHC locus (in humans called HLA for human leukocyte antigens) is extremely
polymorphic and encodes thousands of different HLA class II molecules. Characterising the
peptide-binding specificities of all the polymorphic MHC class II molecules is a serious
experimental challenge. Therefore, during the last decades, large efforts have been put into
the development of in silico methods for predicting peptide-binding affinities to MHC class
II molecules. Using thousands of peptide-binding data points, several predictors have been
developed and benchmarked (for review, see Nielsen et al. 2010b). One very important
subset of these predictors consists of the so-called pan-specific methods that are capable of
obtaining accurate predictions for molecules with limited or no binding data (Nielsen et al.
2008, 2010a; Zaitlen et al. 2008; Zhang et al. 2005). For MHC class I prediction, it has been
demonstrated that a pan-specific approach can benefit from being trained on cross-loci, and
even cross-species, data. That is, the predictive performance for HLA-B locus molecules is
improved when including HLA-A locus data in the training of the pan-specific MHC class I
binding prediction method (and vice versa), and the overall performance of predictions of
HLA molecules is improved when including binding data representing non-human MHC
molecules (Hoof et al. 2009). Extending this approach to MHC class II is not a trivial task.
Differences in sequence polymorphism and corresponding details in the molecular structures
across the different MHC class II loci complicate the development of cross-loci and cross-
species training strategies. This, combined with the very limited amount of data available for
most MHC class II molecules, has limited the application of pan-specific methods to HLA-
DR molecules. The understanding of HLA-DP and HLA-DQ binding specificities is limited
to a handful of molecules which have been characterised experimentally, and beyond a few
mouse H-2 molecules, to the best of our knowledge, no general MHC class II prediction
method is available for non-human primates and other non-human species.

The number of state-of-the-art pan-specific methods for MHC class II molecules available
up to date is very limited. The classical MHC class II predictor, TEPITOPE (Sturniolo et al.
1999), uses position-specific scoring matrices derived from experimental data. The method
is, however, limited to 51 HLA-DR molecules only. In addition to this, a TEPITOPEpan
predictor has been developed (Zhang et al. 2012) by extrapolating from the binding
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specificities of the molecules characterised by TEPITOPE. The method is based on MHC
pocket similarities and is capable of providing predictions for any HLA-DR molecule. The
same is achieved by the NetMHCIIpan-2.0 predictor (Nielsen et al. 2010a), which
outperforms the TEPITOPEpan method in terms of prediction accuracy (Zhang et al. 2012).
The method is based on artificial neural networks and uses an MHC binding pocket pseudo
sequence combined with the peptide sequence as an input. Like the TEPITOPEpan method,
NetMHCIIpan-2.0 predicts binding for all HLA-DR molecules with a known primary
sequence.

In this paper, we present a novel pan-specific predictor capable of predicting binding
affinities to all HLA class II molecules. The method is based on artificial neural networks
and has been trained on more than 50,000 quantitative peptide-binding measurements
covering HLA-DR, HLA-DP, HLA-DQ as well as two murine molecules. Using a panel of
benchmark setups, we seek to investigate to what extent the pan-specific method
outperforms allele-specific approaches and whether it can obtain accurate predictions even
for HLA molecules, which have not been experimentally characterised. Arriving at a “true”
pan-specific method enabling prediction of the binding specificity for all HLA-II molecules,
we end the analysis by conducting the first global analysis covering all prevalent HLA-II
molecules, investigating and quantifying the functional diversity of the molecules encoded
at the three HLA-II loci.

Materials and methods
Data sets

Training data used to develop the method consisted of quantitative MHC class II peptide-
binding data retrieved from the IEDB database (Vita et al. 2010). In total, the training data
set comprises 52,062 data points covering 24 HLA-DR, 5 HLA-DP, 6 HLA-DQ and 2
mouse (H-2) molecules. All molecules were covered by more than 50 peptide binding data
points measured as IC50/EC50 values which were log-transformed to fall in the range
between 0 and 1 using the relation 1−log(IC50nM)/log(50,000) (Nielsen et al. 2003). The
evaluation set was restricted to HLA-DR molecules and contained 9,860 binding affinity
measurements covering 13 molecules, four of which were not included in the training set. A
summary of the data used to develop the method is presented in Table S1, and evaluation
data set details are given in Table S2.

Mapping of MHC molecules
For constructing the NetMHCIIpan method, all MHC class II molecules need to be mapped
to a common reference sequence. This is done by aligning alpha and beta chain sequences of
all MHC molecules to the reference sequences, DRA101*01 and DRB101*01. For HLA-DR
molecules, the mapping on a sequence level is in agreement with the mapping on the
structural level. On the other hand, HLA-DP and HLA-DQ molecules demonstrate minor
variations from HLA-DR in the peptide-binding domain in both the alpha and beta chains.
To evaluate the structural impact of these variations, we employed the analysis described
below. The analysis is based on the five available structures solved for HLA-DP and HLA-
DQ molecules, which are compared to a representative high-resolution HLA-DR structure
selected among the large number of structures available for HLA-DR molecules. The list of
available HLA-DP and HLA-DQ structures from the Protein Data Bank (PDB) is given in
Table 1.

