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Abstract

For an underactuated (simple) Hamiltonian system with two degrees of freedom and
one degree of underactuation, a rather general condition that ensures its stabilizability,
by means of the existence of a (simple) Lyapunov function, was found in a recent paper
by D.E. Chang within the context of the energy shaping method. Also, in the same
paper, some additional assumptions were presented in order to ensure also asymptotic
stabilizability. In this paper we extend these results by showing that above mentioned
condition is not only sufficient, but also a necessary one. And, more importantly, we show
that no additional assumption is needed to ensure asymptotic stabilizability.

Keywords Underactuated Systems, Hamiltonian Systems, Asymptotic Stability, Lyapunov
Functions.

1 Introduction

Consider an underactuated Hamiltonian system with two degrees of freedom and exactly one
actuator (i.e. with one degree of underactuation). Such a system can be described by a
pair (H,Y ), where H is a Hamiltonian function on a 4-dimensional phase space and Y is a
(vertical) vector field defining the direction of the actuator. Fix a critical point α0 for the
related Hamiltonian vector field XH and assume from now on that:

1. H is simple, i.e. in any canonical coordinate chart (x, y, px, py)

H (x, y, px, py) =
1

2
(px, py)

[

a(x, y) b(x, y)
b(x, y) c(x, y)

] (

px
py

)

+ h (x, y)

for some function h and with

H(x, y) :=

[

a(x, y) b(x, y)
b(x, y) c(x, y)

]

a positive-definite matrix;

2. there exist canonical coordinates, that we shall call adapted coordinates, in which:

(a) Y is given by the constant vector (0, 0, 0, 1);

(b) the critical point α0 is represented by the vector 0̄ := (0, 0, 0, 0).

A system satisfying above conditions will be called underactuated simple Hamiltonian

system with two degrees of freedom. In Ref. [7], D.E. Chang found, among other things,
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a sufficient condition that ensures the stabilizability1 of such systems at the given critical point
0̄. The mentioned condition can be written (in adapted coordinates) as

(

b
∂2h

∂x2
+ c

∂2h

∂x∂y

)

(0, 0) 6= 0 or
∂2h

∂x2
(0, 0) > 0. (1)

In coordinate-free terms, according to [7], above inequalities mean that: either the linearization
of the system at the given critical point is controllable, or it is uncontrollable with uncontrollable
modes given by a purely imaginary pair.

Chang’s work was done within the framework of the energy shaping method (see for instance
[1, 2, 3, 4, 5, 10, 14, 15, 16, 17]), or more precisely, within his version of the method, developed
in [6, 8, 9]. Let us briefly review such a method in the present context. Its main idea is to
construct, for a given pair (H,Y ) and a given critical point of XH , a state feedback controller
u and a simple Lyapunov function Ĥ for the resulting closed-loop system. Note that Ĥ (to be
simple) must have the form

Ĥ (x, y, px, py) =
1

2
(px, py)

[

f(x, y) g(x, y)
g(x, y) l(x, y)

] (

px
py

)

+ ĥ (x, y)

with

Ĥ(x, y) :=

[

f(x, y) g(x, y)
g(x, y) l(x, y)

]

(2)

positive-definite. To find the controller u, a set of partial differential equations (PDEs), known
as matching conditions, must be solved. Such PDEs have the pair (H,Y ) as datum and the
aforementioned Lyapunov function Ĥ as their unknown. According to Ref. [11], for pairs
(H,Y ) as described above, and using adapted coordinates, the mentioned PDEs are

2
∑

i,j,k,l=1

(

∂kĤ
ij
H
kl − ∂kH

ij
Ĥ
kl
)

pipjpl = 0, (3)

the kinetic matching condition, and

2
∑

k,l=1

(

∂kĥH
kl − ∂kh Ĥ

kl
)

pl = 0, (4)

the potential matching condition, and must be satisfied for all (x, y, px, py) such that

px g(x, y) + py l(x, y) = 0. (5)

Here, ∂1 (resp. ∂2) denotes the partial derivative w.r.t. x (resp. y), p1 = px and p2 = py. Note

that for Ĥ to be a Lyapunov function related to the point 0̄, we need that ĥ is a positive-definite
function w.r.t. (0, 0), i.e.

ĥ (0, 0) = 0 and ĥ (x, y) > 0 for all (x, y) 6= (0, 0) . (6)

Once a solution Ĥ of the matching conditions is given, the method provide a concrete
procedure to construct a state feedback controller. In the case under consideration, such a
controller has the form (see Ref. [11])

u(x, y, px, py) = (0, 0, 0, λ (x, y, px, py)) , (7)

with

λ(x, y, px, py) := −

(

µ+ {Ĥ,H}
)

(x, y, px, py)

px g(x, y) + py l(x, y)
. (8)

1By stabilizable at a point α0 we mean that there exists a state feedback controller such that the related
closed-loop system is stable at α0.
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Here {·, ·} denotes the canonical Poisson bracket and µ is any non-negative function such that

µ(x, y, px, py)

px g(x, y) + py l(x, y)
(9)

is smooth. Thus, if a solution Ĥ of the matching conditions (3) (4) and (5) is found, and satisfies
above mentioned positivity requirements [see (6)], the system in question can be stabilized at
the point 0̄ by means of the controller (7). And, as we said above, such stability is ensured by
the existence of a Lyapunov function for the related closed-loop system: the solution Ĥ .

