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1 Introduction

The problem of formulating quantum gravity in generic, cosmological spacetime remains of

fundamental interest. Among the approaches to holography for de Sitter and its decays [1–

9] , the dS/dS correspondence [4, 5] proceeds by uplifting the AdS/CFT correspondence as

described in [7, 8]. As such it retains some common features such as an emergent spatial

direction and unitarity of the dual Lorentzian theory, a highly constrained holographic

RG flow [10], and well-defined Von Neumann and Renyi entropies which provide a clear

interpretation of the de Sitter entropy as entanglement entropy [11].1

These results build on the macroscopic observation that de Sitter is a warped com-

pactification to lower-dimensional de Sitter, e.g.

ds2(A)dS3
= dw2 + sin(h)2

w

`
ds2dS2

= dw2 + sin(h)2
w

`

(
− dτ2 + `2 cosh2

(
τ

`

)
dφ2
)

(1.1)

1Other interesting works such as [12] and [13] also study entanglement entropy in finite patches of

spacetime.
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The bulk dS and bulk AdS theories agree in the highly redshifted region sin(h)2w` � 1,

indicating that the dual of dS will involve some kind of irrelevant deformation relative to

the CFT dual of AdS. The most ultraviolet scale in the dS/dS theory is finite,
√
g00 =

sin wuv
` = 1, indicating a cutoff matter theory constrained by 2d gravity. The statement

that this matter theory consists of two isomorphic sectors constrained by gravity follows

independently from the uplift of the AdS/CFT brane construction [7], and a similar formu-

lation is also ultimately required for the dS/CFT conjecture as well [14, 15]. These features

strongly motivate us to investigate the duality further. Extensive calculations in the works

referenced above (and others) provide concrete clues as to the nature of this dual, but its

precise formulation is not known.

Enter the T T̄ deformation: recently Zamolodchikov and Smirnov [16, 17] and Cavaglia

et al. [18] introduced a powerful prescription for controlling a particular irrelevant defor-

mation in two dimensions. Starting from any seed quantum field theory, they specify a

trajectory in the space of 2d theories along which exact calculations of energy levels and

other quantities remain tractable, at least on flat spacetime. There has been extensive anal-

ysis and discussion in the literature of the interpretations and applications of this [19–35].

We will build from the observation of McGough, Mezei, and Verlinde [20] that the

dressed energy levels and other calculable quantities under the T T̄ deformation agree pre-

cisely with those of a cut off AdS3 spacetime. Since it involves an irrelevant deformation,

moving onto the T T̄ trajectory has a large effect on the would-be ultraviolet region of the

geometry in the holographic dual. The work [20] argued that the effect is simply to chop

it off. At the level of pure gravity, this was confirmed and extended in several ways in the

works [24, 25], which also noted that beyond pure gravity the field theory side prescrip-

tion may become more involved in order to capture effects of bulk matter and cut them

off. As we will see in this paper, the field theory side of the duality can be adjusted to

account for new features of the bulk, such as dS rather than AdS geometry. We will leave

the QFT-side treatment of additional bulk matter fields to future work, but note that our

method for generalizing the trajectory may extend to those cases [36]. This may also relate

to the work [32] involving a radially varying scalar field (string dilaton). A similar question

arises for string theory even at the classical level; we will discuss an approach to this in

the conclusions.

The duality conjecture [20] relates the quasilocal stress-energy tensor to the deformed

QFT stress-energy tensor, generalizing [37]. The bulk Einstein equations imply that the

former satisfies the differential equations derived for the latter in [17, 18]. Moreover,

the large-c factorization of correlation functions simplifies the field-theory side analysis, a

feature that is useful for generalizations to curved 2d spacetimes as in [25] and the higher-

dimensional generalization in [26, 27].2

2The recent literature includes numerous contributions to the interpretation and generalization of the

T T̄ deformation. For example, a derivation of the equivalence of the T T̄ deformation to a certain version

of Jackiw-Teitelboim gravity appeared in [21] for the Minkowski space and in [38] for the torus; other

interesting works which included a relation between T T̄ and the metric fluctuations appeared in [22, 23].

Closed-form expressions for the action along the trajectory for a variety of seed theories appeared in [28].

An interesting study of the large-c limit appeared in [29], and of modular transformations in [30, 31]. Some

generalizations of the T T̄ deformation appeared in [32, 33].
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Given all this, it is natural to investigate, even at the level of pure large-c gravity,

whether a generalization of the T T̄ deformation could generate the dS/dS cut off warped

throat. In this work, we find that this is indeed the case. Applying the same gravity-side

analysis of [20, 24] to the dS3 warped throat, we obtain its quasilocal stress-energy tensor

and an algebraic equation it satisfies, generalizing the AdS/CFT case to our case of positive

bulk cosmological constant. The resulting defining equation is quite simple, containing one

extra term compared to the cutoff AdS/CFT case. We show how this term arises on

the other side of the duality if we incorporate a relevant deformation along with the T T̄

deformation at each step in the trajectory in the space of 2d theories. This arises from a

simple generalization of the differential equation derived in [17, 18]. We obtain a boundary

condition on the trajectory for the bulk dS3 case by matching the behavior of AdS/dS

(i.e. the CFT on dS2) in the regime where they coincide, i.e. small sin(h)(w/`) (1.1). This

trajectory and boundary condition yields a dual 2d construction of the dS/dS warped

throat, and a family of particle excitations of it, starting from any seed CFT. Moreover,

we find that the boundary graviton perturbations in our cutoff theory do not exhibit

the superluminal behavior that arose in the pure T T̄ deformations [16, 17] with the sign

corresponding to the dual cutoff AdS [20, 24]. This is related to the absence of horizons

for massive particles in dS3. However, we have not analyzed more general excitations of

the system or their perturbations. We also analyze the entanglement entropy obtained by

tracing out half of the space on which the 2d theory lives, as a function of the dS2 radius

r, and find precise agreement between the two sides of the proposed duality.

This paper is organized as follows. Section 2 contains the gravity-side analysis of the

quasilocal stress-energy tensor and Einstein equations, including excitations introduced by

massive particles. Section 3 derives the generalized T T̄ deformation of the 2d dual that

reproduces the gravity results. Along the way, we clarify some aspects of the T T̄ defor-

mation in curved space, including the role of the Weyl anomaly. In section 4, we compute

the entanglement entropy on both sides. Section 5 contains a summary and discussion of

future directions. Some more detailed calculations are presented in the appendix.

2 Trajectory from the (A)dS3 bulk

In this section, we will analyze the quasilocal stress-energy tensor on the AdS3 and dS3
warped throats (1.1) and their excitations, with a radial cutoff at a finite value w = wc.

This will generalize the bulk AdS3 treatments in [20, 24, 25]. It will provide a simple

generalization of the equations for the dressed energy levels derived on the bulk gravity side.

Then in section 3, we will construct an explicit generalization of the T T̄ trajectory that

reproduces this flow. This will reconstruct the bulk dS3 quasilocal stress-energy, which is

closely related to the bulk dS3 geometry, starting from the field theory side.

In this analysis, we consider each warped throat of dS/dS separately; i.e. we work with

0 ≤ wc ≤ π/2. Each of the two warped throats in (1.1) is a building block for the dS/dS

correspondence, one which we will construct from the field theory side in this paper. It

will be interesting to analyze the dual description of their coupling in future work.