An HLA-DR (PDB ID: 1A6A Ghosh et al. 1995) structure was chosen as a reference, and
the HLA-DQ and HLA-DP structures were aligned to the binding domain of this reference
molecule (Fig. 1). The superimpositions were performed in PyMOL (Schrodinger 2010) and
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demonstrate a high degree of structural conservation among the different loci (RMSD values
between 0.7 and 0.8 Å).

During the analysis, an important variation was observed for HLA-DQ molecules only and
was investigated in more detail. We observed that sequences belonging to the HLA-
DQA1*04, HLA-DQA1*05 and HLA-DQA1*06 serotype groups (e.g. sequences like HLA-
DQA1*04:01) display a single amino acid deletion, which from a pure sequence point of
view, corresponds to position 53 in HLA-DRA (Robinson et al. 2001). However, this leads
to a shift of the preceding residues in the DQA sequences, which now realign with DRA
positions 52 and 53. Although the deletion affects the orientation of the short α-helical
segment and the loop (residues 45–52) next to the P1 binding pocket (area marked in Fig. 1),
these changes have negligible impact on peptide binding, as the reorientation appears to be a
localised change, and very few contacts with the peptide are observed within the area. Due
to the minor impact of the area discussed above to the binding of the peptide, an automated
sequence alignment approach was chosen to identify the deletion in HLA-DQ sequences.
Pair-wise sequence alignments were made and visualized using ClustalW (Larkin et al.
2007). Each HLA-DQ sequence was aligned one by one to the reference sequence of HLA-
DR. The results are presented in Fig. 2. Figure 2a shows the alignments of HLA-DQ alpha
chains with the amino acid deletion, while Fig. 2b demonstrates alignments of HLA-DQ
alpha chains with no deletions. The alignments demonstrated that for all the HLA-DQ
sequences that have a deletion, the deletion is consistently found in the same place (position
53 in the reference sequence).

MHC class II pseudo sequence
For constructing the NetMHCIIpan method, MHC class II molecules were represented by a
pseudo sequence consisting of amino acid residues important for peptide binding. Amino
acid residues comprising the pseudo sequence were defined as having their side chains
pointing towards the peptide and being within 4.0 Å of the peptide-binding core in one or
more of the MHC class II structures (including HLA-DR, HLA-DP and HLA-DQ
molecules) available in the PDB (www.pdb.org; Berman et al. 2000). The MHC molecules
were aligned using the PyMOL molecular viewer (Schrodinger 2010) and interacting residue
positions extracted according to the distance criterion. Among the interacting residues, only
those found to be polymorphic across the sequences of MHC molecules used for the training
of the method were considered. The final pseudo sequence is composed of 15 residues from
the alpha chain and 19 residues from the beta chain. The interaction map between the
peptide and MHC pseudo sequence is given in Fig. 3.

Method
The NetMHCIIpan-3.0 method was implemented as a conventional feed-forward artificial
neural network method as described in detail by Nielsen et al. (2010a). The networks were
trained using fivefold cross-validation. The data set was split into five groups of peptides
based on a common motif clustering as described by Nielsen et al. (2007b). The difference
in network architecture from the study presented by Nielsen et al. (2010a) was that network
ensembles were trained with 10, 15, 40 and 60 hidden neurons. The BLOSUM50 matrix was
used to encode peptide and MHC sequences for the network trainings. Each training was
repeated 10 times with different initial configuration values as described in Nielsen et al.
(2010a). In total, 40 (4 different numbers of hidden neurons times 10 different random
seeds) networks were used for each training/test set combination leading to 200 (5 folds
times 40 networks) networks for each molecule.
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Leave-one-out setup
In order to assess the predictive performance of the method in the situation where a
molecule is not part of the training data, a leave-one-out (LOO) approach was applied.
Using LOO, the binding data for the molecule in question were excluded from the training
data. Since our data set has a large number of peptides that have been measured for binding
to multiple molecules, we also removed peptides common between the evaluation and
training data sets to ensure unbiased LOO trainings. In order not to reduce the training set
too much in this type of LOO trainings, the evaluation set was split into three subsets
resulting into three different fivefold cross-validation trainings for each molecule. The
details about such LOO setup are described in Karosiene et al. (2012).

Nearest neighbour approach (NN-finder)
In order to evaluate the performance of the pan-specific method on the molecules that are
not found in the training set, we set up a nearest neighbour prediction approach which in this
study we call NN-finder. This approach represents the simplest method where the
predictions of a query molecule are obtained by first finding its nearest neighbour and using
a subsequent allele-specific method to predict the query binding specificity. First of all, for
each molecule in question, we found a corresponding nearest neighbour from the training
set. The distance between two MHC molecules was calculated from the amino acid
similarity between the two pseudo sequences as described by Nielsen et al. (2008), and the
nearest neighbour to the molecule in question was defined as the molecule in the training set
having the shortest distance. The binding data of each nearest neighbour were then used as
training data for the corresponding query molecule. We retrained an allele-specific method
from those training data using the NNAlign method (Andreatta et al. 2011) with settings
identical to those used for NetMHCII (Nielsen et al. 2007b). The predictive performance for
each query molecule was obtained by using its binding data as an evaluation set. In order for
the performance to be directly comparable to the LOO results, the splitting of the evaluation
set into three subsets was also used here.