It was shown in [11] that the Chang’s version of the energy shaping method [6, 8, 9] is
maximal among the so-called “Lyapunov based methods.” More precisely, if an underactu-
ated simple Hamiltonian system (with any number of degrees of freedom and any degree of
underactuation) is stabilized by a method that gives rise to a closed-loop system with a simple
Lyapunov function, then such a function must be a solution of the matching conditions and
the related controller is exactly the one given by the energy shaping method.

Coming back to (1), what Chang showed in [7] was actually that (1) is a necessary and
sufficient condition for finding a simple solution of the matching conditions (with the above
mentioned positive requeriments), and consequently a sufficient condition for stabilizability.
Moreover, in the same paper, two additional assumptions to ensure not only stabilizability, but
also asymptotic stabilizability, were presented.

In the present paper, we further study the stabilizability condition (1) and show:

a. A (slightly) different stabilizability characterization: (1) is a sufficient and a necessary
condition to stabilize an underactuated simple Hamiltonian system with two degrees of
freedom by any method (not only the energy shaping) that guarantees such stability by
exhibiting (or at least by ensuring the existence of) a simple Lyapunov function.

b. The main result of the paper: (1) not only ensures stabilizability, but also asymptotic
stabilizability. That is to say, no additional condition is needed, other than (1), in order
to prove the asymptotic stabilizability for an underactuated simple Hamiltonian system
with two degrees of freedom.

The paper is organized as follows. In §2 we write down a more convenient expression of
the matching conditions (3), (4) and (5). Then, studying the existence of their solutions, we
give an alternative derivation of the condition (1) and show the point a above. We could
show that point simply by combining the results of Chang in [7] and the above mentioned
maximal character of the energy shaping method (showed in Ref. [11]). Nevertheless, we
decided to make a detailed proof because of the involved reasoning and calculations, which
are necessary to prove the second result of the paper. The latter is done in §3, where, by
combining the LaSalle’s invariance principle, a Dirac-like algorithm and the Morse Lemma, we
show that condition (1) also implies asymptotic stabilizability (i.e. we prove the claim of point
b). Finally, we illustrate our results with an example.

2 Stabilizability of systems with two degrees of freedom

In this section we prove that, given an underactuated simple Hamiltonian system with two
degrees of freedom, condition (1) ensures its stabilizability. Reciprocally, if such a system is
stabilizable and that stability can be ensured by a simple Lyapunov function, we prove that
condition (1) must hold. All that will be done by using the Chang version of the energy shaping
method [6, 8, 9]. To begin with, we shall write down (3), (4) and (5) in a way which is more
appropriate for our purposes.

We want to emphasize that the results of the present section represent a slightly modification
of those contained in the work of Chang [7] and, as we said in the Introduction, they can be
proved just by using the maximal character of the energy shaping method [11]. However, we
decide to give an alternative proof here because some of the intermediate steps are crucial for
showing the main result of this paper, developed in §3.
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2.1 Re-writing the matching conditions

Consider a pair (H,Y ) and a set of adapted coordinates (x, y, px, py) as those described in the
Introduction.

Remark 1. Since H is simple, it is easy to show that 0 is critical for the Hamiltonian vector
field

XH =

(

∂H

∂px
,
∂H

∂py
,−

∂H

∂x
,−

∂H

∂y

)

(10)

if and only if (0, 0) is critical for the function h.

Consider also the matching conditions (3), (4) and (5) for the unknowns Ĥ and ĥ. Note
first that, since H is positive-definite (see (1) in the Introduction), then

a, c > 0 and ∆ := a c− b2 > 0. (11)

Analogously, regarding Ĥ, we have that

f > 0 and f l − g2 > 0, (12)

which implies that l > 0. To further simplify the notation, define

δ :=
f l − g2

l
, γ :=

g

l
, (13)

and
B := ax − 2 γ bx + γ2 cx. (14)

(From now on, the subindices x and y denote partial differentiation). In terms of these new
variables, it can be shown that the kinetic matching condition (3), combined with (5), and the
positivity conditions (12) are equivalent to

(a− b γ) δx + (b− c γ) δy = B δ, δ > 0 (15)

and l > 0, while the potential matching condition (4), combined with (5), adopt the form

(a− b γ) ĥx + (b − c γ) ĥy = hx δ. (16)

Summing up, the matching and positivity conditions can be described by (15), (16) and

(6) for the unknowns
(

δ, γ, ĥ
)

, plus the condition l > 0. To go back to the original variables,

we just must use the formulae [see (13)]

f = δ + l γ2 and g = l γ. (17)

2.2 A sufficient condition for stabilizability

As we said in the Introduction about the energy shaping method, if we find a solution to (3),
(4), (5) and (6), then we can construct a vector field u [see (7) and (8)] and a simple Lyapunov
function that ensures the stability of the related closed-loop system at 0̄ (at least locally around
0̄). So, according to the last subsection, the stabilizability of (H,Y ) around 0̄ can be analyzed

by studying the existence of solutions
(

δ, γ, ĥ
)

of (15), (16) and (6). To do that, let us consider

the next two lemmas. In what follows, we shall call U ⊂ R
4 the neighborhood of 0 where the

adapted coordinates take their values. Also, for simplicity, we shall write 0 := (0, 0).

