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Abstract.  

 

The magnetocaloric effect (MCE) in a magnetic system can be characterized by the estimation of 

the entropy change produced when a magnetic field is applied. The discrepancies between the 

results obtained with different methods have encouraged the scientific community to attempt to 

better understand the procedures associated with this calculation. Within this context, we present 

a study about how the presence of an inhomogeneous state influences the determination of the 

entropy change. To do that we chose a prototypical system used to study the phase separation 

phenomena in manganites.  We compared results obtained using different methods, and we 

propose an approach to correlate the results obtained following different procedures.   
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Introduction 

The magnetocaloric effect (MCE) is the temperature change produced in a magnetic system when 

an external magnetic field is applied.  Even though the effect was discovered in 1917 by Weiss and 

Picard[1],  the discovery of a large MCE at room temperature in Gd (SiGe) [2]  was a new starting 

point in the study of this effect, which triggered the development of solid state cooling devices 

based on the MCE.  Nowadays, the study of MCE has been extended to a large number of systems, 

namely Gd nanoparticles [3], As based compounds[4], Heusler alloys[5] [6] and manganites [7] 

[8]among others. 

The MCE can be quantified considering the magnetic entropy change (ΔS) produced by the 

application of the magnetic field. The entropy change can be obtained from both heat capacity 

and from magnetization measurements[9], using a Maxwell relation to calculate ΔS by numerical 

integration of a set of magnetization curves[10] . 

As the interest in the MCE expanded to a large number of compounds, the methods used to 

calculate it were carefully revised, especially in those cases where first order phase transitions 

were involved [11] [12] [13] [14] [15]  .  The correct application of the Maxwell relation requires a 

transition between different equilibrium states [16] [17], and its inappropriate use might lead to 

an overestimation of the entropy change. In order to avoid these undesired effects, some authors 

propose the use of alternative methods, based on geometric arguments [18] or the Clasius-

Clapeyron equation[19].  Another important aspect is the thermodynamic history of the sample.  

L. Caron et al [16] [20]analyzed the influence of the magnetization measurement protocol in the 

determination of the entropy change. 

Nowadays, despite the advances in the development of direct measurement techniques, the 

change of entropy is mostly obtained from indirect measurements.  Therefore, the study of these 

techniques is a crucial aspect towards the use of caloric materials for magnetic refrigeration.  
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From the large number of systems exhibiting MCE, the mixed valence manganese oxides 

(manganites) are one of the most promising ones, due to their unique ability to tune their 

magnetic, electric and structural properties by minor modifications in their compositions or in the 

synthesis parameters (grain size[21], oxygen stoichometry[22], etc).  The strong coupling between 

the different degrees of freedom in manganites is another aspect to take into account, since it is 

possible to induce a structural or electrical phase transition by the application of moderate 

external stimuli (i.e. magnetic field, hydrostatic pressure, radiation).  

The coexistence of regions with different magnetic, electrical and structural properties, the so 

called phase separation (PS) phenomenon, is one of the most widely studied topics in mixed 

valence manganese oxides.  Despite the enormous efforts made by  the scientific community, a 

complete explanation of the phase coexistence origin is still lacking.  The out-of-equilibrium nature 

of this inhomogeneous state leads to a rich variety of behaviors related to the competition 

between the different phases. Given this scenario La0.5Ca0.5MnO3 (LCMO) and La5/8-yPryCa3/8MnO3 

(LPCMO) are two prototypical systems where the PS phenomenon has been studied.  

In LCMO the PS has been studied using different techniques, such as magnetization[23], neutron 

powder diffraction[24], and many others[25] [26] [27] [28] [29].  In this system, the ferromagnetic 

metallic (FM) phase competes with the antiferromagnetic (AFM) phase and charge ordering (CO) 

one, leading to the presence of a dynamic behavior related to the system evolution towards the 

equilibrium state.  By controlling the grain size, it is possible to tune the fraction of the CO phase, 

through the frustration of the long range order, which favors the stabilization of the FM state [21], 

while remaining completely suppressed for grain sizes below 15nm[30]. 