– 3 –
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2.1 The trace flow equation

We will start our gravity-side analysis by deriving the generalization of a basic equation

relating the trace of the stress-energy tensor to T T̄ , along the lines of [20, 24, 25]. It is

straightforward to generalize the derivation in [24] to the bulk dS3 case. The Einstein-

Hilbert plus Gibbons-Hawking-York action is

S =
1

16πG

∫
M

d3x
√
−g
(
R(3) +

2η

`2

)
+

1

8πG

∫
∂M

d2x
√
−g
(
K − bCT

`

)
, (2.1)

with η = +1 for AdS and η = −1 for dS. Here we note the counterterm bCT , which was

set to 1 in [24]. We will not carry bCT through our analysis, setting it to 1 in order to

focus on the effect of flipping the sign of η, holding all else fixed.3 It is also possible to

add a boundary Wess-Zumino term when the boundary metric is curved as in (1.1). This,

however, will not play an important role in our present discussion, so we will set it to zero.

The possibility of a more general boundary action will be interesting to investigate more

systematically in the future, in the process of joining our warped throats together.

Taking radial slices

ds23 = dw2 + gij dx
idxj , (2.2)

the quasilocal stress-tensor becomes4

Tij =
2√
−g

δSon-shell
δgij

=
1

8πG

(
Kij −Kgij +

bCT

`
gij

)
. (2.3)

In the coordinates (2.2), the extrinsic curvature is Kij = 1
2∂wgij . We will keep track of η

throughout our analysis, our main goal being to understand the case η = −1 corresponding

to the dS3 bulk.

Applying the Einstein equation Eww = 0 following [24], with Eµν the Einstein tensor,

we find a more general trace flow equation:

T ii = − `

16πG
R(2) − 4πG`

(
T ijTij − (T ii )

2
)
− η − 1

8πG`
, (2.4)

where R(2) is the Ricci scalar of gij at fixed w. The calculation is presented in appendix A.

This generalizes equation (3.7) in [24]. The AdS3 result with a flat cylindrical boundary

is recovered if we turned off R(2), take η = 1 (and as already noted, rescale Tij to work

in the conventions [37]). Of course gravity solutions must obey the full set of Einstein

equations with appropriate boundary conditions, which we will incorporate below and in

the appendix.

We will perform a detailed comparison with the two-dimensional dual that we construct

in section 3, with the map of parameters collected in section 3.2. For now, let us anticipate

some elements of this dictionary starting from the field theory result perturbed by T T̄ :

T ii = − c

24π
R(2) − 4πλT T̄ + . . . (2.5)

3For completness, in appendix A.1 we determine the effect of bCT on the flow equation.
4Our convention for the stess-tensor is the same as in [37], which differs from [24] by a factor of 1/(2π).
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where we used the notation

T T̄ =
1

8
(T ijTij − (T ii )

2) . (2.6)

In the single-scale case treated in [20, 24], this corresponds to a deformation generated at

the level of the action by
dS

dλ
= 2π

∫
d2x
√
−g T T̄ (2.7)

since in that case
∫
d2x
√
−g T ii = µdS/dµ and µ = 1/λ1/2.5 This allows us to identify [20]

c =
3`

2G
, λ = 8G` ⇒ λc = 12 `2 . (2.8)

Therefore, in the large central charge limit, with radius ` fixed, the deformation parameter

scales as λ ∼ 1/c.

Altogether, we obtain

T ii = − c

24π
R(2) − 4πλT T̄ − η − 1

πλ
, (2.9)

which we will refer to as the trace flow equation. This contains an additional term compared

to the case of bulk AdS [25]. Our goal in section 3 will be to obtain this term, and a related

one in the flow of energy levels, from a generalization of the field-theoretic flow defined

in [17, 18].

2.2 Solution for the dS ground state

For the de Sitter invariant ground state, the stress tensor should be of the form Tij = αgij ;

similarly to [25], from (2.9) we obtain the quadratic equation

8πGα2 − 2

`
α− η − 1

8πG`2
− R

(2)

16πG
= 0, (2.10)

which gives

α =
1

4πG`

(
1

2
±
√
R(2)

8
+

η

4`2

)
. (2.11)

where again η = +1 (η = −1) is for the AdS (dS) bulk case. For a slicing of (A)dS3 by

dS2 with

R(2) =
2

r2
(2.12)

with r the curvature radius of the boundary, we obtain

α =
1

8πG`

(
1±

√
`2

r2
+ η

)
, (2.13)

exhibiting the significant effect of η.

5The scaling dimension of the coupling λ equals −2 along the field theory trajectory, because in the

large N limit T T̄ factorizes, and the stress tensor always has scaling dimension 2. At finite N , this also

holds for a theory in flat space [16].
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Before coming to the interpretation of this, we need to impose a boundary condition

on the flow in order to choose between the ± branches. For AdS with η = 1 we can do

this by analyzing the UV limit arising as we approach the boundary, λ/r2 → 0. The

expectation value of the stress-tensor should be given solely by the Weyl anomaly (the last

term in (2.4)). This defines a UV boundary condition given by the minus branch:

αAdS =
1

8πG`

(
1−

√
`2

r2
+ 1

)
=

1

πλ

(
1−

√
λc

12r2
+ 1

)
. (2.14)

as derived earlier in [25].

On the other hand, for a dS bulk we have η = −1,

α =
1

8πG`

(
1±

√
`2

r2
− 1

)
. (2.15)

This imposes an upper bound r < `, correctly for dS/dS, where the warp factor is a(w) =

` sin(w/`). We can no longer impose the boundary condition for the RG flow in the UV

limit λ/r2 → 0. Instead, we note that the opposite limit of a large irrelevant deformation,

λ/r2 →∞, should impose a radial cutoff that is approaching the IR part of the geometry.

In this limit, the bulk AdS and bulk dS throats agree [4]. Therefore, we will fix the

boundary condition for the dS/dS flow by matching to the AdS behavior at λ/r2 → ∞,

and this sets

αdS =
1

8πG`

(
1−

√
`2

r2
− 1

)
=

1

πλ

(
1−

√
λc

12r2
− 1

)
. (2.16)

Here we also use this limit to identify the central charge, obtaining the same expression as

in AdS, c = 3`
2G .

We note that the choice of the ‘−’ branch agrees with the result from (2.3) for the

quasi-local stress-tensor. See section 2.5 below for more details.

2.3 The dressing of higher energy levels

We would also like to understand the higher energy levels in the theory. For negative bulk

cosmological constant (η = 1), there are particle states (corresponding to a conical deficit

angle) and black hole solutions which asymptote to AdS3. For positive bulk cosmological

constant, the massive particles produce a simple identification of points on the original

dS3 [39, 40]. For example for vanishing spatial momentum, pφ = 0, the effect is to change

the periodicity in the φ direction:

ds23µ = dw2 + sin2

(
w

`

)(
− dτ2 + `2 cosh2 τ

`
dφ2
)
, φ = φ+ 2πµ (2.17)

with µ related to the mass m of the particle as

m =
1

4G

∆φ

2π
=

1

4G
(1− µ) . (2.18)

– 6 –
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The proper size of the circle that the 2d boundary theory lives on is

L =

∫
dφ
√
gφφ = 2πµ ` sin

(
wc
`

)
cosh

(
τ

`

)
. (2.19)

Note that this size shrinks with reduced φ period, but the curvature radius remains

the same.