Lemma 1. Given a function γ satisfying

γ (0) 6=
b (0)

c (0)
(18)

and
[(a− b γ)hxx + (b− c γ)hxy] (0) > 0, (19)

there exist functions δ and ĥ such that
(

δ, γ, ĥ
)

is a solution of (15), (16) and (6).
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Proof. Let us begin with (15). This is a first-order PDE, so we can use the Method of Charac-
teristics to find a solution around 0. But, in order for this to make sense, we need a suitable
boundary condition on a non-characteristic submanifold Γ. Let V be the projection of U onto
the first two coordinates. Observe that the characteristic vector field is A = (a− bγ, b− cγ).
Then, we may take the submanifold Γ ⊂ R

2 to be the x-axis, i.e. to take

Γ = {(x, 0) : x ∈ R} ∩ V,

so long as we ensure that the second component of A is nonzero around 0. But this amounts
to choose γ such that (18) holds. Since we need δ > 0, we can impose the boundary condition
δ|Γ = s, where s : R → R is a function such that s(0) > 0. In this case, the Theorem
of Characteristics states that there is a unique solution δ of (15) such that δ(x, 0) = s(x),
which implies, by continuity, that δ(x, y) > 0 around 0. We can shrink V (together with U),
if necessary, in order to ensure that δ > 0 along all of V . From now on, we shall use this
shrinking process implicitly (finitely many times).

Let us continue with (16) and (6). The former is also a first-order PDE, and with the
same characteristic vector field A. Assuming (18) again, the x-axis is a non-characteristic

submanifold and we can impose ĥ
∣

∣

∣

Γ
= r, where r : R → R is a smooth function such that

r(0) = 0. This implies that ĥ (0) = 0, which is the first part of (6). The second part says

that 0 is an isolated minimum for ĥ, or equivalently, 0 is critical for ĥ and the Hessian of ĥ is
positive-definite at 0. Let us analyze these conditions. Since 0 is critical for h (see Remark 1),

i.e. (hx(0), hy(0)) = 0, it follows from (16) that ĥ must satisfy

[

(a− b γ) ĥx + (b− c γ) ĥy

]

(0) = 0.

Thus, since b(0)− c(0) γ(0) 6= 0 [see (18)], in order to have that
(

ĥx(0), ĥy(0)
)

= 0, it suffices

to ask that ĥx(0) = r′(0) = 0. So far, we have that r and s must satisfy

s (0) > 0, r (0) = r′(0) = 0. (20)

On the other hand, the Hessian of ĥ is positive-definite at 0 if and only if

ĥxx(0) > 0 and
(

ĥxx ĥyy − ĥ2xy

)

(0) > 0. (21)

It is easy to compute the second partial derivatives of ĥ at 0 using (16) and the boundary

conditions δ|Γ = s and ĥ
∣

∣

∣

Γ
= r. This gives, omitting the evaluation point 0,











ĥxx = r′′ (0) ,

ĥxy =
hxx s(0)−(a−b γ) r′′(0)

(b−c γ) ,

ĥyy =
hxy s(0)
(b−c γ) − (a−b γ)hxx s(0)+(a−b γ)2 r′′(0)

(b−c γ)2 .

(22)

Then, we must have
ĥxx = r′′ (0) > 0 (23)

and

ĥxx ĥyy − ĥ2xy =
s (0) r′′ (0)

(b − c γ)2

(

(a− b γ)hxx + (b− c γ)hxy −
h2xx s (0)

r′′ (0)

)

> 0. (24)

Accordingly, since (19) holds by hypothesis, in order to ensure (21) it is enough to take

r′′ (0) >
h2xx (0) s (0)

[(a− b γ)hxx + (c− b γ)hxy] (0)
. (25)

The next lemma gives a necessary and sufficient condition, in terms of H , for the existence
of a function γ fulfilling (19). The proof can be found in the Appendix.
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Lemma 2. There exists a function γ such that (19) holds if and only if

[b hxx + c hxy] (0) 6= 0 or hxx (0) > 0. (26)

Moreover, in such a case, γ (0) can be chosen such that

{

|γ (0)| >
∣

∣

∣

[

ahxx+b hxy

b hxx+c hxy

]

(0)
∣

∣

∣

[γ (b hxx + c hxy)] (0) < 0
(27)

if [b hxx + c hxy] (0) 6= 0, and using the following table

hxy (0) = 0 hxy (0) < 0 hxy (0) > 0
b (0) = 0 any γ(0) > 0 γ(0) < 0

b (0) > 0 γ(0) < a(0)
b(0)

b(0)
c(0) < γ(0) < a(0)

b(0) γ(0) < min
(

a(0)
b(0) ,

b(0)
c(0)

)

b (0) < 0 γ(0) > a(0)
b(0) γ(0) > max

(

a(0)
b(0) ,

b(0)
c(0)

)

a(0)
b(0) < γ(0) < b(0)

c(0)

(28)

if hxx (0) > 0. All of these conditions are compatible with (18).