In the case of LCMO, the system can be controlled by modifying the Pr/La proportion. In the rich Pr 

region of the phase diagram, the system is mainly dominated by an AFM and CO phase, while a 
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mainly FM state is observed in the La rich region.  For Pr content around 0.3, a strong PS region is 

present, and has been observed using different techniques[31] [32] [33]. For both systems, the 

MCE has been studied in order to understand the complex scenario involving the presence of PS in 

manganites, but also as an example of how the inadequate use of an indirect method can lead to 

the overestimation of the MCE [34] [35].  

Phan et al [36] analyze the evolution of the entropy change caused by the magnetic  field in 

different temperature ranges in LPCMO, revealing a strong correlation between the entropy 

change and the system’s dynamic behavior.  Similarly, Amirzadeh et al [37] studied the MCE in 

LCMO as a function of grain size, obtaining an anomalous behavior that could be associated with 

the presence of a magneto-structural transition.     

In this paper, we will discuss the influence of the PS state in the determination of the MCE in 

manganites. We will compare the results obtained using different methods (Maxwell’s relation 

and heat capacity) and analyze discrepancies y coincidences. Finally we will introduce the 

necessary modifications to correct the artifacts introduced when the Maxwell relation is applied 

on an out-of-equilibrium system.   

Methods 

Polycrystalline La0.625-yPryCa0.375MnO3 samples were synthesized using the Sol-gel technique and 

characterized by X-Ray diffraction to confirm composition, structure and to ensure good quality. 

Magnetic measurements were performed using the vibrating sample magnetometry technique, 

and heat capacity was measured using adiabatic relaxation in a Versalab system manufactured by 

Quantum Design.   In all the results presented in this paper, magnetization as a function of 

temperature was measured on cooling with the applied magnetic field and a cooling rate of 1 

K/min. in sweep mode.   Isothermal magnetization loops were measured after cooling the sample 
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without an applied magnetic field, starting at room temperature (the sample was always warmed 

up to room temperature between measurements).  

Heat capacity measurements were taken on cooling, with a variable cooling rate due to the 

characteristics of the adiabatic relaxation method, which requires temperature stability.  

Results  

The phase diagram for La0.625-yPryCa0.375MnO3 , schematized in Figure 1, can be divided in three 

regions, varying in Pr content (y). In the low y region (y < 0.20), the system presents a 

ferromagnetic metallic (FMM) behavior for temperatures below Tc ~ 230 K. The magnetization 

value obtained for the sample with y=0.20 (LPC-20) (fig 2a) is consistent with the complete 

alignment of the Mn ions.  In the magnetization as a function of magnetic field curves it is possible 

to see how the paramagnetic state give place to the FM state as the temperature decreases.  

On the opposite side, for y > 0.5 a charge order (CO) appears at Tco ~ 210 K on cooling.  Some 

degrees below, the Mn ions are anti-ferromagnetically ordered (AFM)[38]. The magnetization 

values obtained for the sample with y = 0.50 (LPC-50) (fig2 c) are one order of magnitude smaller 

than the ones observed for the ferromagnetic ordering.  The corresponding magnetization as a 

function of the magnetic field measurements confirms the presences of the mentioned phases.  

In the intermediate region, the system is characterized by the presence of the phase separation 

(PS) state.  In figure 2b, we present magnetization as a function of temperature for the sample 

with y = 0.32 (LPC-32)).  The room temperature state of the system is paramagnetic insulator, as 

can be seen in the linear behavior of the magnetization as a function of magnetic field curves. On 

cooling, the CO phase appears at Tco = 220 K and some degrees below, at Tc~200 K, the 

magnetization increases, indicating the formation of FM regions.  The presence of an 

Page 5 of 19 AUTHOR SUBMITTED MANUSCRIPT - MRX-109868.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



6 
 

inhomogeneous state can be observed in the mangentization as a function of magentic field 

curves, characterized by a two step increase. The system maintains an almost constant 

magnetization value, and down to T~100 K, where the magnetization values present an abrupt 

increase, reaching values consistent with a homogeneous FM state at lower temperatures.   In 

order to understand how the behavior described above is reflected in magnetocaloric properties, 

it is necessary to determine the entropy change.  Following the most commonly accepted 

approach, it is possible to estimate this change using numerical integration of magnetization loops 

at different temperatures as 

  




H

M dHHTMHTTM
T

S
0

´´),(´),(
1

                 (1) 

being M and H the magnetization and the applied magnetic field, respectivelly.  