Our goal in this paper is to reconstruct the 3d de Sitter ground state and this family

of excited particle solutions, from a field theory flow involving T T̄ . There are various ways

we could set that up. The simplest way to capture the energy levels will be to work with

the QFT on a ‘tall de Sitter’ spacetime obtained from the original dS2 by reducing the

periodicity of φ to 2πµ.

ds22µ = (sin(h)(wc/`))
2

(
− dτ2 + `2 cosh2 τ

`
dφ2
)
, φ = φ+ 2πnµ . (2.20)

It will prove convenient to work with this as the spacetime on which the QFT lives, recon-

structing the bulk solution in a given mass sector (2.18) from the dressed ground state of the

QFT on the corresponding tall de Sitter spacetime. This allows us to directly map the QFT

calculation to the gravity side with the boundary at fixed w = wc in the metric (2.17).6

These excited levels are in fact inherited from the above solution for the vacuum.

For all µ, we can use two algebraic equations to obtain the dressed stress-energy. If we

first apply the trace flow equation (2.9), we can solve for T φφ algebraically in terms of T ττ .

This gives

T φφ =
T ττ + cR

(2)

24π + η−1
πλ

πλT ττ − 1
. (2.21)

If we are in the ground state in dS2, or an orbifold of that (as in the tall dS2µ spacetimes),

we have another algebraic relation: T φφ = T ττ ≡ α. This relation and (2.21) together yield

the solution for α given above, namely

T ττ =
1

πλ

(
1−

√
η +

cλR(2)

24

)
=

1

πλ

1−

√
λc(2πµ)2 cosh2(τ/`)

12L(τ)2
+ η

 . (2.22)

In the second expression, we wrote this in terms of L and the period µ of the circle, which

is related to the particle source mass m above as in (2.18).

It is interesting to translate µ to field theory language, as reviewed e.g. in [41]. The

particle states with mass sourcing a deficit angle (2.18) correspond to dimension

L0 = L̃0 =
c

12
µ(1− µ) (2.23)

and ADM mass `M = L0 + L̃0 + c/12.

In the appendix, we collect other gravity-side relations relevant for characterizing the

bulk geometry and stress-energy tensor. These may also be useful for a future study of

more general excitations. In section 3, we will derive the new term proportional to η − 1

in the flow equation (2.4), which arose from the positive bulk cosmological constant, by

defining a generalized flow involving both T T̄ and a relevant deformation.

6It is also possible to keep the boundary geometry completely fixed, as we discuss briefly below in

section 3.4 in the context of more general excitations of the system.
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2.4 Luminality of the perturbations

Let us next explore the speed of propagation of ‘boundary graviton’ perturbations in our

bulk-dS3 warped throat. This is an interesting issue at the level of a single warped throat

with the Dirichlet cutoff, the building block for the dS/dS correspondence that we are

formulating in this work. However, we note that once the throats join to produce the full

(two-throat) dS3 system, we will not have these boundary modes.

We will follow the steps derived in [42] for the AdS3 case, applying it to our system with

Dirichlet boundary conditions at the cutoff surface w = wc in (2.17). There is a substantial

difference between the bulk AdS and bulk dS cases: as noted above, the particles in dS3 do

not introduce a black hole horizon. In [42] it was the emblackening factor of the BTZ black

hole that led to superluminal perturbations of boundary gravitons, matching those that

had been identified in the T T̄ deformation on a cylinder, as reviewed in [20, 24]. As we

will see shortly, the analogous modes in our system are not superluminal, simply because

of this difference between particle states and black holes.7

We start from the form (A.8) of the metric, perturbing around the fiducial solu-

tion (2.17) with g = sin(w/`), r = ` cosh(τ/`) sin(w/`). Specifically, we introduce small

perturbations of the cutoff surface: wc → wc + δw(φ, τ), requiring them to preserve the

curvature of the metric as required by the Dirichlet problem at our boundary. This is

equivalent to the original Dirichlet problem.8 We could have started with a metric pertur-

bation in the bulk which vanishes at the boundary. Performing a coordinate transformation

which removes the perturbation in the bulk will generally not vanish at the boundary. This

surviving mode is δw(τ, φ). Such a procedure will automatically preserve the curvature in-

variant R(2) at the boundary. Thus, in order to capture the correct deformations we must

impose the condition δR(2) = 0.

Let us start from the metric in the form given in the appendix, equation (A.8). With

this perturbation, the induced metric on the boundary becomes (at the linearized level)

ds22 → −g2
(

1 + 2
∂wg

g
δw

)
dτ2 + r2

(
1 + 2

∂wr

r
δw

)
dφ2 ' e2δw(∂wr/r)|wcds22 (2.24)

where we used the fact that ∂wg/g = ∂wr/r = cos(w/`)
` sin(w/`) .

Under a Weyl transformation gµν → e2ωgµν , the scalar curvature transforms as R(2) →
R(2)(1− 2ω)− 2∇2ω. Setting this equal to the original scalar curvature implies

∇2ω +R(2)ω = 0 , ω = δw
cos(w/`)

` sin(w/`)
. (2.25)

For a generic value of wc, this is an equation for a negative mass-squared scalar on the

(tall) de Sitter spacetime. It is not acausal, but apparently does indicate a Hubble scale

instability. Interestingly, when we take wc = π`/2, the most ultraviolet slice of the dS/dS

7One can also think about the problem in terms of signals sent through the bulk versus those staying

on the boundary. The dS2 boundary plays a positive role in that signals sent into the bulk take longer

compared to the cylinder case to reach the boundary, if they do at all. We thank XiaoLiang Qi and Juan

Maldacena for discussions of this point.
8We thank Mukund Rangamani for discussions of this point.
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correspondence, the coefficient cos(w/`)
` sin(w/`) vanishes, relegating the question to higher orders.

In any case, we see here that the bulk dS case lacks the superluminal boundary gravitons

that appeared in the original examples (for one sign of λ in those cases). Again, this makes

sense given the absence of a black hole horizon in our case.

One could go further and analyze the action for this perturbation. However, our

analysis in this paper is classical (large-c in the d-dimensional dual), and as mentioned

above the joining of the two throats to obtain the full dS3 system will not contain these

modes. For these reasons, we will defer additional discussion of boundary conditions to

future work on the joined system.

2.5 Reconstructing the bulk geometry

As a final remark in our analysis of the gravity side, we point out that the flow equation

for the quasi-local stress tensor gives a way to reconstruct the bulk geometry. Let us write

the bulk metric in terms of a warp factor A(w),

ds2 = dw2 + gij(w, x) dxidxj = dw2 + e2A(w)ĝij(x) dxidxj , (2.26)

with ĝij a constant curvature metric independent of w. At a radial position w = wc, the

stress tensor (2.3) becomes

Tij =
1

8πG`
(1− `∂wA) gij . (2.27)

On the other hand, the solution (2.11) to the flow equation gives

Tij =
1

8πG`

(
1−

√
e−2A(w) + η

)
gij , (2.28)

where for simplicity we take the curvature of gij to be

R(2) =
2

`2
e−2A(w) . (2.29)

This corresponds to a metric ĝij of scalar curvature 2/`2.

