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We study numerically a one-dimensional systems of self-propelled particles, where the state of
the particles is given by their moving direction (left or right), which is encoded by a spin-like
variable, and their position. Particles interact by short-ranged, spring-like attractive forces and do
not possess spin-spin interactions (i.e. velocity alignment). Newton’s third law is broken in this
model by assuming an asymmetric interaction range that is larger in the direction of the moving
direction of the particle. We show that in this nonequilibrium system, due to the absence of the
action-reaction symmetry, there exists an intimate link between phase separation and the formation
of highly-coherent, spatially localized, moving flocks (i.e. collective motion). More specifically, we
prove the existence of two fundamentally different types of active phase separation, which we refer
to as neutral (NPS) and polar (PPS) phase separation. Furthermore, we indicate that NPS is
subdivided in two classes with distinct critical exponents. These results are of key importance to
understand that in Active Matter there exist several phase-separation classes and that the emergence
of polar, self-organized patterns (i.e. flocks) does not require the presence of a velocity alignment.

INTRODUCTION

Complex, self-organized, collective motion patterns ob-
served in nature, from birds to sheep [1–6] and includ-
ing those emerging in non-living active systems [7–10]
are believed to require velocity-velocity interactions that
are often referred to as velocity alignment. Such veloc-
ity alignment mechanism is at the core of the so-called
Vicsek-like models [11] extensively used to study flock-
ing patterns [1, 2, 12–16]. However, it has been recently
suggested that self-organized patterns in active systems
may emerge by alternative mechanisms [17–22].

In [22], we have introduced and analyzed a simple two-
dimensional active system where the self-propelled parti-
cles interact with those particles inside a field of view via
an attractive force. By construction, this model does not
possess velocity-velocity interactions and thus, there is
no built-in microscopic interaction rule with either polar
or apolar symmetry. And yet, we have proved that in this
active model, polar and nematic (velocity) order sponta-
neously emerge in different areas of the parameter space
in the absence of action-reaction symmetry [22, 23]. This
is in sharp contrast with what it is observed in active
systems with velocity alignment [11–13, 24–35], where
the emergence of polar order requires a microscopic polar
alignment rule [11] and nematic order, a microscopic ne-
matic alignment rule [30, 32] (see also [42]). In short, the
two-dimensional active model studied in [22] proves that
order can emerge in the absence of velocity-velocity in-
teractions, without built-in microscopic rules with a pre-
defined symmetry, and as result of a dynamical process.

Here, we show that local order may also emerge in
one-dimensional active systems without velocity-velocity
interactions. In a one-dimensional system, the velocity

FIG. 1: Breaking Newton’s third law. Scheme illustrates
the asymmetric interacting neighborhood of the self-propelled
particles: the focal particle interacts (via an Harmonic poten-
tial with cut-off) with all particles that are located up to a
distance R0 = 1 in front of the particle – it is, in the direc-
tion indicated by the spin of the focal particle, denoted by
the blue arrow – and with those particles located up to a dis-
tance γ < R0 in the opposite direction. See Eq. (1) and the
description below it.

or rather the moving direction of the particles is either
to the left or to the right, implying that can be repre-
sented by a spin variable S, with S = +1 or S = −1.
Thus, we can assign to each particle a spin, e.g. Si for
particle i and define a dynamics by which the state of
the particle is given by its position, xi, and its spin, Si;
for us, such dynamics consists of short-ranged, spring-
like attractive forces. In spin models such as in the clas-
sical [36, 37] or active Ising model [16], the emergence
of ordered or magnetized domains – in the sense of re-
gions where |

∑
j Sj | > 0 – results from one of the fol-

lowing (equivalent) mechanisms: i) the local minimiza-
tion of some spin-spin interaction potential such as e.g.
H = −J

