
 

Journal Pre-proof

Understanding the role of temporal variation of environmental
variables in predicting Aedes aegypti oviposition activity in a
temperate region of Argentina

Elisabet M. Benitez , Elizabet L. Estallo , Marta G. Grech ,
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Maria Frı́as-Céspedes , Walter R. Almirón , Michael A. Robert , Francisco F. Ludueña-Almeida ,
Understanding the role of temporal variation of environmental variables in predicting Aedes
aegypti oviposition activity in a temperate region of Argentina, Acta Tropica (2020), doi:
https://doi.org/10.1016/j.actatropica.2020.105744

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.

https://doi.org/10.1016/j.actatropica.2020.105744
https://doi.org/10.1016/j.actatropica.2020.105744


1 

Highlights 

 Environmental variables are key factors in the modeling of Aedes aegypti 

oviposition 

 Vegetation, vapor pressure, rainfall and photoperiod are predominant variables 

 Minimum temperature is an important factor that limit the vector activity in 

Córdoba 

 Predictive models are useful tools in temperate cities that help vector surveillance  
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Abstract 

Environmental variables related to vegetation and weather are some of the most influential 

factors that impacting Aedes (Stegomya) aegypti, a mosquito vector of dengue, 

chikungunya and Zika viruses. In this paper, we aim to develop temporal predictive models 

for Ae. aegypti oviposition activity utilizing vegetation and meteorological variables as 

predictors in Córdoba city (Argentina). Eggs were collected using ovitraps placed 

throughout the city from 2009 to 2012 that were replaced weekly. Temporal generalized 

linear mixed models were developed with negative binomial distributions of errors that 

model average number of eggs collected weekly as a function of vegetation and 

meteorological variables with time lags. The best model included a vegetation index, vapor 

pressure of water, precipitation and photoperiod. With each unit of increment in vegetation 

index per week the average number of eggs increased by 1.71 in the third week. 

Furthermore, each millimeter increase of accumulated rain during 4 weeks was associated 

with a decrease of 0.668 in the average number of eggs found in the following week. This 

negative effect of precipitation could occur during abundant rainfalls that fill containers 

completely, thereby depriving females of oviposition sites and leading them to search for 

other suitable breeding sites. Furthermore, the average number of eggs increased with the 
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photoperiod at low values of mean vapor pressure; however the average number of eggs 

decreased at high values of mean vapor pressure, and the positive relationship between the 

response variable and mean vapor pressure was stronger at low values of photoperiod. 

Additionally, minimum temperature was associated positively with oviposition activity and 

that low minimum temperatures could be a limiting factor in Ae. aegypti oviposition 

activity. Our results emphasize the important role that climatic variables such as 

temperature, precipitation, and vapor pressure play in Ae. aegypti oviposition activity and 

how these variables along with vegetation indices can be used to inform predictive 

temporal models of Ae. aegypti population dynamics that can be used for informing 

mosquito population control and arbovirus mitigation strategies.  

 

 

 

 

Keywords: Aedes aegypti; Córdoba city; Temporal predictive models; Environmental 

variables. 

 

1. Introduction 

Aedes aegypti, a vector of dengue, chikungunya and Zika viruses, is a species 

distributed widely throughout the world. It is a successful synanthropic mosquito, taking 

advantage of different breeding sites similar to those used in its original habitat (Stein et al. 

                  



5 

2016). Whether this species and its pathogens become successfully established depends 

upon the characteristics of the area in which it is introduced, but it has been introduced and 

become established in regions that have a variety of characteristics (Carbajo et al. 2012). 

Aedes aegypti is distributed widely through tropical and subtropical regions; however, the 

distribution range of both the vector and its associated pathogens have extended to many 

temperate areas (Khormi and Kumar 2014, López-Latorre and Neira 2016). 

 

 

 

 

Much effort has been invested in better characterizing environments in which mosquito 

populations could become established. For more than 20 years, data obtained from satellites 

have been used as an aid to characterize these environments (Beck et al. 1994, Estallo 

2016). For urban mosquitoes such as Ae. aegypti, the Land Surface Temperature (LST) and 

the Normalized Difference Vegetation Index (NDVI) are the most frequently used satellite 

variables for spatial and temporal studies (Estallo et al. 2012, 2016, 2018, German et al. 

2018, Scavuzzo et al. 2018, Tsai et al. 2018, Ordoñez-Sierra et al. 2020). Based on the way 

vegetation indices are calculated and its interpretation, they are used as indirect indicators 

of seasonal climatic variability (Estallo, 2016) that influences the vegetation dynamics (Liu 

et al. 2015). Therefore, many times these indices have been used to predict the seasonal 

activity of species of sanitary importance such as Ae. aegypti since there is a strong positive 

association between them (Estallo et al. 2016). 