Combining both equations gives a differential equation for the warp factor,

(∂wA)2 − e−2A(w) − η

`2
= 0 , (2.30)

whose solution

e2A(w) =

(
1
√
η

sinh

(
√
η
w

`

))2

(2.31)

reproduces the bulk (A)dS geometry for η = ±1. More general solutions are discussed in

appendix A.2. In the next section we will derive the trace flow equation directly in the 2d

dual; a relation like (2.28) allows then to reconstruct the bulk geometry directly in terms

of field-theoretic quantities.
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3 T T̄ and Λ2 flow in the 2d dual

Now that we know what our bulk theory does in the class of states discussed in section 2

(for each throat), let us analyze the T T̄ trajectory directly on the two-dimensional dual.

The factorization of T T̄ was proved at finite central charge in [16], when the space is a

plane or a cylinder. It is not clear yet if this holds in more general curved spaces, and

understanding this would be an interesting direction. Here we will focus on the large-c

limit, where correlators automatically factorize.

3.1 Defining the 2d trajectory

Let us consider a 2d theory living on a spacetime whose metric is the induced metric on

the boundary at w = wc. In our system, this is is the spacetime (2.20). It depends on

the mass sector, related to the parameter µ, that we wish to reconstruct. We would like

to define a trajectory in the space of 2d theories, generalizing [17, 18], which captures the

new term in the trace flow equation (2.9) arising on the gravity side.

In the recent work [25], the trace flow equation (2.9) with η = 1 was simply treated

as a defining equation of the trajectory in the space of 2d theories. We will shortly obtain

this relation via a step by step specification of the trajectory in the space of couplings in

the 2d theory. One can then apply it on homogeneous states to solve algebraically for T φφ
as described above in (2.21), leading to dressed stress-energy (2.22) for the vacuum and

simple particle excitations.

Before proceeding to our generalization, let us first explain how this algebraic manip-

ulation fits with the original dressed energy levels in [17, 18], working for simplicity at zero

spatial momentum. Applying the trace flow equation in homogeneous states, we can solve

for the expectation value 〈T φφ 〉 in terms of 〈T ττ 〉 (turning off the curvature and η − 1 terms

in (2.21)). Then identifying 〈T φφ 〉 with the pressure and solving the resulting differential

equation we recover the standard result for the dressed energy levels:

TrT = T ττ + T φφ = −4πλT T̄ ⇒ 〈T φφ 〉 =
〈T ττ 〉

πλ〈T ττ 〉 − 1

〈T φφ 〉 = −dE/dL

〈T ττ 〉 = −E
L

=
1

πλ

(
1−

√
1 + 2πλ〈T ττ (0)〉

)
(3.1)

where 〈T ττ (0)〉 = −E(0)/L is (minus) the undressed energy density. Note that for the case

of the deformed CFT one can use the trace flow equation to define the trajectory, instead

of the operator relation used in the original works. Consequently, on the cylinder these

approaches are equivalent.

We will now apply the same strategy as in [17, 18] to the theory on dS2, which in

Euclidean signature becomes a two-sphere

ds2 = r2(dθ2 + sin2 θdφ2) . (3.2)

– 10 –



J
H
E
P
0
3
(
2
0
1
9
)
0
8
5

We start with the pure T T̄ deformation which is expected to match the AdS3 bulk. Let

us start from a symmetric state, in which

〈T θθ 〉 = 〈T φφ 〉 =
1

2
〈TrT 〉 (3.3)

is independent of the position on the sphere. Then the T T̄ deformation gives, upon inte-

grating over the volume of the sphere,

∂

∂λ
logZ = −2π

∫
d2x
√
g 〈T T̄ 〉 = −8π2r2〈T T̄ 〉 . (3.4)

On the other hand,

r
∂

∂r
logZ = −

∫
d2x
√
g 〈TrT 〉 = −8πr2 〈T θθ 〉 . (3.5)

According to (2.6), for a symmetric state we also have

〈T T̄ 〉 = −1

4
〈T θθ 〉2 , (3.6)

where in this last step we used large-c factorization. We then differentiate (3.4) with respect

to r to get

− ∂

∂λ
8πr 〈T θθ 〉 =

∂

∂r

(
2π2r2 〈T θθ 〉2

)
, (3.7)

or if, to compare with the zero curvature case, we introduce E = −2πr 〈T θθ 〉,

4
∂

∂λ
E(r, λ) = E(r, λ)

∂

∂r
E(r, λ) . (3.8)

Interestingly, the energy on the equator of the sphere satisfies exactly the same “hydrody-

namic” equation, as the energy levels on the cylinder do, cf [17, 18]. In Lorentzian signature,

this becomes the neck of the dS2, where the Christoffel symbols vanish and stress-energy

conservation takes the same form as on the cylinder. If the value of energy is known for

λ = 0, (3.8) can be readily solved for a finite λ. In particular, if the undeformed theory is

conformal, the solution for 〈T θθ 〉 agrees with (2.14). Note that (3.8) applies equally well if

the undeformed theory is massive.

Let us now switch to the dS3 case. Clearly the deformation should be modified in some

way. As we already anticipated, there is another natural parameter in the 2d theory —

the cosmological constant Λ2. This term can enter nontrivially into the trajectory because

it contributes to the stress-energy tensor, which is recomputed at each step as we evolve

along the trajectory. Let us study its effect to see if this is enough to produce the new

contribution we derived on the gravity side in section 2, in particular the last term in (2.9)

with η = 1 for the AdS3 case and η = −1 for the dS3 case. We need a one-dimensional

trajectory in the space of 2d theories, so dimensional analysis implies that Λ2 should be

proportional to 1/λ. In our conventions, as we will see shortly, the needed dimensionless

coefficient is such that under the infinitesimal changes in λ

dΛ2 =
(1− η)dλ

2πλ2
=

dλ

πλ2
. (3.9)
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Then (3.4) gets modified in the following way:

∂

∂λ
logZ = −2π

∫
d2x
√
g 〈T T̄ 〉+

1

πλ2

∫
d2x
√
g = −8π2r2 〈T T̄ 〉 +

4r2

λ2
. (3.10)

Again differentiating with respect to r leads to

4
∂

∂λ
E(r, λ) = E(r, λ)

∂

∂r
E(r, λ) +

8r

λ2
. (3.11)

It is immediate to check that now (2.16) is a solution. The above equations can be easily

generalized to the case of tall dS2, reproducing (2.22) for any µ. Below and in figure 1 we

will specify the boundary conditions needed for our reconstruction of the dS3/dS2µ warped

throat from a seed CFT.

We conclude that for our symmetric states the (A)dS3 quasi-local stress tensor is

reproduced by the following trajectory in the space of large-N 2d theories:

δL = δλ

{
2πT T̄ − 1− η

2πλ2

}
. (3.12)

where L is the Lagrangian. Schematically, the action S =
∫
L is related to W = −i log(Z)

by an integral transform

eiW [J ] =

∫
DMeiS[M ]+i

∫
JO (3.13)

in terms of the matter M , sources J and operators O of the theory. Let us take O to be the

stress-energy tensor, whose source is the change in the boundary metric δgµν . Considering

a semiclassical large-c saddle point, we have

W ' Ssaddle +

∫
δgµνT

µν
saddle large c (3.14)

in terms of the action evaluated at the saddle (which could be written in terms of the

appropriate ‘master fields’, captured by the classical physics on the gravity side in a holo-

graphic theory [43]). Each gravity-side geometry that we wish to reproduce, at a given

point along the trajectory of theories, corresponds to such a large-c saddle point, with both

the operator and the source taking definite values. When we define our trajectory in the

space of 2d theories to reproduce these configurations, we could in principle do so either in

terms of either W [gµν ] or S[Tµν ] =
∫
L. We expressed this in terms of the action in (3.12).