Performance measures and statistical analysis
The predictive performance was measured in terms of Pearson’s correlation coefficient
(PCC) and area under the ROC curve (AUC). PCC values vary between 0 and 1, where 1
represents perfect predictions and 0 random predictions. For AUC measures, a performance
value of 1 corresponds to a perfect prediction, and a value of 0.5 reflects random
predictions. For more details concerning the performance measures, see Nielsen et al.
(2010a). Throughout this study, PCC and AUC values were compared for different methods
and evaluated using binomial tests with a significance level of 0.05.

Generation of HLA-II distance trees
For generation of the HLA-II distance tree, the most prevalent alpha and beta chains in the
European population were selected as defined by the allele frequencies database (http://
www.allelefrequencies.net) (Gonzalez-Galarza et al. 2011). At a frequency threshold of 1 %,
we found 21 HLA-DR1, 3 HLA-DPA1, 12 HLA-DPB1, 12 HAL-DQA1 and 13 HLA-
DQB1 alleles. We constructed all HLA-DPA1–HLA-DPB1 and HLA-DQA1–HLA-DQB1
combinations arriving at a total of 21 HLA-DR, 36 HLA-DP and 156 HLA-DQ molecules.
Sorting (on a per-loci level) the different molecules on descending population frequencies,
we constructed a functional redundancy deduced set containing 72 molecules using the
Hobohm1 algorithm (Hobohm et al. 1992) with redundancy defined as two molecules
sharing a Pearson’s correlation coefficient of 0. 99 or above when comparing the predicted
binding affinities on a set of 200,000 random natural 15-mer peptides. The set of 72 non-
redundant HLA-II molecules is comprised of 21 HLA-DR, 14 HLA-DP and 37 HLA-DQ

Karosiene et al. Page 5

Immunogenetics. Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.allelefrequencies.net
http://www.allelefrequencies.net


molecules. Next, we applied the MHCcluster method (Thomsen et al. 2013) to construct a
tree describing the functional similarity between the different molecules. In short, the
MHCcluster method functions as follows. Binding affinities of a set of 200,000 natural
random 15-mer peptides are predicted for each of the HLA molecules using
NetMHCIIpan-3.0. Next, the functional similarity between any two HLA molecules is
defined by correlating the union of the predicted top 10 % strongest binding peptides for
each molecule. The similarity is 1 if the two HLA molecules are predicted to have a
perfectly overlapping peptide repertoire and negative if there is no or very limited overlap.
The distance between two molecules is defined as 1–similarity. By using the unweighted
pair group method with arithmetic mean clustering, the distance matrix is converted to a
distance tree. Generating 100 distance trees using bootstrap estimates the significance of the
distance tree. The trees are next summarized, and a consensus tree is made with branch
bootstrap values. Sequence logos were constructed from the predicted binding core of the
top 1 % strongest predicted binders using Seq2Logo method with default settings (Thomsen
and Nielsen 2012).

Results
In the following section, we give the results of applying the new pan-specific method:
NetMHCIIpan-3.0 to predict binding for a large set of MHC class II molecules from three
human class II loci as well as a small set of mouse H-2 molecules.

NetMHCIIpan-3.0 method’s new approach for getting pseudo sequence
In the most recent pan-specific MHC class II prediction method, NetMHCIIpan-2.0, the
pseudo sequence is composed of 21 amino acids from positions within the HLA-DR beta
chain that are in potential contact with a peptide using a 4.0 Å distance cut-off and
polymorphic across the set of sequenced MHC class II molecules available at the time of the
study (Nielsen et al. 2010a). For the NetMHCIIpan-3.0 method described here, the pseudo
sequence contains 19 residues from the beta chain of MHC molecules. The main difference
between two pseudo sequence obtaining approaches resulting into different number of
pseudo sequence positions is that the NetMHCIIpan-3.0 considers polymorphism across the
sequences of MHC molecules from the training set only. In order to evaluate this new
approach for obtaining the pseudo sequence, we performed a fivefold cross-validation
training and compared the results of those reported for NetMHCIIpan-2.0 (Nielsen et al.
2010a). In this comparison, only HLA-DR molecules were considered due to availability of
results from both methods. Moreover, for the new method, only the part of the pseudo
sequence corresponding to beta chain positions was included as the NetMHCIIpan-2.0
method only includes beta chain residues in the pseudo sequence. The results are shown in
Table 2.

The results in Table 2 demonstrate that the new approach for obtaining the pseudo sequence
leads to a significantly (p values<0.05) improved predictive performance compared to the
original approach when the pan-specific training approach is applied to the HLA-DR data
set. The average increased from 0.688 to 0.695 and from 0.846 to 0.847 for PCC and AUC
values, respectively. NetMHCIIpan-3.0 achieves the highest performance for most of the
molecules (PCC values are higher for 20 out of 24 molecules, and AUC values are higher
for 17 out of 23 molecules, excluding ties). The results demonstrate that the new approach of
obtaining pseudo sequences for the neural network trainings improves the predictive
performance of the method.
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Per-locus training versus cross-loci training
To the best of our knowledge, all pan-specific prediction methods for HLA class II
molecules available up to date are limited to HLA-DR. In this study, we introduce an
approach for combining residues from the alpha and beta chains into one pseudo sequence.
The procedure for the pseudo sequence construction is universal to all MHC class II
complexes allowing the pan-specific method to be trained in a cross-loci/cross-species
manner (see “Materials and methods”) arriving at one common method suitable for all MHC
class II molecules.