In Figure 3 we show the temperature dependence of the entropy change obtained from the M (H) 

branch measured increasing H from 0 to 3 T.  In order to avoid the “peak effect” usually observed 

around first order transitions, we warmed up the samples above Curie temperature after each 

magnetization loop measurement [16].  

For LPC-20 and LPC-32 samples, H is strong enough to suppress the CO phase and leads to a 

homogeneous FM, in contrast to what happens with LPC-50, where the magnetic field does not 

convert the CO/AFM phase to FM.  

For LPC-20, the entropy displays a peak at 235 K with a value of 9 J/Kg. K, which is consistent with 

the PI to FM transition, and close to the values already reported [8]. The LPC-50 sample presents 

two peaks, one of 0.3 J/Kg K at 235 K, and another one which is three times smaller, at 170 K. The 
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first one is associated with the formation of the CO phase, and the second one is related to the 

AFM ordering[39].   

In the case of LPC-32, two peaks are observed at 110 K and 210 K with a value of 6 J/kg. K, in line 

with the behavior observed in a system with a similar composition[36] .  Both peaks are correlated 

with the transitions observed in M (T) at those temperatures.  

The heat capacity measured at constant magnetic field and pressure (CP) values enabled us to 

determine total entropy, and it is possible to determine the entropy change from two CP curves as  

),(
)0,(),(

),( 0

0

HTSTd
T

HTCHTC
HTS

T

T

PP
HC 




      (2) 

where  

Cp (T,H) is the heat capacity at constant pressure  

∆S (T0,H) is the difference in zero temperature entropies.  

In Figure 4 we show the entropy change ( HCS ) as a function of temperature for samples LPC-20, 

LPC-32 and LPC-50 obtained from heat capacity curves. In all the cases, the lowest temperature 

reached was 50K.   

For LPC-20 and LPC-50, )50( KSHC was considered as zero for different reasons.  In the first 

case, the sample is a soft FM and at 50 K the magnetic moments are completely aligned at zero 

field.  In the second case, the maximum applied H is not enough to modify the CO phase.   

In the case of LPC-32, the value of )50( KSHC was obtained comparing the entropy change in 

the high temperature paramagnetic phase with the value obtained from )(TSM . The result 
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KgKJKSHC /74.6)50(   is consistent with the values measured during a FM to CO 

transition in similar samples[40] [41]. 

Discussion 

We observe a good agreement between the results obtained using Maxwell’s relation and the 

heat capacity for samples LPC-20 and LPC-50.   

Comparing )(TSHC  and )(TSM  for LPC-32, we observed substantial differences below 210 K.  

These discrepancies could be related to the use of Maxwell´s relation under inadequate 

conditions, such as the coexistence of two different phases and possible hysteresis losses .  

In order to analyze the contribution of each of the abovementioned effects, we proposed the 

following modifications to the expression for S obtained using Maxwell´s relations.  

The first modification takes into account the inhomogeneous state observed in the intermediate 

region. When the entropy change is calculated for a certain temperature using the numerical 

integration for equation 1, the result obtained is mainly due to the magnetization change at the PI-

FM transition, but it is also affected by the change in the relative fraction of the FM phase (f) [13]. 

The temperature dependence of f can be extracted from the magnetization as a function of 

temperature, and it can be initially normalized with the magnetization of the entire Mn network 

aligned with the magnetic field.  

Then  

)(.)()( TfTSTS HMOD              (3) 

where  
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)(TSMOD  is the modified entropy change  

)(TSH is the entropy corresponding to the homogeneous system.
 