Since bulk energy levels, and hence energy levels of a deformed CFT, satisfy the trace-

flow equation (2.9) have derived this equation for these configurations from the deformation

of the action. Previously it was derived on the 3d gravity side. Note that from the 2d

point of view (2.9) includes the conformal anomaly and it was not a priori obvious that

the anomaly contribution would automatically remain the same all along a trajectory that

deviates from a pure CFT.9,10 Instead it could have been necessary to tune the 2d trajectory

9See [26] for some comments on this point as well as the relation between W and the effective action.
10The method of local Weyl rescaling that seems appropriate to argue for this statement (see, for exam-

ple, [44, 45] and references therein) appears to contain extra subtleties due to the irrelevance of the T T̄

deformation. We thank Lorenzo Di Pietro, Matthijs Hogervorst and Shota Komatsu for discussions related

to this point.
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in order to maintain this, via a Wess-Zumino term. We just showed that, at least in large-N

theories on homogeneous states, this relation indeed holds.11

At large c, we may consider less symmetric excitations which should match those of

the quasilocal stress energy tensor computed via general relativity on the gravity side. For

non-symmetric states we may follow essentially the same steps. Instead of the relation

between T φφ and T ττ enforced by symmetry, we can now use the “pressure” relation,

〈T φφ 〉 =
d(L〈T ττ 〉)

dL
. (3.15)

The variation with respect to the global dS2 circle size L is independent of the curvature

R(2) since we may change the periodicity of the φ direction independently of the curva-

ture.12 The differential equation for the energies will now become a partial differential

equation in three variables, which is harder to manage. It may be more straightforward

to use the trace-flow relation (2.21) in this case, which we have not proven in general, but

which is now very plausible since the anomaly contribution is likely independent of the de-

tails of the state. Applying it along with the preasure relation gives a differential equation

〈T φφ 〉 =
d(L 〈T ττ 〉)

dL
=
〈T ττ 〉+ cR

(2)

24π + η−1
πλ

πλ〈T ττ 〉 − 1
, (3.16)

which has solutions

〈T ττ 〉 =
1

πλ

(
1−

√
η + c

R(2)λ

24
− C1λ

L2

)
. (3.17)

We note that this equation admits more general solutions than the vacuum configurations

we obtained as the ground state in each tall dS sector above (2.22); those followed from

a second algebraic equation 〈Tµν〉 = αgµν which does not apply in general. It will be an

interesting future direction to analyze in detail the bulk dual of more general states than

the vacuum states in each sector, along the lines of section 3.4.

Finally let us give the boundary conditions on our trajectories, to complete our deriva-

tion of the bulk geometry. We do this using the following procedure — see figure 1. We

start from a seed CFT, which we will describe in terms of a Lagrangian for simplicity.

We then turn on T T̄ and follow the trajectory [25] dual to AdS3 cut off on a dS2 (or tall

dS2) slice. This AdS/dS trajectory satisfies the trace flow equation with η = 1. At the

end of this trajectory, cλ/r2 → ∞, the corresponding radial cutoff on the gravity side is

deep in the infrared region (wc → 0), where it is indistinguishable from a dS/dS throat

with a vanishingly small cutoff scale. Below in section 3.3 we will comment further on the

physics of this region with r < `. We take that as the seed for the new trajectory which

we formulated above in (3.12), which generates the trace flow equation with η = −1. The

11In this regard it is interesting to note a difference between this d+ 1 = 3/d = 2 duality and the higher-

dimensional generalization to d + 1 = 4, d = 3, the case of phenomenological interest. Following [26] we

would not have the anomaly, but would have an extra contribution to Tr T with a shift in Tµν proportional

to the Einstein tensor of the 3d boundary. For our dS3 boundary, this in turn is proportional to the metric,

and would contribute a term similar to the one parameterized by bCT above in (2.3).
12We saw this above in our family of tall de Sitter solutions parameterized by the φ period 2πµ.
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CFT

 -

c/r 2 >>1

dS/dS warped throat
Figure 1. The reconstruction of the dS/dS throat from a seed CFT proceeds via two joined

trajectories as described in the text. The first trajectory (on the left) evolves the system from a

pure CFT, via a sequence of cutoff AdS/dS systems, to the limit where this cutoff scale goes to

zero, indicated by the point at the top of the figure. That point is the start of a new trajectory

incorporating Λ2 ∝ η−1, with increasing cutoff scale, culminating in the full dS/dS warped throat.

new ingredient we introduced is an incremental shift of the 2d cosmological constant Λ2 at

each step in the trajectory. A shift of the vacuum energy by itself would not have an effect

in quantum field theory, but it enters nontrivially in the T T̄ trajectory: Λ2 contributes to

the stress-energy tensor which must be recalculated at each step, appearing nonlinearly in

the T T̄ contribution to the trajectory. Following that trajectory step by step gives a dual

construction of a sequence of radially cut off dS3/dS2 warped throats, ultimately reaching

its endpoint at wc = ` π/2. We would like to point out some similarities between this

construction and the construction of [32]. There it was shown that a single-trace T T̄ -like

deformation of the boundary CFT produces the spacetime that interpolates between AdS3
in the IR and a linear dilaton spacetime in the UV.

Let us finally comment on the sphere partition function of the 2d theory. Once we

know the stress tensor it is straightforward to integrate (3.5) to obtain it as in [25]. One

subtlety, however, is that integration introduces an integration constant which is related to

the cutoff dependence of the sphere partition function. In AdS we may fix this dependence

by matching in the r2/λ→∞ limit of the CFT partition function,

logZCFT(r) =
c

3
log

r

ε
+ . . . . (3.18)

The result is then

logZAdS(r) = −4r2

λ

(
1−

√
λc

12r2
+ 1

)
+
c

3
log

[
r

2ε

(
1 +

√
λc

12r2
+ 1

)]
. (3.19)

We note that this prescription and the cutoff dependence should be taken with care for a

number of reasons. First, there is an energy cutoff naturally present in the T T̄ deformed
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theories for the sign of the coupling we consider, and there is a radial cutoff on the gravity

side in our construction of the quasilocal stress tensor. See section 3.3 for more discussion

of these issues.

At a technical level, our expression (3.19) differs from eq. (2.4) of [25], which implicitly

chose ε ∼
√
λc ∼ ` from the start via a boundary condition at λ/r2 =∞. With ε tied to λ

from the start, the partition function would not satisfy the T T̄ equation (3.4) due to the

extra contributions to the derivative with respect to λ. Instead, we keep ε independent of

λ in deriving the differential equation above; it can later be fixed to a particular value.

In any case, in this work we focus on ε-independent quantities. One motivation for that

is the evidence found in [19, 21, 38] that the T T̄ -deformed theory is not a local quantum

field theory, so the corresponding divergences may not enter into its observables in the

usual way.

For the dS case, and with the integration constant determined by matching to (3.19)

at r2/λ→ 0, we get

logZdS(r) =
c

3
log

√
λc/12

2ε
− 4r2

λ

(
1−

√
λc

12r2
− 1

)
+
c

3
arctan

 1√
λc

12r2
− 1

 . (3.20)

3.2 Relations among parameters and large-c physics

Having defined the 2d trajectory, let us now collect our dictionary for parameters and rela-

tions between them. Although we initially kept track of bCT on the gravity side, we will set

it to 1 here as in the previous section. On the gravity side, we then have four continuous pa-

rameters: G, ` = `(A)dS3
, wc, µ. We also have the sign −η of the bulk cosmological constant.