∑
i,j Si Sj [36], ii) the use of a (local) spin flip-

ping rate such as exp(S
∑
j Sj/A), where S is the spin

that is probed and A depends on the local configura-
tion [16], or iii) the implementation of a local (stochastic
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or deterministic) majority rules based on the local value
of

∑
j Sj [14, 15]. Our study shows that in the absence

of such spin-spin interaction potential or spin flipping
rate (dependent on the local magnetization), it is still
possible to create (local) order by breaking the action-
reaction symmetry. Here, order emergence results from
a dynamical process. Furthermore, we indicate that exis-
tence of an intimate connection between phase separation
and the emergence of highly-coherent, spatially localized,
moving flocks (i.e. collective motion). Notably, we show
that there exist two fundamentally different types of ac-
tive phase separation, which we call as neutral (NPS)
and polar (PPS) phase separation; cf. [38, 39]. In addi-
tion, we indicate that NPS is subdivided in two classes
with distinct critical exponents. The obtained results
are of key importance to understand the emergence of
self-organized, ordered structures and phase separation
in out-of-equilibrium systems such as active systems.

MODEL DEFINITION

We consider a one-dimensional system of size L with
periodic boundary conditions, where the state of the i-th
particle is given by its “spin” Si – which refers to the
moving direction of the particle – and its position xi,
where Si ∈ {−1,+1}, xi ∈ (0, L], and i = 1 . . . N . The
equation of motion of the i-th particle – that interact
with other particles exclusively by an attractive force –
is given by:

ẋi = v0 Si +K0

∑
Ω(xi,Si)

(xj − xi) +
√

2D ξ(t) , (1)

where v0 is the active speed, K−1
0 has units of time, D

is a diffusion constant, and ξ is a delta-correlated noise.
One essential element of the model is given by the set
Ω(xi, Si) that contains all neighbors of i-th particle. This
set is defined for Si = 1 by all particles whose positions
are in the interval [xi − γ, xi + R0]. For Si = −1, the
corresponding interval is [xi−R0, xi+γ]; see Fig. 1. Both,
R0 and γ are positive constants and such that γ ≤ R0.
Note that the intervals have to be properly defined using
periodic boundary condition, i.e. if the interval is [a, b],
then a ← (a + L) modL and b ← (b + L) modL. We
stress that when γ = R0, the interactions are reciprocal
and Newton’s third law applies, while for γ < R0 the
action-reaction symmetry is not longer present.

Finally, the dynamics of the spin Si is simply:

Si
α−→ −Si , (2)

where α is considered a function of the number ni of
neighbors of particle i:

α[ni] = µe−βni , (3)

where µ (in inverse time units) and β (non-
dimensionalized) constants and ni the cardinal number
of the set Ω(xi, Si). For β = 0, Eq. (2) defines a standard
Poisson process. In the following, the reported numerical
results correspond to global density ρ0 = N/L = 1 and
without loss of generality of fix R0, K0, and v0 to 1, and
D = 10−2/2.

LESSONS FROM THE DETERMINISTIC
PARTICLE DYNAMICS

To understand the deterministic dynamics of the sys-
tem, let us consider α = 0 and D = 0 and focus on
the dynamics of a cluster of M particles where each
particle interact with the other M − 1 particles at any
given time. The resulting dynamical system is such that
the equation of motion of the i-th particle is given by:
ẋi = v0Si+K0

∑
i(xi−xk). For any particle i, the spin Si

is given by the initial condition and remains unchanged,
but the particle position xi evolves in time. Under these
conditions, it is evident that:

1

M

M∑
k=1

ẋi =
v0

M

M∑
i=1

Si = v0mM = V , (4)

where mM = [
∑M
i=1 Si]/M is the (average) “magnetiza-

tion” of the cluster and V the velocity of its center of
mass. By placing ourselves in a frame of reference that
moves at velocity V , we define yi = xi − V t and thus∑
i ẏi = 0, implying that

∑
i yi = Y0 with Y0 a constant

such that Y = Y0/M represents the position of the center
of mass at t = 0. By defining zi = xi − V t − Y , whose
evolution is given by