 

 

                  



6 

In addition, meteorological variables are effective predictors of Ae. aegypti abundance 

(Estallo et al. 2015, da Cruz Ferreira et al. 2017). Temperature is one of the variables often 

used in predictive models of Ae. aegypti abundance due to its influence on key life history 

features of these mosquitoes such including adult longevity, female fecundity (Marinho et 

al. 2016), adult size, immature development, and immature survival rates (Tun-Lin et al. 

2000, Tsai et al. 2018), as well as its important relationship with epidemiologically 

important measures such as vectorial capacity (Liu-Helmersson et al. 2014). In fact, 

minimum temperature is directly related to vector abundance (Estallo et al. 2011, da Cruz 

Ferreira et al. 2017), and affects measures of flight performance such as distance flown, 

duration, and speed (Rowley and Graham 1968). Precipitation is another variable 

frequently used which is generally positively associated with Ae. aegypti abundance 

(Barrera et al. 2011). This is because rainfall fills containers and this increases the number 

of breeding sites which directly increases the abundance of the vector (Eisen et al. 2014). 

Furthermore, there is evidence that these meteorological variables also influence the 

incidence of diseases transmitted by Ae. aegypti, such as dengue (Hii et al. 2012, Xu et al. 

2017).Despite the importance of these vegetation indices and meteorological variables, it 

should be noted that their relationships with vector activity and dengue cases can vary with 

the study area and the sampling scale; possibly due to the influence of other local variables 

(Carbajo et al. 2012, Choi et al. 2016). For this reason, it is important to consider spatial 

and temporal variation in vector activity in order to develop the best management 

strategies. For Ae. aegypti, surveillance using ovitraps is one of the most effective and 

lowest cost methods to determine distribution and the seasonal fluctuation of the 

populations (Vargas 2002). Predictive models based on vegetation and meteorological 

variables that characterize some aspects of the environment and environmental influences 
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on vector dynamics are useful tools for the surveillance and control of these mosquitoes; 

they also help to assess the risk of disease outbreak. 

 

 

 

Based on the results found in previous studies, we expect that temperature and 

precipitation, as well as vegetation, would affect Ae. aegypti oviposition activity in 

Córdoba city more than other variables like humidity, vapor pressure of water, and 

photoperiod. Although these latter three variables have been studied less thoroughly, there 

is evidence that they can have an important effect on the oviposition activity of the vector 

(Dominguez et al. 2000, Costa et al. 2010, Estallo et al. 2015). We hypothesize that when 

temperature and precipitation increase, so would the number of eggs laid in subsequent 

weeks. Furthermore, we hypothesize that when the vegetation indices increases, the number 

of eggs would rise because temperature and precipitation regulate, to some extent, 

vegetation development, and increases in vegetation are associated with warmer 

temperatures and mainly increased precipitation (Liu et al. 2015). Therefore, we aim to 

develop temporal predictive models for Ae. aegypti oviposition activity that investigate as 

predictors vegetation and meteorological variables in Córdoba city, a temperate area of 

Argentina.  
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2. Material and Methods 

2.1. Ethics statement 

Ovitrap sampling was carried out under the Ae. aegypti surveillance program of the 

Ministerio de Salud de la Provincia de Córdoba therefore no written informed consent was 

required. The residents of the dwellings where ovitraps were placed provided oral informed 

consent.  

 

2.2. Study area 

The study took place in Córdoba city (31° 24' S, 64° 11' W) of Córdoba province, 

Argentina, which is in a temperate region (Fig 1). The climate is characterized by a cold 

and dry period from May to September and a warm and rainy period from October to April. 

According to the records from October 2010 to April 2017, the mean annual rainfall is 800 

mm; during the dry and cold winter, the maximum and minimum average temperatures are 

20°C and 8°C, respectively, and during the warm and rainy summer , the maximum and 

minimum average temperatures are 29°C and 16°C, respectively (Servicio Meteorológico 

Nacional 2018).  
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Fig 1. Study area where the samplings were carried out. The points mark the sites where the 

ovitraps were placed in Córdoba city, from 2009 to 2012. The inset figure shows the location of 

Córdoba city within the province of Córdoba in Argentina.  

 

2.3. Ovitrap sampling 

In Córdoba city there is no Ae. aegypti activity during cold months (Dominguez et al. 

2000, Estallo et al. 2020). Aedes aegypti oviposition activity fluctuation was studied during 

three vector activity seasons, from November-December to May (2009-2010: Season 1, 

2010-2011: Season 2, 2011-2012: Season 3), and the fluctuation was assessed weekly by 

ovitrap sampling. The study was carried out in 177 dwellings, distributed uniformly 

throughout Córdoba city (Fig 1). An ovitrap was placed outside each dwelling in a shaded 

area, protected from the rain and located at ground level. Ovitraps consisted of 350 ml 

transparent plastic jars (8 cm in diameter and 13 cm high), with a cylinder of brown heavy 

(120 g) rough paper inside that covered the entire interior wall. This paper, where the Ae. 