The other contribution to be considered is energy losses due to the presence of hysteresis in the 

M (H) curves, which can be related to the presence of defects such as grain boundary, tangles of 

dislocation, precipitates or inhomogeneities that hinder the advance of the domain walls, 

preventing the system from reaching the global energy state [42].  

To analyze the effect of the hysteresis, we will assume that the system’s equilibrium state will be a 

reversible curve named Man in Figure 5. The hysteretic magnetization curve can be separated in 

two different branches, one obtained when the magnetic field is increased (𝑀↑) and the other one 

corresponding to a decrease in the magnetic field (𝑀↓). For simplicity’s sake, we chose for MAN to 

be in the center of the hysteresis loop, so we that we could introduce a parameter (𝛿) to quantify 

the hysteresis as: 

𝑀↑ = 𝑀𝐴𝑁 − 𝛿   (4a) 

 𝑀↓ = 𝑀𝐴𝑁 + 𝛿   (4b) 

When the entropy change is calculated using Maxwell’s relation, it is usually calculated based on  

𝑀↑ curves. Then, it can be expressed as a function of MAN as: 

∆𝑆𝑀 =
1

∆𝑇
∫ [𝑀𝐴𝑁(𝐻`, 𝑇 + ∆𝑇) − 𝛿(𝐻`, 𝑇 + ∆𝑇) − 𝑀𝐴𝑁(𝐻`, 𝑇) + 𝛿(𝐻`, 𝑇)]

𝐻

0
𝑑𝐻`      (5) 

Introducing the magnetic work (W) as the area enclosed by 𝑀↑ and 𝑀↓ , it can be expressed in 

terms of 𝛿: 

𝑊(𝑇) = 2 ∫ 𝛿(𝐻`, 𝑇)
𝐻

0
𝑑𝐻`              (6) 
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The inset in Figure 5 shows W as a function of temperature for a maximum magnetic field of 3 T 

for LPC-32.  The magnetic work presents a very low value (almost zero) at temperatures above 225 

K, in the paramagnetic region at low magnetic signals. In the opposite sense, the low W values 

observed at low temperatures are consistent with the almost homogeneous low temperature 

ferromagnetic state. We observed high values in the intermediate temperature region, where the 

PS state is fully established; these high values could be associated with the nucleation of the CO 

phase, which competes with the FM phase, acting as pinning centers for the displacement of 

domain walls and the borders of the FM regions.  Once the FM energy is enough to overcome the 

CO phase, the whole sample converts abruptly to the FM phase and no more extra W is needed.   

The expression for the entropy change can be expressed as: 

∆𝑆𝑀 = ∆𝑆𝐴𝑁 −
1

2

𝜕𝑊

𝜕𝑇
                      (7) 

The expressions presented in equations 3 and 7 consider the entropy change calculated using 

Maxwell’s relation for the case of an inhomogeneous and hysteretic system. Note that in the case 

of a homogeneous system, the FM fraction is constant below the critical temperature and no 

hysteresis appears in the magnetization curves, making equations 3 and 7 turn into ∆𝑆𝐻. 

Taking into account the scenario described above, we will attempt to use it to explain the large 

difference between ∆𝑆 obtained from MR and from heat capacity measurements.  In that sense 

we collapsed the abovementioned contributions in the following expression:   

∆𝑆𝑀
∗  (𝑇𝑖) = ∆𝑆𝐻𝐶(𝑇) + 𝛼𝑓(𝑇) − 𝛽

𝜕𝑊

𝜕𝑇
 (𝑇)           (8) 

In order to find the maximum likelihood between ∆𝑆𝑀
∗  and ∆𝑆𝑀, we studied the statistical distance 

between both expressions.  The residual r at a given temperature 𝑇𝑖can be defined as 
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𝑟𝛼𝛽 (𝑇𝑖) = ∆𝑆𝐻𝐶(𝑇𝑖) + 𝛼𝑓(𝑇𝑖) − 𝛽
𝜕𝑊

𝜕𝑇
 (𝑇𝑖) − ∆𝑆𝑀(𝑇𝑖)         (9) 

The estimation of α and β can be obtained by minimizing the function 

𝜉(𝛼, 𝛽) = ∑ 𝑟𝛼𝛽
2 (𝑇𝑖)𝑖              (10) 

being i the index for the measured point (in our case, between 50 K and 300K).  