żi = v0Si − V +K0

∑
j

(zj − zi) , (5)

we obtain a system where
∑
i żi = 0 and

∑
i zi = 0, i.e.

the center of mass is located at the origin at all times.
The main advantage of this is that the steady state of
Eq. (5) can be easily computed as:

zi =
v0

K0M
(Si −mM ) . (6)

Since Si adopts only two values, either +1 or −1, then
the position of the left most particle in the cluster is
z+ = v0

K0M
(1 − mM ) and the right most position z− =

v0
K0M

(−1−mM ), assuming that there is at least one par-
ticle with spin +1 and one particle with spin −1. Thus,
the “width” W of the cluster is:

W = z+ − z− =
2v0

K0M
. (7)

Note that the cluster width W does not depend on the
magnetization mM , but only on the number of particles
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FIG. 2: Self-organized patterns. Active particles self-organize into various phases depending on model parameters. The possible
phases are: (a) disordered gas, (b) neutral phase separation (NPS), (c) polar phase separation (PPS), or (d) the emergence of
global order in finite size systems. Blue and red lines represent the (smooth) density of particle with S = +1 (ρ+) and S = −1

(ρ−) spins, respectively. The smoothing is performed as follows: ρ+(x, t) =
∑N

i=1 δ(Si,+1) exp (x− xi)/20, and similar for ρ−.

M it contains. We insist that Eq. (7) only applies when
|mM | < 1. For |mM | = 1, the width vanishes. In sum-
mary, the velocity of a cluster is given by the average
magnetization mM and the cluster width is a decreasing
function of the cluster mass M for |mM | < 1 and zero
otherwise.

There is an important lesson to learn from these sim-
ple calculations when we include the spin-flip dynamics
and implement a finite range of interaction R0 and con-
sequently also γ. A first evident observation is that for
large values of D and low density values, the system ex-
hibits a disordered, gas phase as shown in Fig.2(a). On
the other hand, for small D values and β = 0, which
ensures that all clusters are in average neutral (i.e. clus-
ters cannot exhibit persistent magnetization), the system
phase separates. The phase separation process can be
understood as follows. The biggest cluster width W cor-
responds to M = 2, i.e. v0/K0. If γ > v0/K0, whenever
two particles get at a distance |xi − xj | < γ, they form
a “bond”, which for small enough D values is long-lived.
With time, this dimer will encounter other clusters and
fuse with them: in short, the system phase separates.
On the other hand, for γ < v0/K0 and in fact for any
arbitrary small γ, the formation of clusters requires a
random density fluctuation such that in an interval of
width γ we find M > 2 v0/(K0γ) particles. The time to
observe the formation of such a cluster determines the nu-
cleation time of the process. Once many clusters emerge,
the clusters start fusing with each other and the system
phase separates.

For β > 0, α[n] becomes a function of the number of
particles n in the interaction neighborhood and the sys-
tem displays a much more complex dynamics. By sup-
pressing the flipping rate in high density regions (as con-
sequence of β > 0), polar arrangements of particles are
stabilized in the sense that if a density fluctuation results
in a number of particles n > β−1 with the same spin in

a range R0, these particles will keep on moving in the
same direction; this is true as long as K0 and D are such
that allow them to stay close to each other. This does
not prevent these particles to find a cluster of particles
moving in the opposite direction. If this occurs, they will
form a cluster where in general the magnitude of the av-
erage magnetization will be smaller than 1, and due to
the suppression of spin flips (since β > 0), their magneti-
zation, though very small, is persistent, in the sense that
it remains constant until meeting a cluster or particle as
the cluster moves ballistically across the system. Thus,
the transport properties of these clusters are thus very
different from the ones that emerge when α is a constant
(see below). For small values of γ and large enough val-
ues of D, configurations involving two clusters of oppo-
site magnetization become unstable. In this scenario, we
observe that polar cluster prevails and start fusing with
other clusters of the same magnetization, which leads to
the emergence of polar (or magnetized) clusters contain-
ing a macroscopic fraction of the particles in the system;
see Fig. 2(c). In short, we observe that particles self-
organize into a single flock moving to the right and a
single flock moving to the left, with particle motion be-
coming asymptotically ballistic; see Fig. 2(c). In finite
systems, it often observed the nucleation of a single polar
cluster that quickly absorbes all particles in the system,
leading to the emergence of global polar order; see Fig.
2(d). However, we insist that the emergence of a single
flock can only occur in finite size systems.