                  



10 

aegypti females laid eggs, allowed us to easily count the eggs. Ovitraps were filled with 

250 ml of grass infusion when settled. This infusion consisted of dry grass macerated in 

water for one week, which works as an attractant to gravid Ae. aegypti females (Reiter and 

Nathan 2001). Ovitraps were replaced weekly. At the laboratory, eggs within each ovitrap 

were counted. Sampling was carried out by the Department of Epidemiology of the 

Ministerio de Salud de la Provinca de Córdoba in cooperation with the mosquito team of 

the Instituto de Investigaciones Biológicas y Tecnológicas, IIBYT (CONICET-Universidad 

Nacional de Córdoba).  

 

 

 

2.4. Vegetation and meteorological variables 

Vegetation indices from MODIS products were used as vegetation variables. NDVI 

(MOD13Q1.006), EVI (MOD13Q1.006) and LAI (MOD15A2H.006) were retrieved from 

the online Application for Extracting and Exploring Analysis Ready Samples 

(AppEEARS), courtesy of the NASA EOSDIS Land Processes Distributed Active Archive 

Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, 

Sioux Falls, South Dakota (https://lpdaacsvc.cr.usgs.gov/appeears/). Vegetation indices are 

used in the detection of green vegetation since they inform about the growth, vigor, and 

dynamics from terrestrial vegetation, which facilitates the estimation of the vegetation 

biomass in a determined area (Xue and Su 2017). In fact, vegetation could be considered an 

indirect estimator of environmental conditions such as humidity and precipitation since 

these regulate vegetation development (Estallo et al. 2012, 2016, Liu et al. 2015). In Table 
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1, the selected vegetation variables with their characteristics are shown 

(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table). 

 

Table 1. Vegetation variables obtained from MODIS products. 

Variable Products Spatial 

resolution  

Temporal 

resolution 

Description 

NDVI 

(Normalized 

Difference 

Vegetation 

Index) 

MOD13Q1.006 250 meters 16 days Quantifies the concentrations of 

green leaf vegetation. It is 

Chlorophyll sensitive and can 

identify drought and water stress 

(Gao et al. 2000). 

EVI 

(Enhanced 

Vegetation 

Index) 

MOD13Q1.006 250 meters 16 days Responsive to canopy structural 

variations (leaf area index, 

canopy type, plant 

physiognomy, and canopy 

architecture) (Gao et al. 2000).
 
 

LAI (Leaf 

Area Index) 

MOD15A2H.006 500 meters 8 days Defined as the one-sided green 

leaf area per unit ground area in 

broadleaf canopies and as one-

half the total needle surface area 

per unit ground area in 

coniferous canopies. 

 

MODIS products were received as a single product for the whole of Córdoba city as a 

result of the merge of several products that covered the city. Each one of these products 

included data from September 6, 2009 to May 26, 2012. There were a few gaps in the data, 

because of differences in the frequency of the satellite data collection (16 days or 8 days 

depending on the product) and some variables were not measured at all time points. When 

gaps occurred, linear interpolation was used to estimate the variables at a weekly time scale 
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in order to coincide with Ae. aegypti eggs weekly count data in subsequent analyses. From 

the products, we used the daily mean values of metrics of interest in our analyses. 

Servicio Meteorológico Nacional (SMN) provided daily and hourly measurements for 

the sampling period, from the two weather stations placed for Córdoba city by the National 

Institution. Weekly meteorological data (maximum/minimum temperature, temperature 

range, accumulated rainfall, mean and minimum relative humidity, humidity range and 

mean vapor pressure of water) were calculated and used in data analysis. In addition, 

photoperiod was added as a variable, which has an effect on lifespan and blood feeding 

activity and affects survival (Costanzo et al. 2015). Considering the biological 

characteristics of Ae. aegypti, time lags were applied to the explanatory variables (Estallo et 

al. 2015, 2016), to consider delayed effects of these variables on Ae. aegypti response 

variables. 

 

 

 

 

2.5. Data analysis 

In our analysis, the response variable used was the weekly average number of Ae. 

aegypti eggs. A mean number of eggs counted per week was obtained from the 177 

ovitraps. It is important to clarify that the weekly average was calculated only with active 

ovitraps; non-active traps, absent, and destroyed traps were excluded (Carbajo et al. 2006). 

From the vegetation and meteorological variables we calculated one value for each 

variable for the city across a week to perform the analysis, as was mentioned in the 
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previously. Correlations among environmental vegetation and meteorological variables and 

the response variable were investigated at different time lags, using the first and the second 

sampling season. We consider only the first two seasons here in order to train the model for 

making predictions in the third season. Time lags between one and seven weeks were used, 

taking into account that the approximate duration of a complete life cycle of Ae. aegypti 

lasts from 2 to 6 weeks in temperate regions (Christophers 1960, Dominguez et al. 2000). 