Summarizing, if (26) holds, in order to find a solution
(

δ, γ, ĥ
)

of (15), (16) and (6), it is

enough to take γ satisfying (18) and also (27) or (28), as explained in the last lemma. Thus,
we have proved the following.

Theorem 1. Consider an underactuated simple Hamiltonian system with two degrees of free-
dom and a set of adapted coordinates related to it. Then if (26) holds, the system is stabilizable
at 0̄, i.e. there exists a state feedback controller u, defined at least around 0̄, such that the re-
lated closed-loop system is stable at 0̄. Moreover, such a stability can be ensured by the existence
of a simple Lyapunov function.

2.3 A necessary condition for the existence of a simple Lyapunov

function

Using the same notation as above, suppose that an underactuated simple Hamiltonian system
with two degrees of freedom (H,Y ) can be stabilized at 0, and that such stabilization is ensured
by the existence of a simple Lyapunov function. More precisely, suppose that there exists a
controller u = λY and a simple Lyapunov function Ĥ , both of them defined at least around
0̄, ensuring the stability of the related closed-loop system. Then, it was shown in [11] that u
and Ĥ must be given by the energy shaping method (or more precisely, by the so-called simple
CH method). In particular, Ĥ must be locally given, in adapted coordinates, by a solution
(

δ, γ, ĥ
)

of (15), (16) and (6) [and by (2) and (17) and some function l > 0]. We want to show

from this fact that (26) must be satisfied. To do that, let us consider two cases.

1. [γ does not satisfy (18)] If γ(0) = b(0)/c(0), then [recall (11)]

[a− b γ] (0) = a(0)− b(0)
b(0)

c(0)
=

∆(0)

c(0)
> 0.

On the other hand, if we differentiate (16) and evaluate the result at 0, we obtain

(a(0)− b(0) γ(0)) ĥxx(0) = hxx(0) δ(0).

(Recall that 0 is critical for ĥ and h). As a consequence, using that δ(0) > 0 and

ĥxx(0) > 0,

hxx(0) =
[a− b γ] (0) ĥxx(0)

δ(0)
> 0.

In other words, condition (26) must hold.

6



2. [γ satisfies (18)] Let us call V the neighborhood of 0 where the functions δ, γ, ĥ are

defined. Define r (x) := ĥ (x, 0) and s(x) := δ(x, 0) for all x such that (x, 0) ∈ V . It is
clear that the domain of the last functions is an open neighborhood of 0. Then, as we
saw in the previous section, differentiating (16) and evaluating at 0 (and using that 0 is

critical for h), we arrive at (22). Thus, the positivity conditions (21) for ĥ can be studied
in terms of (23) and (24). From the latter, and from the fact that s (0) > 0 (since δ must
be positive), it easily follows that (19) is a necessary condition. But according to Lemma
2, this says again that condition (26) must be satisfied.

Combining above discussion with Theorem 1, we have the following characterization.

Theorem 2. Under the conditions of Theorem 1, (H,Y ) is stabilizable at 0̄, and such stability
can be ensured by the existence of a simple Lyapunov function, if and only if (26) holds.

3 Asymptotic stabilizability

In Reference [7], it was shown that the condition2 [b hxx + c hxy] (0) 6= 0 also implies asymptotic
stability (as previously affirmed in [12], without a proof). In any other case, in the same
reference, an additional condition is proposed to ensure this kind of stability. We show in the
next subsection that no condition other than (26) is needed to this end.

3.1 No additional assumptions are needed

Let
(

δ, γ, ĥ
)

be a solution of (15), (16) and (6) defined around 0, with γ satisfying (18) and

(19) and with boundary conditions given by functions s and r, as described in the proof of

Lemma 1. That is to say, δ and ĥ must satisfy

δ (x, 0) = s (x) and ĥ (x, 0) = r (x) , (29)

with s and r fulfilling (20) and (25). To ensure the existence of such a solution, we only must
ask that (26) hold. Let Ĥ be given by (2) and (17), i.e.

Ĥ (x, y, px, py) =

[

p2x

(

δ (x, y)

l (x, y)
− γ2 (x, y)

)

+ 2 γ (x, y) pxpy + p2y

]

l (x, y) (30)

+ ĥ (x, y) ,

for some positive function l. To write down an explicit expression for the controller, we must
choose a non-negative function µ fulfilling (9). To that effect, it suffices to take

µ (x, y, px, py) = κ (γ (x, y) px + py)
2
l2 (x, y) ,

for some positive constant κ.