On the QFT side, we have c,Λ2, λ, the curvature radius r, and the size of the circle L

at τ = 0. There is one more parameter here, but as we discussed in the previous subsection

our flow is obtained by maintaining one relation between them at each step, Λ2 ∝ 1/λ.

The dictionary between the two sides and the one relation is

c =
3`

2G

λ = 8G`

r = ` sin
(wc
`

)
L = 2πµ` sin

(wc
`

)
⇒ Λ2 = − 1

πλ
= − c

12π

1

r2
(wc = `π/2) (3.21)

where the last relation was applied for wc at the UV slice wc → `π/2.

We note that (for general wc) λ is of order 1/c while Λ2 is of order c. This is why

the relevant deformation within our flow and its interplay with the T T̄ deformation is

significant at the level of our large-c analysis. In the bulk AdS analysis of [20, 24, 25], the

leading effect of the λT T̄ deformation was to cut off the throat, leaving the bulk AdS3
geometry intact up to 1/c corrections. In that context, the T T̄ deformation plays a leading
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role for the energy levels since BTZ black holes are heavy objects with energy of order c.

In our case, even for the ground state at m = 0, the throat is modified compared to the

AdS case, and this is reflected in the order-c contribution Λ2. In the configurations we

have studied, all terms in the trace flow equation (2.9) are of order c.

3.3 Comments on energy scales and the regime r < `

The boundary condition for the part of our trajectory that builds up the dS/dS throat

(summarized in figure 1) occurs in the regime r2

cλ ∼
r2

`2
� 1 where r is the curvature radius

of our 2d spacetime, equal to the radial position of the boundary on the gravity side. Here

we comment on the physics contained in the system as a function of r/`, including the

small-radius regime.

In the AdS/CFT dictionary, one expects that c degrees of freedom are required to fully

reconstruct the physics in a region of size ` [46], and capturing the physics below this scale

may require fine details of the dual field theory. In the bulk dS3 case, with the simple

particle states that introduce a deficit angle, this may benefit from generalizing the recent

progress [47–49] for particle states in AdS3. In this work we have focused on a limited class

of low-lying stress-energy configurations, described in terms of hydrodynamic variables,

which are not sensitive to all of the microphysical details. In this section we review more

generally the energy scales of various states that fit inside a radial cutoff at r (related to a

cutoff on total energy entering into the recent entropy calculations [11]).

Starting with the bulk AdS case, we have BTZ black holes for r > `. These have mass

MBTZ ∼
r2BH
G`2

in terms of the horizon radius rBH , such that with our radial cutoff these are

bounded by MBTZ <
r2

G`2
. We can write this as a bound

EBTZ <
c

`

(r
`

)2
, r > `. (3.22)

In both the bulk AdS and bulk dS case, for r < ` we have no black hole horizons, but we

do have particle states which source a deficit angle as in (2.18). In this regime, the energy

is bounded by 1/G,

Eparticle ≤
c

`
, r < ` (3.23)

In both regimes, there are many types of excitations that fit below this cutoff. These

are perhaps analogous to near-horizon excitations studied in the context of holographic

hydrodynamics [50]. For example a test particle in (A)dS3 of proper energy Epr � 1/G

has redshifted energy

E =
√
−g00Epr <

1

`
(rEpr) (3.24)

where the inequality in the last expression represents the radial cutoff. For a particle to

fit in a region of size smaller than r, it needs proper energy at least of order 1/r. The

configurations we have focused on in this work fit below the cutoff: they are homogeneous,

vacuum configurations of the stress-energy in each sector parameterized by µ (2.20).

Let us finally compare this energy cutoff to the scale of the dynamical cutoff on bare

energies that arises from the dressing by T T̄ . Working with the original cylinder case,
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from (3.1), we have

E(0) <
L

2πλ
∼ c

`
· r
`

(3.25)

For any value of r/`, this is below the cutoff (3.22) or (3.23).

3.4 Comment on more general configurations

We have engineered a trajectory in the space of 2d theories which produces the cutoff dS2
and tall dS2µ configurations that we studied on the gravity side, realizing our initial goal

of reconstructing the bulk de Sitter geometry via a well-defined holographic dual.

As we noted above, the solutions (3.17) to our differential equation for 〈T ττ 〉 go beyond

the vacuum solutions (2.22) in each µ sector. The system can be excited in a much wider

variety of ways, well beyond the homogenous configurations treated in (2.22) and (3.17).

Let us briefly formulate a conjecture for these and their dual descriptions.

On the gravity side, we can introduce a boundary which is fixed by a Dirichlet condition

to be dS2µ for some µ, and excite the system with some configuration of sources. In some

cases it may be natural to choose µ according to the rest mass of a collection of sources,

but in any case it can be fixed. Having fixed this boundary condition and regularity in

the interior, one can in principle determine the solution to the bulk field equations and

calculate the quasilocal stress-energy tensor. The conjecture is that the dual 2d theory we

formulated in this section lives on dS2µ, and contains excited states whose stress-energy

tensor is given by the quasilocal stress-energy tensor of the gravity side.

4 Entanglement entropy

The entanglement entropy (EE) provides an interesting probe of the dynamics, with non-

trivial implications in both sides of the duality. In this section we will compute the EE in

the presence of the field theoretic trajectories studied in the preceding sections. The recent

work [11] calculated the entanglement and Renyi entropies of the density matrix for one of

the two matter sectors in the dS/dS correspondence, finding a flat entanglement spectrum

at large c. In the present work, we are formulating each matter sector separately (as a cut

off warped throat with positive bulk cosmological constant).

In the semiclassical regime of the bulk gravity side, the EE is captured by the Ryu-

Takayanagi formula [51, 52]. On the other hand, in general it is very hard to compute the

EE directly in the field theory dual. However, it was found in [25] that the two-dimensional

calculation can be carried out explicitly when one considers antipodal points in the dS2
spacetime. We will then restrict to this case, and we will compare the results from both

sides of the duality, finding a nontrivial agreement.

4.1 Holographic entanglement entropy

We choose a surface at time τ = 0, for which the gravity side metric reads

ds2 = dw2 + `2 sin(h)2
w

`
dφ2 . (4.1)
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The circle runs between φ ∈ (−π, π), and we wish to calculate the EE for an interval

specified by antipodal points in this circle, e.g. φ ∈ (−π/2, π/2), working in the Euclidean

vacuum. The Dirichlet wall is taken at w = wc, and the corresponding radius of the circle is

r = ` sin(h)
wc
`
. (4.2)

The minimal surface is described by some curve φ = φ(w) anchored at wc, obtained

by extremizing the area

A = 2

∫ wc

wt

dw

√
1 + `2 sin(h)2

w

`

(
dφ

dw

)2

. (4.3)

Here wt is the turning point of the curve, where dφ/dw → ∞. For the special case of

antipodal points, it is not hard to see that the solution is wt = 0, dφ/dw = 0. By symmetry,

the solution is simply a straight line along w, connecting the two end-points of the interval.

This is similar to what happens in the Rindler case (a semi-infinite interval).