Time lags were calculated in two different ways for all explanatory variables. First, we 

considered values of the variables in a given week (t-n) to investigate how they correlated 

with the response variable in subsequent weeks (where t is a specific week in which ovitrap 

data is collected, n is the number of the weeks before t; n acquires values ranging from 1 to 

7). For example, values of explanatory variables in t-1 are values recorded in the week 

immediately prior to the week in which the eggs were collected, while values in t-2 were 

recorded in the week immediately prior to the week t-1, and so on. Alternatively, we 

consider values of the explanatory variables in a time interval (t-n, t-1) to investigate their 

correlation with the response variable at time t. The interval can vary from 1 to 7 weeks. 

Therefore, an interval of (t-2, t-1) means that the values of the variables are taken from the 

interval that goes from 2 weeks before data was collected to the week before  the collection 

of eggs, obtaining 1 value of the explanatory variable corresponding to the 14 days prior to 

the week in which the eggs are recorded. We calculated lags this last way in order to further 

consider variations in the values of the variables across an interval of time up to its 

influence on oviposition activity; unlike the first way that only contemplates data from one 

week that is reflected in the response variable weeks later. 

A 168 potential explanatory variables were considered in our analysis; however, the 

number of variables was reduced by selecting those that best correlated with the response 
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variable based on the best time lags from each vegetation and meteorological variable. The 

definition of the selected explanatory variables is shown below.  

 Vegetation indexes NDVI/ EVI/ LAI (NDVI(t–n)/ EVI(t–n)/ LAI(t–n)): The 

mean vegetation index corresponding to the week number n before the week t 

in which the eggs were collected. 

 Maximum/ minimum temperature (TM(t–n,t–1)/ Tm(t–n,t–1)): The 

maximum and minimum temperature reached during the n weeks immediately 

previous to the week t in which the eggs were collected. 

 Temperature range (Tr(t–n,t–1)): The thermal amplitude from the n weeks 

immediately previous to the week t in which the eggs were collected. 

 Accumulated rainfall (RAIN(t–n,t–1)): The accumulated rainfall in n weeks 

immediately previous to the week t in which the eggs were collected. 

 Average/ minimum relative humidity (RHa(t–n,t–1)/ RHm(t–n,t–1)): The 

mean and minimum relative humidity reached during the n weeks immediately 

previous to the week t in which the eggs were collected. 

 Relative humidity range (RHr(t–n,t–1)): The amplitude of relative humidity 

from the n weeks immediately previous to the week t in which the eggs were 

collected. 

 Mean vapor pressure of water (VP(t–n,t–1)): The mean vapor pressure 

obtained during the n weeks immediately previous to the week t in which the 

eggs were collected. 

 Photoperiod (Ph(t–n,t–1)): The accumulated light hours in n weeks 

immediately previous to the week t in which the eggs were collected. 
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Spearman’s correlation coefficient was used to determine which time lags of each 

explanatory variable were best correlated with the response variable. In addition, 

correlation analyses were performed among explanatory variables to avoid multicollinearity 

in the models. Explanatory variables that had high correlation with others (Spearman’s 

correlation coefficients greater than 0.7) were not incorporated into the same model. The 

average number of eggs per week (O(t)) was modeled as a function of the selected 

environmental variables using Generalized Linear Mixed-Effects Models (GLMM). The 

models were built based on the first two sampling seasons (December 2009-May 2010 and 

November 2010-May 2011). Months (M) differentiated by seasons were included as a 

random effect to incorporate temporal dependence. This means that we used months (M) as 

a factor, from the seasons 1 and 2, including 13 levels and at least 3 observations inside 

each level. Initially, decision tree and univariate models were performed to choose the most 

important explanatory variables and to start to develop the models, as well as identifying 

possible interactions between explanatory variables. Five specific models were established 

which were performed in Statistical software R v.3.6.2 (R Studio 2019), assuming a 

negative binomial distribution of errors with log link function. The models were built 

through the manual forward stepwise procedure. In each step significance of variables was 

evaluated and, when there were not significant variables to add, interaction among the 

significant variables from the model were added to improve model performance (Carbajo 

and Pardiñas 2007). The multicollinearity among variables was evaluated in the final 

models through the Variance Inflation Factors (VIF), considering a threshold value of 5 

(Montgomery and Peck 1992). In addition, overdispersion, the normality of the residuals 

distribution, and temporal autocorrelation were checked. Models were ranked following the 

Akaike’s Information Criterion (AIC) and the model with the lowest AIC was selected as 

                  



16 

the best model (Burnham and Anderson 2002). Additionally, proportion of explained 

variance (R-squared) from fixed effects of the models was calculated and used to support 

the selection in the case that AIC from models were similar. Finally, we assessed the 

performance and whether our selected model was a good predictor of the average number 

of laid eggs by Ae. aegypti during the third sampling season (November 2011-May 2012). 