Remark 2. According to the results of Ref. [11], the subset µ−1 (0), which in this case is given
by

µ−1 (0) = {(x, y, px, py) : px γ (x, y) + py = 0} , (31)

is the LaSalle surface related to the Lyapunov function Ĥ (see [13]). Note also that 0̄ ∈ µ−1 (0).

With all these elements, the state feedback controller u adopts the form

u = (0, 0, 0, λ) , (32)

where λ is locally given as [see (8)]

λ (x, y, px, py) =− κ (γ (x, y) px + py) l (x, y)−

{

Ĥ,H
}

(x, y, px, py)

(γ (x, y) px + py) l (x, y)
. (33)

2Actually, a weaker condition is considered there (see Theorem III.3).
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Our next step will be to prove that the functions δ, γ, l and ĥ can be chosen such that the
closed-loop system defined by u is asymptotically stable around 0, i.e. the origin 0 is an
asymptotically stable equilibrium point of the vector field X = XH +u. More precisely, we are
going to show, without any additional assumption other than (26), that boundary conditions s
and r [see (29)] and an open subset T containing 0̄ can be chosen in such a way that the largest
X-invariant3 submanifold of S0 := µ−1 (0)∩T is the singleton {0̄}. Taking into account Remark
2, this would imply, via the LaSalle’s invariance principle, that 0̄ is (locally) asymptotically
stabilizable for X (see [13]). The proof will be based on the next two lemmas (the proof of the
first one is easy to derive, so we omit it for brevity).

Lemma 3. Given a manifold P , a vector field X on P , a critical point α0 of X, and a
submanifold S0 ⊂ P containing α0, let us define4

Sn := {α ∈ Sn−1 : X(α) ∈ TSn−1}, n ∈ N, (34)

where we are assuming that each Sn is a submanifold of Sn−1. Then, the largest X-invariant
subset I of S0 satisfies

{α0} ⊂ I ⊂
⋂

n∈N

Sn.

In particular, if Sk = {α0} for some k ∈ N, then I = {α0}.

Lemma 4. There exist boundary conditions s and r, a function γ and an open subset T ∋ 0̄

such that [see (34)]:

• the subset S1 corresponding to S0 = µ−1 (0) ∩ T is a submanifold of S0;

• S2 is a submanifold of S1;

• S3 = {0̄}.

It is enough to take s and r such that [besides (20) and (25)]

s′ (0)

s (0)
6= −

[

2 (b− c γ)

∆

(

bx − γ cx −
B c

2 (b− c γ)

)]

(0) , (35)

and choose γ(0) according to (18), (19) and the additional restriction

γ (0) 6=

(a (0) , b (0)) M

(

b (0)
c (0)

)

(b (0) , c (0)) M

(

b (0)
c (0)

) , (36)

where M is a positive-definite matrix given by

M =

[

r′′ (0) hxx s(0)−(a−b γ) r′′(0)
(b−c γ)

hxx s(0)−(a−b γ) r′′(0)
(b−c γ)

hxy s(0) (b−c γ)−(a−b γ)hxx s(0)+(a−b γ)2 r′′(0)
(b−c γ)2

]

. (37)

Proof. According to (31), µ−1 (0) can be described as the zero set of the function

F(x, y, px, py) := γ(x, y) px + py.

We shall proceed in three steps.

1. Let us consider the subset Z1 ⊂ µ−1 (0) such that F∗(X)(x, y, px, py) = 0, where F∗ is
the tangent map of F and [see (10) and (32)]

X = XH + u =

(

∂H

∂px
,
∂H

∂py
,−

∂H

∂x
,−

(

∂H

∂y
− λ

))

. (38)

3Recall that, given a manifold P and a vector field X on P , a subset S ⊂ P is X-invariant if every integral
curve of X with initial condition in S is contained in S.

4Given a manifold P , by TP we are denoting, as usual, its tangent bundle.
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That is to say, Z1 is given by the equation

∂H

∂px

∂F

∂x
+
∂H

∂py

∂F

∂y
−
∂H

∂x

∂F

∂px
−

(

∂H

∂y
− λ

)

∂F

∂py
= 0,

or equivalently by

∂H

∂px
γx px +

∂H

∂py
γy px −

∂H

∂x
γ −

∂H

∂y
+ λ = 0, (39)

and py = −γ(x, y) px. Using the explicit forms of H and Ĥ, it is easy to see that, on
µ−1 (0),

{

∂H
∂x

= 1
2B p

2
x + hx,

∂H
∂y

= 1
2C p

2
x + hy,

∂H
∂px

= (a− b γ) px,
∂H
∂py

= (b− c γ) px,
(40)

where B is given by (14) and

C := ay − 2γby + γ2cy.

On the other hand, and according to (33), the values of λ on points of the form (x, y, px,−γ (x, y) px) ∈
µ−1 (0), are given by

λ = − lim
py→−γ px

{

Ĥ,H
}

(x, y, px, py)

(γ (x, y) px + py) l (x, y)

= −
1

l (x, y)

∂{Ĥ,H}

∂py
(x, y, px,−γ (x, y) px).