To evaluate how such a cross-loci/cross-species impacts the predictive performance of the
method, we compared per-locus (and per molecule, see below) training with the pan-specific
training including cross-loci data. The results are shown in Fig. 4. Detailed results are given
in Table S3. The figure gives average PCC and AUC values for each locus when the method
was trained in a cross-loci manner including all HLA molecules and when trained using
binding data restricted to each locus, respectively. As can be seen from the figure, the
overall performance of the two training approaches is similar. For HLA-DR, the predictive
performance improved when training in a cross-loci manner compared to per-locus training.
For HLA-DQ and HLA-DP, the performance on the other hand is slightly reduced. This
reduction is, however, only significant for HLA-DQ and only when measuring AUC
performance values.

Pan-specific versus allele-specific method
As a pan-specific approach, the method presented in this study benefits from the information
even from molecules covered by limited binding data or molecules from different loci/
species. To demonstrate this, we present a comparison of the performance values obtained
for the NetMHCIIpan-3.0 method and allele-specific NN-align method using fivefold cross-
validation (see Table 3). The NN-align prediction method was trained as described by
Nielsen and Lund (2009), using the same data partitioning based on the common motif
clustering approach as used for NetMHCIIpan-3.0.

The results presented in Table 3 demonstrate that the pan-specific NetMHCIIpan-3.0
predictor significantly outperforms the allele-specific NN-align method (p value<0.0001 for
both PCC and AUC values). These results show that the pan-specific method benefits from
the binding data measured to different molecules. It also demonstrates that adding data from
other molecules significantly boosts the performance for molecules represented by limited
peptide-binding measurements. Out of 10 molecules described by less than 400 data points
and less than 100 binders, 10 and 9 are shown to obtain higher performance using pan-
specific predictor in terms of PCC and AUC values, respectively. The allele-specific NN-
align method gives higher PCC and AUC values for three molecules all defined by more
than 1,700 peptide-binding data.

Leave-one-out performance
In order to demonstrate how the method performs when predicting binding to novel and
uncharacterised molecules, we performed a LOO experiment. In the LOO experiment, a
molecule in question was excluded from the training data set, and its binding data acted as
an evaluation set. Likewise, all peptides, included in the binding data set of the given
molecules, were excluded from the training data in order to avoid biassed overlapping
between the evaluation and the training sets. This was done in three rounds by removing one
third of the peptides from the evaluation set at a time and performing fivefold cross-
validation training in each round. The performance for the query molecule was obtained by
combining the predictions of all three evaluation subsets. For the benchmark, we compared
the results with the predictive performance of the simple allele-specific approach based on
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finding the nearest neighbour, NN-finder. For this method, the molecule in question and its
binding data were also acting as an evaluation set, while the training data were composed of
the peptide binding data of the molecule from the training set having the shortest distance to
the molecule in question. The results are depicted in Fig. 5 and presented in detail in Table
S4. It is apparent from the results that NetMHCIIpan-3.0 outperforms the NN-finder
approach for all loci in terms of average PCC and AUC. Even though we find general
improvement when comparing the pan-specific method to the nearest neighbour approach, a
significant difference (due to the small number of molecules for each subset) is observed
only for HLA-DR molecules (p value<0.0001). The significance for the mouse allelic locus
(H-2) was not assessed due to only two molecules being available.

The method shows decreased predictive performance with the distance to the nearest
neighbour from the training set (Fig. 6). The figure illustrates how the predictive
performance of the pan-specific method depends on the distance to the nearest neighbour
calculated in terms of pseudo sequence similarities as explained in “Materials and methods”.
Regression analysis showed that the performance is decreased significantly with the
increasing distance (p value=0.031, exact permutation test).

Independent evaluation of the final NetMHCIIpan-3.0 predictor
For the final evaluation of the pan-specific method common for HLA-DR, HLA-DP, HLA-
DQ and mouse molecules, the method was trained using all the available data (52,062 data
points) and evaluated on an independent HLA-DR evaluation set containing 9,860 data
points. The method was compared with the most recent version of the class II pan-specific
predictor NetMHCIIpan-2.0 (Nielsen et al. 2010a). From the results given in Table 4, it is
apparent that NetMHCIIpan-3.0 outperforms NetMHCIIpan-2.0 (average PCC is 0.603
compared with 0.586 and average AUC 0.807 compared with 0.802). Although the
difference in performances was observed not to be significant, the new pan-specific method
showshigher performance for most of the molecules from the evaluation set
(NetMHCIIpan-3.0 wins 9 out of 13 and 6 out of 12 times in terms of PCC and AUC
measures, respectively).

The NetMHCIIpan-3.0 method presented and benchmarked in this paper was implemented
as a web server and is available online at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.0.