Below we provide more details on the physics of this
system and organize the discussion in two sections: “Re-
ciprocal interaction” and “In the absence of action-
reaction symmetry”.
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FIG. 3: The two classes of neutral phase separation (NPS).
The number of clusters Nclusters normalized by the number
of particles in the system N as function of time. For β = 0,
clusters display diffusive motion and we observe that asymp-
totically Nclusters ∝ t−1/3. For β > 0, specifically β = 0.4,
cluster of large sizes exhibit ballistic motion, which leads to a
different scaling: Nclusters ∝ t−2/3

RECIPROCAL INTERACTIONS

two routes to neutral phase-separation

When interactions are reciprocal, i.e. γ = R0, New-
ton’s third law applies. In this scenarios, the system is
a disordered gas or it undergoes a “neutral phase sepa-
ration” (NPS). We define NPS a phase separation where
the growing, high-density regions – which we call clus-
ters – exhibit a vanishing average magnetization as they
increase their size over time. We use the term “polar
phase separation” (PPS), as opposed to NPS, when the
growing clusters display an average magnetization that
does not decrease with cluster size: i.e. when the sys-
tem phase separates in polar domains. For this to occur,
interactions have to be nonreciprocal, see next section.

For reciprocal interactions, there exist two routes to
phase-separate. For β = 0, the spins forming a cluster
are constantly flipping and clusters display diffusive mo-
tion. As result of this, phase-separation occurs via diffu-
sion as in a classical Cahn-Hilliard process. On the other
hand, for β > 0 when cluster sizes are above β−1, spin
flipping is strongly suppressed and the motion of clus-
ters becomes ballistic due to the random excess of spins
+1 or −1 in those clusters when they formed; let us re-
call the magnetization of these cluster is persistent in be-
tween interaction with other clusters. Due to this, there
is a “ballistic aggregation” of clusters. Differences in the
asymptotic transport properties of the forming clusters
lead to fundamentally different phase-separation classes.

These classes can be identified in term of the critical ex-
ponents that characterize the coarsening dynamics. The
mean-field prediction for irreversible coarsening of diffu-
sive clusters in 1D is Nclusters(t) ∝ t−1/3. For β = 0 we
expect diffusive clusters. Fig. (3) shows that simulations
with β = 0 are consistent with the mean-field predic-
tion. For irreversible coarsening of ballistic clusters, the
mean-field scaling is Nclusters(t) ∝ t−1/2. Simulations for
reciprocal interactions and β > 0, which lead to ballistic
clusters, display a scaling consistent with a slightly dif-
ferent exponent: −2/3. This suggests that corrections to
the mean-field prediction are required the understand the
aggregation process in this limit, Fig. (3). However, the
important observation – expected already at the mean-
field level – is the existence of two very different (neutral)
coarsening processes (and scalings), which are clearly il-
lustrated in Fig. (3).