Coefficient of determination (R
2
) was calculated to assess the relationship between the 

values observed in the third sampling season and those estimated by the model in order to 

validate it.  

 

 

 

 

3. Results 

3.1. Entomological data and temporal analysis 

A total of 268,874 Ae. aegypti eggs were collected during the three sampling seasons, 

including 101,278 in the first sampling season, 65,640 in the second and 101,956 in the 

third sampling season. The average maximum and minimum temperatures were similar in 

the three sampling seasons, 32.6°C and 12.5°C, respectively. In Figure 2, a similar pattern 

can be observed in the three seasons when after several weeks with minimum temperatures 

above 15°C the oviposition peaks were recorded. In addition, it is observed that in later 

weeks when the minimum temperature is below 15°C the oviposition activity begins to 

decrease. Precipitation was greater in the first sampling season (758.5mm) while in the 
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latter two it was less than 500mm. Relatedly, it is important to highlight that in November 

of the first and third sampling seasons there were higher rain averages per week (34mm and 

29mm, respectively) than in November of the second (17mm). During the first sampling 

season, the maximum peak of oviposition activity was observed five weeks after that the 

highest maximum (38.8°C) and minimum (20.7°C) temperatures were registered. In 

addition, precipitation was the highest three weeks prior to the maximum peaks of Ae. 

aegypti oviposition activity, and humidity showed a similar pattern. In the second sampling 

season there was not a noticeable peak of number of eggs; egg counts remained between 

3000 and 6000 for the majority of the season. During the third season, a remarkable 

maximum of oviposition activity occurred with maximum temperatures above 30°C and 

minimum temperature between 9.3°C and 18.8°C during the previous weeks. Furthermore, 

large rainfalls and increased humidity occurred prior to the maximum of oviposition. 
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Fig 2. Fluctuation of egg number and meteorological variables from December 2009 to May 2012, 

in Córdoba city (Argentina). 

 

 

 

 

3.2. Development of the Aedes aegypti oviposition model 

The explanatory variables that were selected to fit the models are shown in Table 2 

along with their best time lag and coefficient of correlation with the response variable. 

According to the analysis, the most relevant variables, as determined by the magnitude of 

their correlation coefficients, were: VP(t-4,t-1) mean vapor pressure, Tm(t-7,t-1) minimum 

temperature, RAIN(t–4,t–1) accumulated rainfall, LAI(t-1) and EVI(t-3) vegetation index. 

 

Table 2. Variables used to develop the GLMM that best correlated with the response 

variable, their respective correlation coefficients, and the associated p-values. 

Explanatory variables Correlation coefficients p-values 

VP(t-4,t-1) 0.886 0.000 

Tm(t-7,t-1) 0.835 0.000 

RAIN(t-4,t-1) 0.767 0.000 

LAI(t-1) 0.746 0.000 

EVI(t-3) 0.733 0.000 

Tr(t-4,t-1) 
–0.643 0.000 
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Tm(t-1) 0.601 0.000 

Ph(t-4,t-1) 0.52 0.000 

RHr(t-5,t-1) –0.513 0.000 

RHm(t-4,t-1) 0.481 2e-04 

RHa(t-3,t-1) 0.45 6e-04 

NDVI(t-4) –0.395 0.003 

TM(t-1) 0.264 0.054 

NDVI(t-4): mean NDVI from the week number 4 before the sampling week; EVI(t-3): mean EVI from the 

week number 3 before the sampling week; LAI(t-1): mean LAI from the week immediately prior to the 

sampling week; Tm(t-1): minimum temperature reached during the week immediately previous to the 

sampling week; Tm(t-7,t-1): minimum temperature reached during the 7 weeks immediately previous to the 

sampling week; TM(t-1): maximum temperature reached during the week immediately previous to the 

sampling week; Tr(t-4,t-1): thermal amplitude from the 4 weeks immediately previous to the sampling week; 

RAIN(t-4,t-1): accumulated rainfall in 4 weeks immediately previous to the sampling week; RHm(t-4,t-1): 

minimum relative humidity reached during the 4 weeks immediately previous to the sampling week; RHa(t-

3,t-1): mean relative humidity reached during the 3 weeks immediately previous to the sampling week; 

RHr(t-5,t-1): amplitude of relative humidity from the 5 weeks immediately previous to the sampling week; 

VP(t-4,t-1): mean vapor pressure obtained during the 4 weeks immediately previous to the sampling week; 

Ph(t-4,t-1): accumulated light hours in 4 weeks immediately previous to the sampling week. 
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The obtained models are shown in Table 3 with the null model M1 (AIC = 406.5). The 

explanatory variables that were included in the models were significant and 

multicollinearity was not found. The best model M2 (AIC = 332.2) is (Eqn 1): 

 