Functional clustering of HLA class II molecules
Given the potential of the NetMHCpan-3.0 method to predict binding for any MHC class II
molecules with known alpha and beta chain protein sequences, we next applied the method
to give an overall estimate of the functional diversity of molecules from the HLA-DR, HLA-
DP and HLA-DQ loci molecules. The analysis of the most prevalent alpha and beta chains
in the European population was done as described in the “Materials and methods”, and the
result is shown in Fig. 7. From the figure, it is apparent that the molecules encoded at the
three loci display very limited functional overlap. Also, one can notice that the HLA-DP
locus molecules display a very limited functional diversity compared to the HLA-DR and
HLA-DQ loci molecules. This is also reflected when measuring the functional diversity of
an HLA locus in terms of the mean and standard deviation of the intra-locus distances. Here,
we find that the mean intra-distance is significantly shorter (p<0.001, Student’s t test) for
HLA-DP compared to HLA-DQ and HLA-DR. We can further relate these differences in
functional diversity to the degree of polymorphism at a population level of the HLA pseudo
sequences of each locus. Estimating polymorphism in terms of the Kullback–Leibler
information content (or divergence sum) (Kullback and Leibler 1951) for the 34 positions in
the pseudo sequence for the three loci, we find that this value is significantly higher
(p<0.001, t test) for DP compared to DQ and DR, hence demonstrating that DP molecules
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share a significantly lower degree of polymorphism compared to the molecules at the two
other loci.

In terms of the predicted functionality, we recover for HLA-DRB1 the overall clustering
proposed earlier (Nielsen et al. 2008) with 9 well-defined subgroups (supertypes). For HLA-
DQ, the overall functionality seems reduced compared to HLA-DR, with only 5/6 well-
defined subgroups, and as stated above, HLA-DP seems to encode for the least functionally
diverse set of molecules with only one specificity group being present. Sequence logos for
selected subgroups and subgroup representatives are included in the figure to illustrate the
functional difference between the different molecules. In general, the predicted binding
motifs are in agreement with the motifs proposed earlier for the limited set of HLA class II
molecules experimentally characterised by peptide binding data (Andreatta and Nielsen
2012; Andreatta et al. 2011).

Discussion and conclusion
Identification of peptides binding to MHC is a critical step in understanding T cell immune
responses. The human MHC genomic region (HLA) is extremely polymorphic comprising
several thousands alleles, many encoding a distinct molecule. The potentially unique
specificities remain experimentally uncharacterised for the vast majority of HLA molecules.

The sequences of human MHC class II molecules stored in the IMGT database (Robinson et
al. 2001) cover over 600 different HLA-DR variants and more than 6,000 different
combinations of HLA-DP and HLA-DQ alpha and beta chains. Of these many molecules,
less than 30 HLA-DR and only 5 HLA-DP and 6 HLA-DQ molecules have been
experimentally characterised with binding data allowing for an accurate estimate of their
binding specificity. In order to span this gap, several methods have been developed and
benchmarked during the last decade for the prediction of peptide binding to MHC class II
molecules (for review, see Nielsen et al. 2010b). Here, pan-specific methods play an
important role, as they are capable of giving predictions to those molecules, which have not
yet been characterised experimentally. However, until now, MHC class II pan-specific
binding prediction approaches have been limited to HLA-DR molecules, leaving a gap in the
general understanding of binding specificities for HLA-DP and HLA-DQ molecules
(Nielsen et al. 2010b).

In this paper, we present a pan-specific method, NetMHCIIpan-3.0, capable of predicting
peptide binding to all HLA molecules. To the best of our knowledge, this is the first
predictor common for HLA-DR, HLA-DP and HLA-DQ molecules. The method is based on
artificial neural networks and is trained on 52,062 quantitative peptide binding data covering
all HLA as well as two mouse molecules.

NetMHCIIpan-3.0 uses a new approach for defining the peptide-binding environment of
MHC in terms of pseudo sequence as compared with the most recent NetMHCIIpan-2.0
method (Nielsen et al. 2010a). The main difference between the two approaches for
obtaining pseudo sequence is that for NetMHCIIpan-3.0, only polymorphism within the
training set is considered whereas the NetMHCIIpan-2.0 method includes polymorphism
across all known MHC class II sequences. Our results demonstrated that the new approach
for defining the pseudo sequence leads to a significantly improved predictive performance.

Several large-scale benchmarks were carried out that demonstrated that the
NetMHCIIpan-3.0 method fulfils the requirements for the pan-specific methods. Its
performance was found to be significantly better than that of the allele-specific NN-align
predictor (Nielsen and Lund 2009). In particular, the method outperformed NN-align for
molecules characterised with only a limited number of binding data. These results hence
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agree with the results obtained when benchmarking the original NetMHCIIpan method
(Nielsen et al. 2010a) and underline the unique power of the pan-specific approach in
providing accurate predictions also for molecules characterised with limited peptide-binding
data as it has also been demonstrated previously for MHC class I predictions (Karosiene et
al. 2012; Nielsen et al. 2007a; Zhang et al. 2009b).

To mimic the situation where the NetMHCIIpan-3.0 method is applied to predict binding for
uncharacterised MHC molecules, we conducted a panel of LOO experiments. In these
experiments, binding data for one MHC molecule at a time were removed from the training,
and the predictive performance next evaluated on the left-out data. The LOO results
demonstrated that the proposed method is capable of predicting binding affinity for the
molecules for which no binding data are available in the training process. In addition to this,
the method showed decreased predictive performance with the distance to the nearest
neighbour from the training set, which is in agreement with previous studies on MHC class I
(Hoof et al. 2009; Karosiene et al. 2012; Zhang et al. 2009a).