IN THE ABSENCE OF ACTION-REACTION
SYMMETRY

from phase separation to the emergence of order

The physics of the problem is dramatically affected
by breaking the action-reaction symmetry with the use
of γ < R0. The main effect of introducing nonreciprocal
interactions is that now it is possible to weaken the inter-
action among clusters that are polarly oriented in oppo-
site direction, while favoring the aggregation of clusters
and particles with the same magnetization. This become
evident in the limit of γ → 0 and for β > 0: clusters
of opposite magnetization speed up when they are ap-
proaching each other at a distance smaller than R0. As
soon as these clusters pass by each other, they do not in-
teract anymore. In short, particles with spin S = +1 and
S = −1 become almost independent of each other, except
for spin-flip transitions in dilute areas of the space, which
lead to an effective exchange between particle moving to
the left and to the right. As result of this behavior, we ob-
serve first the formation of polar clusters, followed by the
slow aggregation of polar clusters with the same magne-
tization, see Fig. 2(c). Consequently, in the system polar
domains (or aggregates) emerge and phase separate. As
we indicated above, we refer to this process polar phase
separation.

It is worth stressing that with non-reciprocal interac-
tions, it is possible to observe: a) a gas, b) that the
system undergoes neutral phase separation (NPS), or c)
that the system undergoes polar phase separation (PPS).
In Fig. 4, we show the transition from polar to neutral
phase separation using as control parameter γ (as well
as β). We characterize this transition by using two order

parameters: φ = 1
Nclusters

∑Nclusters

q=1 |mq| – which is the
average of the absolute value of the magnetization of indi-
vidual clusters – and the asymptotic number of clusters,
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FIG. 4: Polar phase separation (PPS). a) The number of clus-
ters Nclusters normalized by the number of particles in the
system N as function of γ. b) The local order parameter φ as
function of γ. In a) and b), β = 0.4. c) Nclusters/N as func-
tion of β for γ = 0.1. d) Temporal evolution of N+

clusters(t)/N
and N−

clusters(t)/N (inset), where N+
clusters(t) and N−

clusters(t)
refer to the number of clusters moving to the left and right,
respectively. Note that in order to observe PPS, the action-
reaction symmetry has to be broken, i.e. γ < R0 = 1 .

i.e. Nclusters/N ; Nclusters without explicit dependency
on t refers to its asymptotic value: Nclusters(t → ∞).
Note that if most clusters are neutral, then |mq| � 1
and φ is small, while if most clusters are polar, then
φ → 1. On the other hand, the information provided
by Nclusters/N allows us to determine whether the sys-
tems is phase-separated: Nclusters/N � 1 indicates that
the system is phase separated, while Nclusters/N ∼ 1
corresponds to a gas phase. Note that to distinguish be-
tween gas phases and neutral and polar phase separated
phases, we need to use two order parameters, namely φ
and Nclusters/N : with Nclusters/N � 1 we know that the
system is phase separated, while φ ∼ 0 indicates that the
phase separated phase is neutral, while φ ∼ 1 that is po-
lar. By varying γ (for β > 0), the system transitions be-
tween neutral and polar phase-separated states as shown
in Fig. 4; the phase diagram of the system is provided
in Fig. 5. There exist important differences in terms of
transport properties between between neutral and polar
phase-separated states. During neutral phase separation,
particles remain trapped inside neutral macroscopic ag-
gregates. Asymptotically, neutral clusters fuse until the
emergence of a single, macroscopic neutral cluster, which
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FIG. 5: The phase diagram of the system in the β − γ pa-
rameter space. Gas occurs for small values of γ and β. By
decreasing the spin flipping rate by rising the value of β, the
emerging clusters become polar and we observe polar phase
separation (see text). As the interactions zone becomes sym-
metric, the magnetization of the emerging clusters tend to
vanish (i.e. they become neutral). Here, as indicated in the
text, we may observe diffusion dominated phase separation or
ballistic aggregation.

is an immobile (in the thermodynamic limit) giant clus-
ter [43]. During polar phase separation state, contrary
to this, clusters keep on moving ballistically at the ac-
tive speed v0. And asymptotically, particles self-organize
into two (spatially localized) macroscopic flocks moving
in opposite directions. Since the nucleation of a (polar)
cluster is a rare process, it is often observed that in finite
systems only one polar cluster emerges and as it cruises
the system, collects quickly particles that are still in a
gas phase. This leads, again for finite systems, to the
emerge of global orientation order, i.e. global collective
motion.