Log(O(t)) = 2.238 + 0.537*EVI(t-3) + 1.22*VP(t-4,t-1) – 0.403*RAIN(t-4,t-1) +     

+ 0.263*Ph(t-4,t-1) – 0.546*VP(t-4,t-1)*Ph(t-4,t-1)             (1) 

 

where O(t) is the average number of Ae. aegypti eggs per week, EVI(t-3) is the mean 

Enhanced Vegetation Index from the week number 3 before the sampling week, VP(t-4,t-1) 

is the mean vapor pressure obtained during the 4 weeks immediately previous to the 

sampling week, RAIN(t-4,t-1) is the accumulated rainfall in 4 weeks immediately previous 

to the sampling week and Ph(t-4,t-1) is the accumulated light hours in 4 weeks 

immediately previous to the sampling week. 

Fitted curves of the effects of each one of these variables is shown in the Figure 3. 

Based on this model, a positive relationship was observed between EVI(t-3) vegetation 

index and the response variable O(t) (Fig 3A). Meanwhile, the interaction (VP(t-4,t-

1)*Ph(t-4,t-1)) between mean vapor pressure of water and photoperiod, as well as RAIN(t-

4,t-1) accumulated rainfall, were negatively associated with the number of eggs O(t) (Fig 

3B-D). According to the model obtained, the average number of eggs O(t) increased 1.71 

for each incremental unit in EVI(t-3) vegetation index and it decreased 0.668 for each 

millimeter of RAIN(t-4,t-1) accumulated rainfall that was added. Regarding to the 

interaction (VP(t-4,t-1)*Ph(t-4,t-1)) between mean vapor pressure of water and 

photoperiod, it was observed that the effect of the Ph(t-4,t-1) photoperiod was positive on 

the average number of eggs O(t) at low values of VP(t-4,t-1) mean vapor pressure of 
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water, while it was negative at high values of VP(t-4,t-1) mean vapor pressure of water; 

besides VP(t-4,t-1) mean vapor pressure of water had a positive relationship with the 

response variable O(t), however the slope changed at different values of the Ph(t-4,t-1) 

photoperiod observing a stronger relationship at low values. The coefficient of 

determination (R-squared) calculated indicates that the fixed effects of model M2 explain 

93% of the variance of the average number of Ae. aegypti eggs per week.  

 

 

 

 

 

 

Fig 3. Fixed effects: curves predicted by the selected model M2. The X axes acquire negative and 

positive values because the explanatory variables are standardized. 
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Table 3. Additional information about the developed models. 

Model Variables Estimates p-value 95% confidence 

interval 

Standard 

error 

AIC R
2 

M1 Intercept 2.21 4.27e-07 1.23 ; 3.109 0.437 406.5  

M (Months)   0.954 ; 2.495  

M2 Intercept 2.238 < 2e-16 1.988 ; 2.434 0.108 332.2 0.928 

EVI(t-3) 0.537 4.05e-05 0.275 ; 0.814 0.131 

VP(t-4,t-1) 1.22 1.27e-15 0.923 ; 1.539 0.153 

RAIN(t-4,t-

1) 

-0.403 0.002 -0.656 ; -0.146 0.128 

Ph(t-4,t-1) 0.263 0.019 0.033 ; 0.518 0.112 

VP(t-4,t-

1)*Ph(t-4,t-1) 

-0.546 5.23e-05 -0.822 ; -0.278 0.135 

M (Months)   0.000 ; 0.416  

M3 Intercept 2.343 < 2e-16 2.058 ; 2.59 0.124 331.3 0.894 

EVI(t-3) 0.853 5.66e-07 0.503 ; 1.178 0.171 

VP(t-4,t-1) 1.33 < 2e-16 1.062 ; 1.652 0.149 

Tr(t-4,t-1) 0.317 0.003 0.106 ; 0.52 0.105 

EVI(t-

3)*VP(t-4,t-

1) 

-0.77 9.10e-08 -1.058 ; -0.492 0.144 
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M (Months)   0.093 ; 0.596  

M4 Intercept 2.112 < 2e-16 1.778 ; 2.378 0.145 344.2 0.856 

EVI(t-3) 0.488 0.003 0.171 ; 0.821 0.162 

VP(t-4,t-1) 1.267 4.18e-16 0.973 ; 1.596 0.156 

RHa(t-3,t-1) -0.404 0.0001 -0.613 ; -0.195 0.106 

M (Months)   0.134 ; 0.656  

M5 Intercept 1.947 < 2e-16 1.522 ; 2.288 0.186 350 0.836 

EVI(t-3)  0.762 2.98e-05 0.409 ; 1.129 0.183 

Tm(t-7,t-1) 1.364 4.52e-11 0.972 ; 1.797 0.207 

Tr(t-4,t-1) 0.293 0.036 0.016 ; 0.565 0.14 

M (Months)   0.245 ; 0.868  

EVI(t-3): mean EVI from the week number 3 before the sampling week; VP(t-4,t-1): mean vapor pressure 

obtained during the 4 weeks immediately previous to the sampling week; RAIN(t-4,t-1): accumulated rainfall 

in 4 weeks immediately previous to the sampling week; Ph(t-4,t-1): accumulated light hours in 4 weeks 

immediately previous to the sampling week; Tr(t-4,t-1): thermal amplitude from the 4 weeks immediately 

previous to the sampling week; RHa(t-3,t-1): mean relative humidity reached during the 3 weeks 

immediately previous to the sampling week; Tm(t-7,t-1): minimum temperature reached during the 7 weeks 

immediately previous to the sampling week.  