From the results included here, one can notice that HLA-DP molecules demonstrate higher
performance values compared with DR and DQ performances. As this high performance is
maintained also for the allele-specific (and pseudo sequence independent) NN-align
approach, the high performance is not due to the fact that DP molecules are found to be very
close to each other in terms of pseudo sequence similarity and function. The reason for this
different performance is rather related to the differences within distributions of the binding
data available for each locus. The HLA-DP data are very well separated with the majority of
the data being either strong or very weak binders. This is in strong contrast to the data for
DQ and DR molecules where the majority of the data have intermediate binding affinity
(data not shown). This difference in binding affinity distribution strongly influences the
predictive performance, as well-separated data sets (as is the case for DP) in general achieve
a higher predictive performance. To prove this further, we have performed the analysis
where we, in the evaluation of the prediction methods, mimicked the distribution of the
HLA-DP data for the DR loci. The analysis demonstrated that the performance for DR
molecules is significantly increased when the data match the distribution observed for the
DP molecules compared to the original DR data distributions (data not shown).

The NetMHCIIpan-3.0 predictor showed higher performance when compared with the
NetMHCIIpan-2.0 method on the external evaluation set. The increased performance of the
NetMHCIIpan-3.0 method demonstrates its promising ability to improve when more data
become available for molecules from other loci/species.

We further presented a powerful application of the developed pan-specific predictor. We
applied the NetMHCIIpan-3.0 method to functionally cluster the most prevalent HLA alleles
of the European population. For HLA class I, clustering of molecules into supertypes was
proposed by the analysis carried out using experimental data (Lund et al. 2004; Sette and
Sidney 1999) and extended by applying pan-specific class I predictor (Nielsen et al. 2007a).
However, for MHC class II, the amount of experimental data remains too limited to perform
such a cluster analysis, which therefore so far has been limited to HLA-DR molecules
(Nielsen et al. 2008). The analysis performed here hence is the first study suggesting
reduction of polymorphism of HLA class II molecules by definition of clusters based on
similarities in predicted functional binding specificities. Such clustering builds a base for
facilitating identification of T helper cell epitopes within different ethnic groups having a
high value in the design of epitope-based vaccines.

As we have discussed earlier, developing a cross-loci method for MHC class II is
complicated due to the differences of sequences and structures of different loci (Nielsen et
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al. 2010a). However, as also suggested in this earlier publication, with increasing amounts of
binding data covering HLA-DP and HLA-DQ molecules, pan-specific methods may benefit
from cross-loci training. In this study, we demonstrated that this is indeed the case. The
performance of the proposed NetMHCIIpan-3.0 method when trained on cross-loci was
shown to be comparable with that of a method trained on per-loci data. So far, no significant
improvement was found between the per-loci and cross-loci trained method. However, this
is most likely due to the very low number of HLA-DQ and HLA-DP molecules included in
the study and is expected to change with the inclusion of more data covering HLA-DP and
HLA-DQ molecules. The situation is hence parallel to that observed for MHC class I. Here,
at first, only limited data characterising HLA-A and HLA-B molecules were available for
development of the original version of NetMHCpan, and an optimal performance was
obtained when the method was trained in a loci-specific manner (Nielsen et al. 2007a). Only
when binding data became available covering more HLA molecules as well as MHC
molecules from non-human species (including non-human primates) was a cross-loci/cross-
species training strategy found to be optimal (Hoof et al. 2009).

The training strategy outlined here for the MHC class II pan-specific prediction method is
highly flexible and readily allows inclusion of novel data both in terms of peptides and
MHC molecules. This flexibility makes the method a powerful and unique platform for the
development of a pan-specific MHC class II predictor covering not only the human class II
molecules but also MHC molecules from other species of interest. Lessons learned from
MHC class I suggest that such a “true” pan-specific approach is feasible and that prediction
accuracies for both human and non-human MHC molecules can be greatly boosted given the
ability of the pan-specific method to leverage information across species and loci (Nene et
al. 2012).