The result for the EE is then

S =
A

4G
=
wc
2G

. (4.4)

From (4.2), this can be rewritten in terms of the circle radius:

S(r) =
l

2G
arcsin(h)

r

`
. (4.5)

For comparison with the 2d dual, let us write this in terms of field theory parameters,

S(r) =
c

3
arcsin(h)

r√
λc/12

. (4.6)

4.2 Entanglement entropy in the dS2 dual: DS/dS/dS

Let us now focus on the EE for the 2d theory on dS2 at τ = 0, and with an interval defined

by antipodal points of the de Sitter circle. The radius of the circle is denoted by r. The

key simplification in this case, noted in [25], is that there is a geometric symmetry that

enables us to perform the replica trick for arbitrary non-integer n. In this section we apply

the method [25] to compute a derivative of the entanglement entropy, generalizing to the

dS/dS case.

The partition function on the branched cover is given by13

d

dn
logZn

∣∣∣
n=1

= −
∫
d2x
√
g 〈T φ̃

φ̃
〉 . (4.7)

where φ̃ is the Euclidean rotation of the static time coordinate. Here we consider a static

observer on a worldline in the center of our interval, i.e. at φ = 0. Their thermal entropy in

the Euclidean vacuum corresponds to tracing out the region outside their horizon, which

is the region outside of the interval.

13We thank H. Casini for discussions on these aspects.
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The EE then becomes

S(r) =

(
1− n d

dn

)
logZn

∣∣∣
n=1

=

(
1− r

2

d

dr

)
logZ(r) , (4.8)

where in the final step we used 〈T φ̃
φ̃
〉 = 1

2〈TrT 〉 for the dS vacuum, together with (3.5).

Since the entanglement entropy is divergent in relativistic quantum field theory, and

there are indications that the T T̄ deformed theory does not have arbitrary local observ-

ables [19, 21], we will focus on the cutoff-independent quantity

C(r) = r
dS
dr

, (4.9)

which plays the role of a running C-function in RG flows [53]. Using (4.8) and

r
d logZ

dr
= −

∫
d2x
√
g 〈T ii 〉 = −8r2

λ

(
1−

√
λc

12r2
+ η

)
, (4.10)

(where we used the ground-state expectation value 〈Tij〉 = αgij with α given in sec-

tion 2.2), yields

C(r) =
c

3

(
λc

12r2
+ η

)−1/2
. (4.11)

This matches precisely the running C-function computed from the gravity result (4.6). The

EE then provides a nontrivial consistency check of the conjectured duality in the presence

of the T T̄ and Λ2 flows.

It is interesting to compare the AdS and dS results in order to understand the effect

of Λ2. This is shown in figure 2 for different values of the dS2 radius. Both results are

approximately the same for small r; this is a consequence of our matching procedure in

the IR region. On the other hand, as r increases, Λ2 leads to an increase in the C-function

compared to the AdS3 result. In particular, C(r) diverges at the largest allowed radius

r =
√
λc/12 = `, the UV slice of dS3. Instead, as expected, in the AdS3 dual C(r)→ c/3

as r2/λ→∞.

We should stress that the entanglement entropy analyzed here can differ in qualitative

ways from the entanglement for a fixed interval in Minkowski space. This is because we

have put the theory on a curved space, and also finite size effects are largest for our choice

of interval size. In particular, we note that the running C-function does not satisfy the

strong subadditive inequality C ′(r) ≤ 0 that holds in Minkowski space [53]. It would be

interesting to try to compute the EE on a fixed interval in Minkowski space, for a CFT

deformed by T T̄ and/or Λ2.

5 Conclusions and questions

In this work, we derived a trajectory in the space of quantum field theories which reproduces

the gravity-side geometry of the dS/dS correspondence, including a sequence of massive

particle excitations and the entanglement entropy. We worked at large c and focused on
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Figure 2. Function C(r)/c for different dS2 radii r. The black line corresponds to AdS3, and the

blue line is for dS3. In the second case, C(r) diverges at r =
√
λc/12.

the universal gravitational sector, but expect similar methods to apply to incorporate addi-

tional bulk matter [26, 27, 34–36]. Starting from any seed CFT, our trajectory combining

T T̄ and Λ2 deformations produces a stress-energy tensor that matches the quasilocal stress-

energy of the bulk dS3 theory. Although the T T̄ coefficient is of order 1/c, and left the

infrared throat intact in the AdS/CFT version [20], the Λ2 deformation is of order c, lead-

ing to an order one effect on the throat geometry even below the cutoff scale in our case.

Our bulk dS case also has favorable properties such as causal propagation of perturbations

around back-reacted particle states, simply because these do not have black hole horizons.

It will be interesting to consider the effect of bulk matter fields on the dual trajectory,

a point stressed in [24] in the bulk AdS case; see also [26, 27]. The agreement of the dressed

energies at the level of pure gravity in the bulk, now in dS as well as AdS, seems remarkable

in itself. The dS case provides additional motivation for formulating the bulk matter field

generalization in both cases. In this regard, we recall the earlier holographic RG study

in [10] which showed that the bulk dS and bulk AdS cases share an important property:

single-trace operators do not flow, and higher-trace operators are determined in terms of

lower-trace ones. The T T̄ deformation and our generalization here do not constitute an

ordinary RG flow, but rather they specify a trajectory in the space of couplings. So far,

both the holographic RG including bulk matter and gravity, as well as the pure gravity

sector of the generalized T T̄ deformation, readily generalize from the bulk AdS to bulk

dS cases. We suspect that the same will be true for the generalization of T T̄ needed to

capture bulk matter fields; in any case this will be very interesting to investigate.

A related question is the role of string theory, even at the classical level, for which

target space boundaries are not arbitrary. In this regard the string-theoretic treatment

of the multiple trace deformations introduced in [54] may play a role in the deformation

of our seed CFT, since a Dirichlet condition on a finite radial slice may be related to a

non-local boundary condition at the AdS boundary [42, 55].14

14We thank M. Rangamani and J. Maldacena for discussions of this.
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This raises numerous additional questions for further research. In [21, 38], the pure T T̄

deformation on 2d spacetimes with zero curvature was shown to match a version of Jackiw-

Teitelboim gravity in detail; other interesting works relating T T̄ to metric fluctuations

appeared in [22, 23]. It would be very interesting to understand if there is a similar

statement in our case. In our analysis, we found it most straightforward to work with the

2d theory on the ‘tall de Sitter’ spacetime (2.20). Such a spacetime arises in the presence

of excitations of de Sitter via the constraints of gravity, ultimately closing up its neck if

too much energy is introduced. We have not investigated the connection to 2d gravity in

this paper, but it may line up with the simple role that tall dS played in our analysis here.

The T T̄ deformation at large c may also apply to other ways of organizing de Sitter

holography [1, 56]. Within a static patch, the simplest slicing of the geometry is by cylin-

ders, and it would be interesting to consider cutting that spacetime off at different radial

positions, computing the quasilocal stress tensor, and engineering a trajectory in the space

of 2d theories on flat spacetime which reproduces it.

Finite c will be important to understand. It is at finite c that some of the basic

effects relevant to de Sitter physics such as quantization of fluxes and metastability arise.