 

In addition to the EVI(t-3) vegetation index and VP(t-4,t-1) mean vapor pressure, we 

developed other models that incorporated variables such as Tr(t-4,t-1) temperature range, 

RHa(t-3,t-1) mean relative humidity and Tm(t-7,t-1) minimum temperature. According to 
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these models, the average number of eggs O(t) increased 1.37 and 3.91 for each unit of 

increase in Tr(t-4,t-1) temperature range and Tm(t-7,t-1) minimum temperature 

respectively, and decreased 0.668 when RHa(t-3,t-1) mean relative humidity  increased 

one unit. 

Data from third sampling season were used to validate the model, which resulted in a 

R
2
 coefficient of determination of 0.7 between the Ae. aegypti oviposition activity observed 

and the activity predicted by the model M2 (Fig 4). 
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Fig 4. (A) Oviposition activity, measured as the average number of Aedes aegypti eggs per week, 

observed and predicted by the best model obtained in the third sampling season in Córdoba city 

(Argentina). Confidence intervals are shown on predicted data. (B) Scatter plot based on the 

average number of Aedes aegypti eggs per week observed and predicted by the model selected from 

the third sampling season. 
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4. Discussion 

In this study we developed several models to forecast temporal Ae. aegypti oviposition 

activity fluctuation in relationship to environmental variables determined from satellite 

vegetation and meteorological data  in the temperate city of Córdoba, Argentina. During the 

second sampling season, the amount of eggs was 35% lower than the first and third, which 

could be due to diminished rains during November of the second season. In fact, several 

studies note the occurrence of greater rainfall in the months prior to peaks in mosquito 

oviposition activity as well as for peaks in dengue cases (Vezzani et al. 2004, Rubio-Palis 

et al. 2011, Estallo et al. 2015). Indeed, rainfall could be an important factor affecting the 

availability and suitability of containers that act as potential breeding sites (Micieli and 

Campos 2003). The difference in the number of eggs found between sampling seasons in 

our study could be due to a combination of factors like the amount and distribution of 

rainfall that condition the number of available sites where females lay eggs. This could 

influence the number of eggs remaining for the next sampling season as well and therefore 

subsequent vector activity because vectors persist in Córdoba city through the cold season 

only through unhatched eggs hatch when the environment becomes favorable in the warmer 

season (Dominguez et al. 2000, Estallo et al. 2020). 

This study provides strong evidence of the importance of vegetation and 

meteorological variables in predicting Ae. aegypti oviposition activity. Vegetation index 
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with a lag of 3 weeks was found to be one of the most important variables for egg 

prediction, showing a positive relationship and fluctuating in a similar manner to 

oviposition activity. This relationship has also been observed in the sub-tropical climatic 

conditions of northern Argentina with a lag of 21 weeks in the NDVI (Estallo et al. 2016). 

Temporal variation in temperature, humidity and precipitation, affects vegetation 

development (Huete et al. 2002, Liu et al. 2015). This suggests that increases in vegetation 

increment could be due to humidity and precipitation in the near past, which itself could be 

followed by an increase in vector activity due to increases in habitat for mosquitos. 

In Córdoba city, which has a temperate climate and cold winters without vector activity 

(Estallo et al. 2020), larval development and then the presence of adults during the 

favorable season depends mainly on the activity of the previous season, eggs laid in 

containers late in previous season, and precipitation in a new favorable season to induce 

hatching. The negative relationship between the average number of eggs and accumulated 

rainfall in the previous 4 weeks found here could be explained by preference of females for 

containers that are not filled completely with water.  That is, if containers are full due to the 

abundant rains, females may avoid those containers. In Malaysia, Ae. albopictus females 

were found to prefer to lay eggs in half-filled containers, whereas overflowing containers 

acted as a repellent for gravid females. This is because the rains tend to fill the containers 

and spill the water that is in them, and consequently this could eliminate the juveniles that 

are developing in those breeding sites (Dieng et al. 2012). Furthermore, the negative 

relationship found in our study could be due to availability of nearby breeding sites that are 

more favorable following rain events, leading to the distribution of eggs among all the 

available breeding sites, and fewer eggs in the ovitraps. On the other hand, it may happen 
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that when rain is scarce, the breeding sites are also reduced and as consequence the females 

lay eggs in the ovitraps, which leads us to detect a greater number of eggs in them. 