In conclusion, we believe the proposed NetMHCIIpan-3.0 method is an important step
forward in boosting MHC class II binding predictions covering a large number of molecules
from different species and therefore reduces experimental costs for the immunologists
working within the field of epitope-based vaccine design.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Superimposition of HLA-DR, HLA-DP and HLA-DQ alpha chains. HLA-DR alpha chain
(PDB ID: 1A6A Ghosh et al. 1995) is shown in yellow and was used as a reference chain.
HLA-DP chain (PDB ID: 3LQZ Dai et al. 2010) is shown in green, HLA-DQ chain without
a gap (PDB ID: 1JK8 Lee et al. 2001) is shown in orange and HLA-DQ chain with a gap
(PDB ID: 1S9V Kim et al. 2004) is shown in blue. The area affected by the deletion in DQA
sequence is circled
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Fig. 2.
Part of sequence alignments of HLA-DQ alpha chains to HLA-DR reference sequence of
HLA-DRA1*0101 molecule. a Sequence alignments of HLA-DQ sequences with gaps, b
demonstrates the alignment of other HLA-DQ molecules to the same reference sequence.
Reference sequence and the position corresponding to the insertion are marked in bold. The
alignments were visualized using ClustalW (Larkin et al. 2007)
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Fig. 3.
Interaction map between the peptide and MHC class II pseudo sequence. The columns give
the MHC position numbering separately for alpha and beta chains and refer to HLA-DR.
The rows show peptide binding core positions. Red squares marking interaction between a
particular position of the peptide and MHC define contacts between corresponding two
residues
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Fig. 4.
Comparison of the method performance when trained on perlocus data and cross-loci data.
Average PCC and average AUC values for each locus are demonstrated on the left and right
panel, respectively. Significant p values are given above the bars for corresponding loci. The
difference in predictive performance between the per-locus and cross-loci training is
significant only for HLA-DQ when measuring AUC performance values
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Fig. 5.
Leave-one-out results for the NetMHCIIpan-3.0 method in comparison with the NN-finder
approach. Average performance measures in terms of PCC and AUC are given in the left
and right panel, respectively. Significant p values are given above the bars for corresponding
loci (not available for H-2 locus)
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Fig. 6.
Predictive performance of the NetMHCIIpan-3.0 method for the molecules from our data set
as a function of distance to the nearest neighbour. The performance was obtained using LOO
setup as explained in the “Materials and methods” section. The distance to the nearest
neighbour was calculated as described by Nielsen at al. (2008). The solid line represents the
least square fit for the data
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Fig. 7.
Functional clustering of the 72 HLA molecules from the European population. HLA-DR
molecules are displayed in red, HLA-DP molecules are displayed in green and HLA-DQ
molecules are shown in blue. Sequence logos showing the binding motif are presented for
selected molecules representing the different specificity groups
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Table 1

Structures of all HLA-DP and HLA-DQ molecules available in the PDB database

PDB ID Alpha chain Beta chain

3LQZ HLA-DPA1*0103 HLA-DPB1*0201

1UVQ HLA-DQA1*0102 HLA-DQB1*0602

1JK8 HLA-DQA1*0302 HLA-DQB1*0302

1S9V HLA-DQA1*0501 HLA-DQB1*0201

2NNA HLA-DQA1*0301 HLA-DQB1*0302
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Table 2

Fivefold cross-validation performance for HLA-DR molecules of a pan-specific NetMHCIIpan-2.0 compared
with NetMHCIIpan-3.0

Molecule name #pep #bind NetMHCIIpan-2.0 NetMHCIIpan-3.0

PCC AUC PCC AUC

DRB1*0101 7,685 4,382 0.711 0.846 0.716 0.848

DRB1*0301 2,505 649 0.709 0.864 0.723 0.868

DRB1*0302 148 44 0.525 0.757 0.569 0.786

DRB1*0401 3,116 1,039 0.670 0.848 0.671 0.846

DRB1*0404 577 336 0.630 0.818 0.656 0.829

DRB1*0405 1,582 627 0.698 0.858 0.712 0.862

DRB1*0701 1,745 849 0.740 0.864 0.732 0.862

DRB1*0802 1,520 431 0.526 0.780 0.542 0.784

DRB1*0806 118 91 0.796 0.924 0.792 0.933

DRB1*0813 1,370 455 0.746 0.885 0.751 0.888

DRB1*0819 116 54 0.608 0.808 0.610 0.803

DRB1*0901 1,520 622 0.634 0.818 0.647 0.828

DRB1*1101 1,794 778 0.777 0.883 0.780 0.883

DRB1*1201 117 81 0.764 0.892 0.768 0.896

DRB1*1202 117 79 0.769 0.900 0.778 0.910

DRB1*1302 1,580 493 0.634 0.825 0.636 0.822

DRB1*1402 118 78 0.694 0.860 0.724 0.879

DRB1*1404 30 16 0.613 0.737 0.511 0.629

DRB1*1412 116 63 0.757 0.894 0.754 0.890

DRB1*1501 1,769 709 0.653 0.819 0.682 0.830

DRB3*0101 1,501 281 0.690 0.850 0.700 0.858

DRB3*0301 160 70 0.736 0.853 0.752 0.869

DRB4*0101 1,521 485 0.675 0.837 0.699 0.847

DRB5*0101 3,106 1,280 0.765 0.882 0.769 0.885

Total 33,931 13,992

Average 0.688 0.846 0.695 0.847

p value 0.002 0.035

NetMHCIIpan-2.0 is the method described by Nielsen et al. (2010a), which uses pseudo sequences composed of polymorphic amino acids that
have one or more potential contacts with a peptide (length=21). The performance values for this method are taken from the publication.
NetMHCIIpan-3.0 employs pseudo sequences obtained by finding contacts that side chains of MHC molecules have with the peptide and taking
polymorphic positions within the training set (length= 19 for beta chain only). The values in bold show the higher score for each molecule for
corresponding performance measures (PCC or AUC). p values were obtained using a binomial test excluding ties

#pep –number of peptide binding data available for each molecule, #bind –number of peptides that have a binding affinity stronger than 500 nM
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Table 3

Fivefold cross-validation performance for the pan-specific NetMHCIIpan-3.0 method compared with the
allele-specific NN-align method using our benchmark data set