So, by lengthy, but straightforward calculations, from (30), (33) and (40) we have that

λ =

[

1

2
(B γ + C)− γx (a− b γ)− γy (b − cγ) (41)

+
2 (bx − γ cx) δ − b δx − c δy

2 l

]

p2x + γ hx + hy −
b ĥx + c ĥy

l
.

We are omitting, for simplicity, the evaluation point for the involved functions. Finally,
combining (39), (40) and (41), we have at µ−1 (0) that

F∗(X) =
1

l

[

(bx − γ cx) δ −
b δx + c δy

2

]

p2x −
b ĥx + c ĥy

l
.

Thus, Z1 is given by the equations

{

γ(x, y) px + py = 0,
K(x, y) p2x − L(x, y) = 0,

(42)

where

K = (bx − γ cx) δ −
b δx + c δy

2
(43)

and
L = b ĥx + c ĥy. (44)

In consequence, Z1 can be defined by the zero set of the function

G(x, y, px, py) := (G1(x, y, px, py),G2(x, y, px, py)) .

with

G1(x, y, px, py) := γ(x, y) px + py,

G2(x, y, px, py) := K(x, y) p2x − L(x, y).
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We want to see that its related tangent map (omitting the evaluation point of the involved
functions)

G∗ =

(

γx px γy px γ 1
Kx p

2
x − Lx Ky p

2
x − Ly 2K px 0

)

(45)

has maximal rank around 0̄. In that case, the Implicit Function Theorem would ensure
that this zero locus is the graph of a smooth function (and hence a submanifold) when
restricted to some open neighborhood of 0̄. Such tangent map is given at 0̄ by

G∗,0̄ =

(

0 0 γ(0) 1
−Lx(0) −Ly(0) 0 0

)

. (46)

Note that the gradient of L can be written

(

Lx
Ly

)

=

(

ĥxx ĥxy
ĥxy ĥyy

) (

b
c

)

+

(

bx cx
by cy

) (

ĥx
ĥy

)

. (47)

Since 0 is critical for ĥ, then, at 0,

(

Lx
Ly

)

=

(

ĥxx ĥxy
ĥxy ĥyy

) (

b
c

)

.

But we know that the Hessian matrix of ĥ is positive-definite and the function c is always
positive. So, the gradient of L cannot vanish at 0. This implies that (46) has maximal
rank at 0̄. Consequently, there exists an open subset T1 containing 0̄ such that Z1 ∩ T1
is a submanifold of µ−1 (0) ∩ T1.

2. Consider now the subset Z2 ⊂ Z1∩T1 given by G∗(X)(x, y, px, py) = 0. Easy calculations
show that Z2 is given by the points of Z1 ∩ T1 such that

[

(a− b γ) (Kx p
2
x − Lx) + (b − c γ) (Ky p

2
x − Ly) (48)

−2K

(

1

2
B p2x + hx

)]

px = 0.

We only need to evaluate the second row of G∗ [see (45)] on the components of X [see
(38), (40) and (41)]. In the following, we assume that K (0) 6= 0. Observe that, since
δ(x, 0) = s(x), we have δx(0) = s′(0), and using (16) at the origin

δy (0) =

[

B s(0)− (a− b γ) s′ (0)

b− c γ

]

(0) .

So [see (43)]

K (0) =

[(

bx − γ cx −
B c

2 (b− cγ)

)

s (0) +
1

2

(

∆

b− cγ

)

s′ (0)

]

(0) ,

and consequently, the condition K (0) 6= 0 is equivalent to (35). Under such an assump-
tion, we can replace p2x by L

K
in (48) [see (42)], and we get

[

(a− b γ)

(

Kx

L

K
− Lx

)

+ (b − cγ)

(

Ky

L

K
− Ly

)

(49)

−2K

(

1

2
B
L

K
+ hx

)]

px = 0,

on some open subset containing 0 (where K is non vanishing). Moreover, since L(0) = 0
[see (44)] and hx (0) = 0, we have at 0 that

LxK − LKx

K2
=
Lx
K
,
LyK − LKy

K2
=
Ly
K
,
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and then, the bracketed expression in (49) takes the following form at 0

(a− b γ)Lx + (b− c γ)Ly.

Using (47), this in turn may be written as

(a, b)

[

ĥxx ĥxy
ĥxy ĥyy

] (

b
c

)

− γ (b, c)

[

ĥxx ĥxy
ĥxy ĥyy

] (

b
c

)

.

Then, if we assume that, at 0,

γ 6=

(a, b)

[

ĥxx ĥxy
ĥxy ĥyy

](

b
c

)

(b, c)

[

ĥxx ĥxy
ĥxy ĥyy

](

b
c

)

it follows that (49) will hold only if px = 0 around (x, y) = 0. It is worth mentioning that
this condition is compatible with (18) and (19). Note that, using (22), the condition above
is given precisely by (36) and (37). In conclusion, there exists an open neighborhood T ′

2

(which contains the point 0̄) such that the subset Z2 ∩ T
′

2 is given by

γ px + py = 0, K p2x − L = 0, px = 0,

or equivalently
px = py = L = 0. (50)

This means that Z2 ∩ T
′

2 can be described as the zero set of the function

H(x, y, px, py) := (py, px, L(x, y)) .