In the present study, we found important relationships between temperature and 

oviposition activity. First, we found minimum temperature reached during the seven weeks 

prior to collection of eggs of greater importance to vector activity than the maximum 

temperature from one week prior of egg collection. A minimum temperature of 15°C seems 

to define a threshold for the oviposition activity: when the temperature is above this value 

the number of eggs increases perhaps due to a greater number of active females. This 

highlights the role of minimum temperature in predicting oviposition activity, which is in 

agreement with previous studies in temperate Buenos Aires and Córdoba area (Dominguez 

et al. 2000, Vezzani et al. 2004). It is further confirmed in Australia, where Kearney et al. 

(2009) found that cold tolerance is one of the most important factors that limit the presence 

of adults and larvae, and other studies point to a general linear tendency between water 

temperature and development rate for eggs and juveniles (Eisen et al. 2014). Additionally, 

Rowley and Graham (1968) determined that sustained flight of Ae. aegypti in experiments 

occurred in a temperature range between 15°C and 32°C, although the flight was possible at 

extreme minimum temperatures of 10°C with a minimum performance as measured by 

duration and distance.   

Also of importance was the thermal amplitude from the 4 weeks prior to the collection 

of eggs, which showed a positive relationship with oviposition activity, which is in contrast 

to results of  some other studies such as one in Thailand where temperature fluctuation was 

found to have a negative effect on Ae. aegypti (Carrington et al. 2013). This difference 

could be due to influences of other variables of our model that are not present in studies 

aimed at understanding the effect of temperature fluctuation in isolation. 
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Photoperiod in the 4 weeks prior to eggs collection was not one of the main 

variables correlated explain oviposition activity in our study; however, it was important in 

association with variables like EVI vegetation index, vapor pressure and accumulated 

rainfall, and it showed a significant effect on eggs in interaction with mean vapor pressure 

of water obtained during the previous 4 weeks. The importance of the photoperiod on 

oviposition activity was observed in another study made in Córdoba city (Dominguez et al. 

2000), although it had no significant effect on the vector in a subtropical area of Argentina 

(Estallo et al. 2015). This contrast in results among studies could be due to differences in 

photoperiod variation at different latitudes. On the other hand, a positive effect of mean 

vapor pressure of water in the previous 4 weeks on the average number of eggs was found 

here, although this relationship was stronger at low photoperiod values than at high values. 

Similarly, Estallo et al. (2015) found a positive relationship between Ae. aegypti egg 

number and vapor pressure of water in subtropical Argentina, showing a decrease in eggs 

with decreases in vapor pressure. Perhaps this positive association is because vapor 

pressure of water is closely related to humidity, which has an important positive effect, in 

interaction with temperature, on oviposition rate and adult survival (Costa et al. 2010). In 

our work, although relative humidity showed a low correlation value, it was important 

enough to be entered into one of our models. Relatedly, there are works that point out the 

importance of the relative humidity on the vector activity despite its low correlation, and 

when all conditions are considered, the activity of vectors is low when the relative humidity 

is not adequate, such that relative humidity may be acting as a limiting factor (Micieli and 

Campos 2003, Costa et al. 2010, Estallo et al. 2015). 

 The average number of predicted eggs in the third season showed underprediction 

and overprediction compared with the number of eggs observed, which may be due to local 
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socio-ecological conditions that control the survival of the vector and were not studied here. 

Despite this, our model predictions explain a good percentage of the variance of the number 

of observed eggs, which indicates that the predictive model is reliable. 

Predictive models are an important tool in temperate cities, which have marked 

seasonality since they can help vector surveillance over time. These models are useful and 

necessary to guide control strategies that aim mainly to reduce vector abundance. In 

Córdoba city, Ae. aegypti larval monitoring  is carried out through searching for potential 

mosquito breeding sites, locating larvae, taking samples in order to monitor the vector, and 

subsequently destroying these breeding sites during vector activity months. In Estallo et al. 

(2020), the number of Ae. aegypti eggs was positively correlated with larval abundance 

(measured as percentage of neighborhoods with Ae. aegypti larvae) found in the following 

month in Córdoba city. Therefore, the model obtained in this study could help predict both 

the increase and the peak of oviposition activity in the city that would lead to an increase in 

the number of larvae in subsequent weeks. Being able to predict oviposition activity in the 

short term will be useful to guide and reinforce the controls focused on the elimination of 

larvae that would ultimately lead to population reduction of the vector. These models are 

also likely useful for other temperate regions similar to  Córdoba city with similar patterns 

in climate These models will allow mosquito control authorities to anticipate the beginning 

of larval activity, and start vector control campaigns earlier, and assist local public health 

authorities in preparing for seasonal outbreaks of dengue and related arboviruses. 
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