Molecule name #pep #bind NetMHCIIpan-3.0 NN-align

PCC AUC PCC AUC

HLA-DPA1*0103-DPB1*0201 1,404 538 0.922 0.957 0.912 0.952

HLA-DPA1*0103-DPB1*0401 1,337 471 0.929 0.962 0.914 0.958

HLA-DPA1*0201-DPB1*0101 1,399 597 0.905 0.948 0.902 0.941

HLA-DPA1*0201-DPB1*0501 1,410 443 0.868 0.954 0.865 0.950

HLA-DPA1*0301-DPB1*0402 1,407 523 0.912 0.957 0.905 0.956

HLA-DQA1*0101-DQB1*0501 1,739 522 0.791 0.901 0.802 0.907

HLA-DQA1*0102-DQB1*0602 1,629 813 0.698 0.872 0.659 0.855

HLA-DQA1*0301-DQB1*0302 1,719 386 0.723 0.813 0.729 0.833

HLA-DQA1*0401-DQB1*0402 1,701 559 0.807 0.914 0.794 0.903

HLA-DQA1*0501-DQB1*0201 1,658 549 0.802 0.902 0.809 0.902

HLA-DQA1*0501-DQB1*0301 1,689 863 0.816 0.919 0.810 0.918

H-2-IAb 660 126 0.713 0.884 0.664 0.856

H-2-IAd 379 70 0.577 0.816 0.420 0.856

DRB1*0101 7,685 4,382 0.717 0.849 0.682 0.831

DRB1*0301 2,505 649 0.708 0.859 0.671 0.836

DRB1*0302 148 44 0.601 0.800 0.266 0.627

DRB1*0401 3,116 1,039 0.659 0.841 0.609 0.817

DRB1*0404 577 336 0.663 0.838 0.595 0.784

DRB1*0405 1,582 627 0.711 0.862 0.683 0.843

DRB1*0701 1,745 849 0.729 0.861 0.732 0.860

DRB1*0802 1,520 431 0.515 0.771 0.478 0.750

DRB1*0806 118 91 0.778 0.927 0.707 0.886

DRB1*0813 1,370 455 0.740 0.881 0.719 0.867

DRB1*0819 116 54 0.608 0.809 0.334 0.661

DRB1*0901 1,520 621 0.652 0.828 0.572 0.788

DRB1*1101 1,794 778 0.770 0.879 0.749 0.868

DRB1*1201 117 81 0.787 0.909 0.694 0.848

DRB1*1202 117 79 0.783 0.916 0.682 0.849

DRB1*1302 1,580 493 0.612 0.814 0.607 0.804

DRB1*1402 118 78 0.753 0.890 0.546 0.800

DRB1*1404 30 16 0.611 0.728 0.259 0.603

DRB1*1412 116 63 0.764 0.896 0.574 0.789

DRB1*1501 1,769 709 0.677 0.831 0.629 0.803

DRB3*0101 1,501 281 0.683 0.851 0.613 0.816

DRB3*0301 160 70 0.754 0.864 0.543 0.773

DRB4*0101 1,521 485 0.693 0.846 0.687 0.840

DRB5*0101 3,106 1,280 0.760 0.882 0.740 0.865
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Molecule name #pep #bind NetMHCIIpan-3.0 NN-align

PCC AUC PCC AUC

Average 0.735 0.871 0.664 0.838

p value <0.0001 <0.0001

p valuea 0.002 0.021

NN-align is the method described by Nielsen and Lund (2009); NetMHCIIpan-3.0 is the method described here. The values in bold show the
higher score for each molecule for corresponding performance measures (PCC or AUC). The p values for PCC and AUC are given below the first
columns of PCC and AUC values respectively

#pep –number of peptide binding data available for each molecule, #bind –number of peptides that have a binding affinity stronger than 500 nM

a
p –values of the 10 molecules characterised by <400 data points and <100 binders
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Table 4

Independent evaluation of the NetMHCIIpan-3.0 method compared with the performance of the
NetMHCIIpan-2.0 predictor

Molecule name #pep #bind NetMHCIIpan-3.0 NetMHCIIpan-2.0

PCC AUC PCC AUC

DRB1_0101 717 550 0.820 0.908 0.817 0.910

DRB1_0301 703 408 0.699 0.850 0.703 0.862

DRB1_0701 682 375 0.754 0.873 0.771 0.882

DRB1_0801 838 363 0.738 0.875 0.713 0.861

DRB1_1101 813 426 0.790 0.901 0.787 0.902

DRB1_1301 803 462 0.573 0.792 0.488 0.753

DRB1_1302 765 404 0.392 0.713 0.289 0.668

DRB1_1501 758 218 0.499 0.764 0.496 0.767

DRB3_0202 726 287 0.490 0.755 0.495 0.750

DRB3_0301 782 449 0.555 0.776 0.602 0.800

DRB4_0101 778 235 0.292 0.654 0.254 0.635

DRB4_0103 764 474 0.538 0.798 0.505 0.795

DRB5_0101 731 461 0.699 0.841 0.697 0.841

Average 0.603 0.808 0.586 0.802

p value 0.267 1.000

NetMHCIIpan-2.0 method is an updated version of the method proposed by Nielsen et al. (2010a). NetMHCIIpan-3.0 is the method presented in
this study. Molecule names in bold show molecules that were not part of the training set. The values in bold show the higher score for each
molecule for corresponding performance measures (PCC or AUC) between the two methods. p values were obtained using binomial test for PCC
and AUC values #pep –number of peptide binding data available for each molecule, #bind –number of peptides that have a binding affinity
stronger than 500 nM
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