The tangent map of H at 0̄ is given by

H∗,0̄ =





0 0 0 1
0 0 1 0

Lx(0) Ly(0) 0 0



 .

Again, since Lx(0) and Ly(0) cannot be both zero, we conclude that H
∗,0̄ has maximal

rank. Thus, there exists inside T ′

2 an open neighborhood T2 of 0̄ such that Z2 ∩ T2 is a
submanifold of Z1 ∩ T1 ∩ T2.

3. Now, consider the subset Z3 ⊂ Z2 ∩ T2 defined by H∗(X)(x, y, px, py) = 0. Using (38),
(40) and (41), it follows that, along Z2 ∩ T2 [see (50)]

X = (0, 0,−hx, γ hx) ,

so, in order for H∗(X) to vanish, it is necessary that hx = 0. But, if this is the case,
using the potential matching condition

(a− b γ) ĥx + (b− c γ) ĥy = δ hx,

or equivalently, a ĥx + b ĥy − γ L = δ hx, we have on Z3 that

L = b ĥx + c ĥy = 0 and a ĥx + b ĥy = 0,

i.e.

H

(

ĥx
ĥy

)

= 0.

Calling π the projection of R4 onto the first two components, we can say that above
identity holds if and only if all the points of π(Z3) are critical for ĥ. By the Morse Lemma,

since 0 is a non-degenerate critical point of ĥ [recall (6)], there exists a neighborhood V of
0 such that π (Z3)∩V = {0}. But px = py = 0 on Z3, which implies that Z3∩T3 = {0̄}
for T3 := π−1 (V ).
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Summing up, if we define T := T1 ∩ T2 ∩ T3 and S0 := µ−1 (0) ∩ T , from (34) we obtain
S1 = Z1 ∩ T , which is a submanifold of S0, S2 = Z2 ∩ T , which is a submanifold of S1, and
S3 = {0̄}. Hence, the three points of the lemma follow.

Concluding, if (26) holds, asymptotic stabilizability is ensured. Reciprocally, if we can
ensure asymptotic stabilizability by the existence of a simple Lyapunov function, then we can
also ensure stabilizability, and Theorem 2 implies that (26) holds. In other terms,

Theorem 3. Under the conditions of Theorem 1, (H,Y ) is asymptotically stabilizable at 0̄,
and such a stability can be ensured by the existence of a simple Lyapunov function, if and only
if H satisfies (26).

3.2 Example: the inertia wheel pendulum

Now, we illustrate our results with a concrete underactuated system (H,Y ) with two degrees
of freedom, the inertia wheel pendulum:

• the configuration space is Q = S1 × S1, whose natural almost-global coordinates will be
denoted (θ, ψ);

• the Hamiltonian is

H (θ, ψ, pθ, pψ) =
1

2
(pθ, pψ)

[

a b
b c

] (

pθ
pψ

)

+M (1 + cos θ),

where a, b, c,M are constants and a, b,M, ac− b2 are strictly greater than zero;

• and the space of actuators is given by the subbundle spanned by the vector field Y taking
the constant value (0, 0, 0, 1).

We shall find, by using the energy shaping method, a state feedback controller u for this
system and a related simple Lyapunov function Ĥ which make the closed-loop system XH + u
asymptotically stable at (θ, ψ, pθ, pψ) = (0, 0, 0, 0) = 0̄.

Replacing x by θ and y by ψ, (26) in this case says that (because hθψ (0) = 0)

b hθθ (0) 6= 0 or hθθ (0) > 0,

which is equivalent to hθθ (0) 6= 0, since b 6= 0. And it does hold, because hθθ (0) = −M 6= 0.
Then, the inertia wheel pendulum can be asymptotically stabilized around 0̄, as it is well
known. On the other hand, according to (14), we have that B = 0. So, the kinetic and
potential matching conditions read [see (15) and (16)]

(a− b γ) δθ + (b− c γ) δψ = 0, (51)

and
(a− b γ) ĥθ + (b − c γ) ĥψ = −M δ sin θ, (52)

respectively. Let us construct a solution
(

δ, γ, ĥ
)

of above equations, with δ > 0 and ĥ positive-

definite w.r.t. 0. We shall take γ constant. Following the steps of §2.2, it is enough to take γ
such that γ 6= b/c [see (18)] and, using (27) of Lemma 2 [since hθθ (0) = −M < 0], also ask
that

|γ| >
a

b
and − γ bM < 0.

The second inequality says that γ is positive, so, above equations only impose the condition
γ > a/b. Note also that, since a, b, c, ac − b2 > 0, we have that a/b > b/c. Hence, all the
conditions on γ reduce to

γ >
a

b
.