The original analysis of the T T̄ deformation in [16–18] did not require or involve large

c, but it only applies directly for flat 2d spacetime. It will be interesting to see how

far the isometries of dS2 go toward factorization of T T̄ correlators. On the other hand,

complications that may arise at finite c could relate to the ultimate metastability of de

Sitter. In some subset of cases, in fact, the de Sitter we build up could have perturbative

instabilities, perhaps related to relevant deformations of the seed CFT. This will also be

interesting to understand from a model-building perspective.

In this work we focused on a single warped throat (among the pair of them in

dS/dS (1.1)), generalizing the cutoff AdS throat of [20]. In particular, this involved a

single CFT among the pair of identical ones that enter in the full dual of dS. It would be

very interesting to analyze the overall T T̄ deformation, perhaps combined with relevant

directions as we did here, of the pair of identical matter sectors in the dS/dS correspon-

dence. That by itself introduces interactions between the two sectors, a key feature of the

combined system [4, 5, 11]. In any case, in this work we have seen how to produce the

warped throat building blocks of the dS/dS correspondence, concretely on the field theory

side, via a generalization of the T T̄ deformation.
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A GR side relations

In this appendix we collect some useful formulas from gravity-side GR.

A.1 Stress tensor flow equation

We work in Lorentzian (−+ +) signature, and gauge-fix the metric to the form

ds2 = dw2 + gij(w, x) dxidxj . (A.1)

The bulk Einstein equations for the action (2.1) are

Eab = Rab −
1

2
δab R− δab

η

`2
= 0 . (A.2)

In components,

Eww =
1

2
(K2 −KijKij)−

1

2
R(2) − η

`2
= 0

Ewj = ∇i(Kij − gijK) = 0 (A.3)

Eij = −∂w(Ki
j − δijK)−KKi

j +
1

2
(KmnKmn +K2)− δij

η

`2
= 0 ,

where Kij = 1
2∂wgij is the extrinsic curvature at fixed w, and R(2) is the Ricci scalar of gij .

As in [24], let us rewrite the constraint equation Eww = 0 in terms of the quasi-local

stress tensor (2.3). We have

T ijTij − (T ii )
2 =

1

(8πG)2

(
KijKij −K2 + 2

bCT

`
K − 2

(
bCT

`

)2
)
, (A.4)

and from the trace of (2.3),

K = −8πGT ii + 2
bCT

`
. (A.5)

Replacing these relations into Eww = 0 yields

T ii = −4πG`

bCT
(T ijTij − (T ii )

2)− `

16πG bCT
R(2) −

η − b2CT

8πG` bCT
. (A.6)

In particular, the solution for the ground state is

α =
1

8πG`

(
bCT −

√
`2

r2
+ η

)
. (A.7)

Setting bCT = 1 we arrive to (2.4). We interpret this as an operator statement in the

bulk effective field theory, since we used the constraint equation but not the dynamical

bulk equations Eij = 0.
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A.2 Excited states and energy levels

In order to analyze excited states, we will consider a metric of the form

ds2 = dw2 + gij(x,w)dxidxj = dw2 − g(w)2dt2 + r(w, t)2dφ2, φ = φ+ 2πµ , (A.8)

which takes into account the time dependence, but for simplicity we work at zero momen-

tum in the φ direction. We will discuss in some more detail the algebraic approach followed

in the main text, and we will work out a differential equation for the energy on the gravity

side, generalizing the analyses in [20, 24].

The equations of motion are

Ett = 0 ⇒ ∂2wr(w, t)

r(w, t)
=

η

`2

Eφφ = 0 ⇒ ∂2wg(w)

g(w)
=

η

`2

Eww = 0 ⇒ ∂wg(w)

g(w)

∂wr(w, t)

r(w, t)
− 1

g(w)2
∂2t r(w, t)

r(w, t)
=

η

`2
, (A.9)

and the quasilocal stress-energy tensor (2.3) reads

Ktt = −gg′

Kφφ = r∂wr

K = gijKij =
g′

g
+
∂wr

r
(A.10)

Ttt = − g2

8πG`

(
1− `∂wr

r

)
Tφφ =

r2

8πG`

(
1− `g′

g

)
.

Let us focus on de Sitter, η = −1, and choose a constant curvature slicing, denoting

the curvature by

2
∂2t r(w, t)

r(w, t)
≡ 2

r20
, (A.11)

By solving the first two Einstein equations and plugging into the third, the solution is

found to be

g(w) =
`

r0
sin

(
w

`

)
, r(w, t) =

L0

2π
g(w)(et/r0 + αre

−t/r0) , (A.12)

where L0, αr are arbitrary constants.15 In particular, L0 is a parameter with units of length

that can be used to change the length of the circle

L(w, t) = 2πr(w, t) , (A.13)

while keeping the curvature radius r0 as well as `, fixed. This gives a deficit angle for φ.

15The case of vanishing curvature has to be solved separately, as the previous set of equations becomes

degenerate. The solutions for this case are AdS and dS sliced by flat space.
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The components of the stress tensor become

T tt = T φφ =
1

8πG`

(
1− 1

tan(wc` )

)
. (A.14)

Rewriting tan(wc/`) in (A.14) as a function of the Ricci scalar of the w = wc surface,

R(2) =
2

g(wc)2r20
(A.15)

obtains

T tt = T φφ =
1

8πG`

(
1−

√
1

2
`2R(2) − 1

)
. (A.16)

Therefore, (2.22) applies to the class of metrics (A.8). Note that if we vary the length of

the circle while keeping the other parameters fixed (i.e. we only vary L0), we have

E = −LT tt , ∂LE = −T tt = −T φφ , (A.17)

so in our curved slicing we retain the meaning of pressure, T φφ = −∂LE.

Finally, let us show how to extend the approach of [20, 24] to our case. Following [24]

(but using our standard convention for Tij as noted above) let us define

E = EL = L

∫
dφ
√
gφφu

iujTij (A.18)

where u is a timelike unit vector, for us simply ut = 1/g. Given (A.10), this becomes

E = − L2

8πG`

(
1− `∂wr

r

)
. (A.19)

The Einstein equation Ett = 0 is equivalent to

∂w

(
∂wr

r

)
+

(
∂wr

r

)2

− η

`2
= 0. (A.20)

Using (A.19) we can trade `∂wr/r for E , and use

`∂w

(
πλ

L2
E
)

+

(
1 +

πλ

L2
E
)2

= η . (A.21)

This can be processed further, by noting that the variation of w changes L and R(2),

while λ remains fixed. Then

∂wE =
∂wL

L
L∂LE +

∂wR(2)

R(2)
R(2)∂R(2)E . (A.22)

Here ∂wL/L can be rewritten in terms of E by use of (A.19); also, ∂wR(2)/R(2) = −2∂wg/g,

which can be traded by ∂wr/r andR(2) if we use the Eww = 0 equation in (A.9). The result is

`∂wE =

(
1 +

πλ

L2
E
)
L∂LE − 2

η + 1
2`

2R(2)

1 + πλ
L2 E

R(2)∂R(2)E . (A.23)
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Introducing the dimensionless combination y ≡ λ/L2 and plugging (A.23) into (A.22), we

arrive to

(1 + πy E) y∂yE +
η + 1

2`
2R(2)

1 + πy E
R(2)∂R(2)E +

π

2
y E2 =

1− η
2πy

. (A.24)

We conclude that in the case of nonzero curvature, the Einstein equation Ett = 0 gives

rise to a partial differential equation for the energy levels, which includes both L and

R(2) variations.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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