Numerically evaluating 𝜉 for α between -1 and 4 (with a step of 0.01) and β between -20 to 50 

(with a step of 0.1), we reached the minimum values for  

 𝛼 = (10.8 ± 0.1)
𝐽

𝐾𝑔𝐾
 and  

𝛽 = (0.46 ± 0.01).   

It is interesting to note that the value obtained for 𝛼 is close to the maximum entropy change 

obtained for the sample with y = 0.2 (9 J/KgK), corresponding to the full FM sample.  Additionally, 

the value obtained for parameter 𝛽 is close to the value predicted in equation 5 (0.5). 

In figure 6 we compare the temperature dependence of the entropy change measured using MR 

and HC and the one calculated from the optimized parameters in equation 8.  It can be observed 

that there is a very good agreement between the results obtained from MR and those extracted 

by using equation 8.  

Conclusions 

Summarizing, in this paper we studied the influence of the phase separation phenomenon in  

magnetocaloric properties in samples of the La0.625-yPryCa0.375MnO3 family.  To do that we used 

three different samples (a FM homogeneous (LPC-20), a CO/AFM (LPC-50) and a phase separated 

(LPC-32)).   Comparing the results obtained using two alternative experimental methods to 
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calculate the entropy change, we observed a good agreement between both methods for the 

homogeneous samples. However, a great difference between both methods was observed for the 

phase separated sample.  In order to understand the origin of this discrepancy, we improved the 

model by including two additional terms to the entropy change, which consider the effect of an 

inhomogeneous state and the hysteresis loops present at the M (H) curves.  Considering these two 

contributions, it was possible to reach the entropy change using MR, and taking the heat capacity 

entropy change as the starting point. 
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Figure 1: Magnetic phase diagram of La0.625-yPryCa0.375MnO3 (FM: ferromagnetic metallic, CO: charge ordered, PI: paramagnetic insulator 

and AFM: antiferromagnetic). 
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Figure 2:  Magnetization as a function of temperature (left) and as a function of magnetic field(right) for samples La0.625-yPryCa0.375MnO3 

with y = 0.2 (upper panel), y= 0.32 (middle panel) and y = 0.5 (lower panel).  Solid (open) symbols indicate that the magnetic field is 

increasing (decreasing). Magnetization as a function of the magnetic field curves (right) for samples with y=0.2 (upper), y=0.32 (middle) 

and y=0.5 (lower). The temperature of the curves are indicated. 
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Figure3: Entropy change (from Maxwell’s relation) as a function of temperature for samples La0.625-yPryCa0.375MnO3 with y = 0.2 (upper 

panel), y= 0.32 (middle panel) and y = 0.5 (lower panel). 
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Figure 4: (Left) Heat capacity as a function of temperature and (right) entropy change (from heat capacity measurements) as a function 

of temperature for samples La0.625-yPryCa0.375MnO3 with y = 0.2 (upper panel), y= 0.32 (middle panel) and y = 0.5 (lower panel).  In the 

insets, ΔSM and ΔSHC are compared. 
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Figure 5: Schematic representation of an isothermal magnetization loop, where 𝑀 ↑ and 𝑀 ↓ are the two branches corresponding to 

increases and decreases in the magnetic field. MAN. The inset shows the temperature dependence of the magnetic work (W) defined as 

the area enclosed between  𝑀 ↑ and 𝑀 ↓ for the sample with y = 0.32  
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Figure 6: Entropy change as a function of temperature extracted from magnetization curves (gray), from heat capacity (pink) and from 

equation 8 (blue) for sample with y = 0.32. The inset shows a color map of the error function ξ used to obtain optimized α and β values. 
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