Remark 3. Note that, for this system, we cannot take γ = b/c. In fact, in such a case, according

to the calculations we made in §2.3, the positivity of δ and ĥ would impose that hθθ (0) > 0,
which is not true.
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Regarding the boundary conditions defining δ and ĥ, i.e. the functions s and r, respectively,
we must ask [see (20) and (25)]











s (0) > 0,
r (0) = r′(0) = 0 and

r′′ (0) >
h2

θθ(0) s(0)
(a−b γ)hθθ(0)

= −M s(0)
a−b γ

(53)

And to ensure asymptotic stabilizability, according to Eqs. (35), (36) and (37) of Lemma 4,
we ask that

s′ (0)

s (0)
6= 0, i.e. s′ (0) 6= 0,

and that γ satisfy

γ 6=
η2 ab r′′ (0)− η [M s (0) + ζ r′′ (0)]

(

ac+ b2
)

+ ζ M s (0) + ζ2 r′′ (0) bc

η2 b2 r′′ (0)− 2 η [M s (0) + ζ r′′ (0)] bc+ ζ M s (0) + ζ2 r′′ (0) c2
, (54)

where ζ := a− b γ and η := b− c γ. Thus, take any number γ > a/b, any function s such that
s (0) > 0 and s′ (0) 6= 0, and any function5 r such that r (0) = r′(0) = 0 and r′′ (0) satisfying
(53) and (54), and let us apply the Method of Characteristics to (51) and (52), with boundary
conditions on ψ = 0 given by s and r. The characteristic equations for (51) are











θ̇ = a− b γ, θ(0) = θ0,

ψ̇ = b− c γ, ψ(0) = 0,

δ̇ = 0, δ(0) = s(θ0).

Then
θ(t) = (a− b γ) t+ θ0, ψ(t) = (b− c γ) t,

and defining Υ := (a− b γ) / (b− c γ) we find

δ(θ, ψ) = s(θ −Υψ). (55)

The characteristic equation for (52) (and for δ given above) is

˙̂
h = −M s(θ0) sin ((a− b γ) t+ θ0) ,

and integrating we obtain

ĥ(θ, ψ) =
M s(θ −Υψ)

a− b γ
(cos θ − cos(θ −Υψ)) + r(θ −Υψ). (56)

Finally, with δ and ĥ given by (55) and (56), and considering any positive function l, we
have from (30), (32) and (33) the controller u and the Lyapunov function Ĥ we are looking
for.

A Proof of Lemma 2

Suppose first that hxx (0) ≤ 0 and (b hxx + c hxy) (0) = 0. Then, omitting the evaluation point
0,

(a− b γ)hxx + (b − c γ)hxy = a hxx + b hxy − γ (b hxx + c hxy)

=

(

a−
b2

c

)

hxx =
∆

c
hxx ≤ 0

for any function γ. This proves the first implication of the lemma (by denying the second one).
For the converse, suppose first that b hxx + c hxy 6= 0. Since

(a− b γ)hxx + (b− c γ)hxy = a hxx + b hxy − γ (b hxx + c hxy),

5Additionally, the functions s and r may be taken with period 2π in order to look for a quasi-global solution.
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for any γ with sign opposite to b hxx + c hxy and such that

|γ| >

∣

∣

∣

∣

a hxx + b hxy
b hxx + c hxy

∣

∣

∣

∣

,

we have that (19) holds. This implies (27). Now, suppose that hxx > 0. If hxy = 0, since a > 0,
it is clear that it is enough to choose γ such that a > bγ. If instead hxy 6= 0, we distinguish
three cases: b = 0, b > 0 and b < 0.

• If b = 0, then a− bγ = a > 0 and b− cγ = −cγ, and consequently it is sufficient to choose
γ with opposite sign to hxy.

• If b > 0, we show that it is possible to take γ so as to fulfill one of the following expressions

a− bγ > 0 and b− cγ > 0,

or
a− bγ > 0 and b− cγ < 0.

In order to make a − bγ > 0, we need γ < a
b
. If in addition b − cγ > 0, then γ < b

c
.

Hence, it suffices to take γ < min
(

a
b
, b
c

)

. On the contrary, if b− cγ < 0, then we can take
b
c
< γ < a

b
, which is always possible because

ac− b2 > 0 and b > 0 ⇒
b

c
<
a

b
.

Thus, if hxy > 0 we choose γ < min
(

a
b
, b
c

)

and if hxy < 0 we take b
c
< γ < a

b
. In both

cases we get the desired result.

• If b < 0, then a− bγ > 0 implies γ > a
b
. If in addition b− cγ > 0, then γ < b

c
and so we

can take γ such that a
b
< γ < b

c
, which is always possible because

ac− b2 > 0 and b < 0 ⇒
a

b
< γ <

b

c
.

On the contrary, if b − cγ < 0, then γ > b
c
and it is sufficient to choose γ > max

(

a
b
, b
c

)

.
Again, both cases lead to the desired result. All these alternatives give the table (28).

The last assertion of the lemma is immediate, because all conditions on γ are inequalities.
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