FINAL REMARKS

The study of this simple model has allowed us to ad-
dress fundamental questions in the context of phase tran-
sitions in nonequilibrium systems. Note that the system
becomes an equilibrium system only in the limit of v0 = 0
and for reciprocal interactions, i.e. γ = R0; otherwise
the system is out of (thermodynamic) equilibrium. In
this limit, a Cahn-Hilliard type of neutral phase separa-
tion is expected. By making v0 > 0, and using reciprocal
interactions, the system can also, not surprisingly, phase
separate. For β = 0, the spontaneous spin-flips ensure
that the emerging clusters remain neutral with respect
to their magnetization. Furthermore, these spontaneous,
spin transitions render the motion of these aggregates
diffusive, and thus, the phase separation is controlled
at long time scales by diffusion, and a critical exponent
of −1/3 is observed. On the other hand, with β > 0
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spin-flips are suppressed and for small enough D, clus-
ters move ballistically in between interactions with other
clusters. As result of this, the long-time dynamics of the
phase separation process is very different with an asymp-
totic dynamics characterized by an exponent of −2/3. In
summary, we have shown that there exist for reciprocal
interactions two possible routes to neutral phase sepa-
ration (NPS), which are characterized by two distinct
critical exponents.

For nonreciprocal interactions, i.e. γ < R0, the physics
of the problem is dramatically affected. Notably, it is now
possible to observe the emergence of polarized clusters.
Moreover, we observe that clusters with the same sign of
magnetization (or polarization) start to aggregate as the
move ballistically at a speed that is roughly the active
speed v0. This process leads to asymptotic emergence
of two spatially localized flocks moving in opposite di-
rections. We call to this process polar phase separation
(PPS) as oppose to NPS. In finite systems, this process
can lead to the emergence of a single macroscopic clus-
ter (or condensate), which implies the emergence – only
possible for finite size sizes – of global polar order.

The fundamental lesson from our study is to prove that
it is possible to conceive a microscopic model with no
predefined symmetry at the level of the interactions –
moreover, without even possessing spin-spin interactions
as in the classical or active Ising model – where (local) or-
der emerges from the dynamical properties of the system
and as direct consequence of breaking the action-reaction
symmetry. Furthermore, we have shown that in the ab-
sence of the action-reaction symmetry, there is an inti-
mate link between phase separation and the formation
of highly-coherent, spatially localized moving flocks (i.e.
collective motion). In summary, the study proves the
existence of two fundamentally different types of active
phase separation, NPS and PPS. In addition, we have
shown that NPS is subdivided in two classes (character-
ized by exponents −1/3 and −2/3). These results are
of key importance to understand that in Active Matter:
i) there exist several phase-separation classes and ii) the
spontaneous emergence of polar, self-organized patterns
(i.e. flocks) does not require the minimization of a non-
equilibrium version of a free energy that depends on the
local “magnetization”, but results from a pure dynamical
process.
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H. Chaté, and G. Theraulaz, PLoS Comput Biol 8(9),
e1002678 (2012).

[5] F. Ginelli, F. Peruani, M.-H. Pillot, H. Chaté, G. Ther-
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110, 208001 (2013).

[10] K.-D. N. T. Lam, M. Schindler, and O. Dauchot, New J.
Phys. 17, 113056 (2015).

[11] T. Vicsek, A. Czirok, E. B. Jacob, I. Cohen, and
O. Shochet, Phys. Rev. Lett. 75, 1226 (1995).

[12] J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995).
[13] J. Toner and Y. Tu, Phys. Rev. E 58, 4828 (1998).
[14] O. O’Loan and M. Evans, Journal of Physics A: Mathe-

matical and General 32, L99 (1999).
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