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ABSTRACT

The rate coefficient for the gas-phase of diethyl carbonate with chlorine atoms has 

been determined at 298 K using a relative method, employing ethyl formate and ethyl 

acetate as reference compounds. The experimental value, (1.0 ± 0.2) × 10−11 cm3 molecule-1 

s-1, is in good correlation with the one estimated by the SAR (Structure-Activity 

Relationship) method. The photo-oxidation mechanism of diethyl carbonate initiated by 

chlorine atoms was also studied at 298 K and atmospheric pressure as a function of the 

oxygen partial pressure. The main products identified by infrared spectroscopy were: 

CH3CH2OC(O)OCHO, CH3CH2OC(O)OCH2CHO, CH3CH2OC(O)OC(O)CH3, CO2, CO, 

HCOOH, and CH3COOH. The results reveal that the oxidation process occurs by the 

abstraction of a hydrogen atom from the methyl (43%) and methylene (57%) groups. The 

relative importance of each reaction path from the primary radicals formed in photo-

oxidation and the identity of CH3CH2OC(O)OCHO, CH3CH2OC(O)OC(O)CH3, and 

CH3CH2OC(O)OCH2CHO were determined using computational methods. The activation 

energy of reaction paths for the main oxygenated radicals formed during photo-oxidation 

was determined using Gaussian09 Program.
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INTRODUCTION

Diethyl carbonate (DEC, CH3CH2OC(O)OCH2CH3) is the carbonate ester of 

carbonic acid and ethanol. It is the second homologue of the symmetric dialkyl carbonates 

family ROC(O)OR. As dimethyl carbonate, DEC has attracted a lot of attention in both 

industrial and research fields due to its potential eco-friendliness.1,2

Although DEC is industrially produced in several ways, it has been synthesized 

from costless and renewable resources in the last few years by processes with high 

conversion levels and which avoid the use of toxic reagents.3 DEC has been considered a 

bio-based solvent due to the fact that it could be obtained from the ethanolysis of urea or 

carbon dioxide.4–6 The profit of this kind of “green” synthetic procedure is even much 

bigger if we take into account that CO2 molecules could be used to produce fuel.7

Due to its low toxicity and high biodegradability, DEC is widely used as a solvent 

in the mid-boiling range, replacing more harmful organic substances,8 and as a raw material 

in the polymer industry to produce polycarbonates and urethanes.9,10 Its high oxygen 

content and good solubility in fuels place it as a fuel additive, reducing the diesel engine 

emissions of CO2 and particulates to the environment.11,12 Additionally, in the last decades, 

with the development and massive production of rechargeable batteries, DEC was widely 

employed as electrolyte for lithium cells.4 For this reason, it is expected that, if the use of 

carbonates and the rate of production are maintained, their atmospheric emissions will 

increase drastically. However, to the best of our knowledge, no studies of the gas-phase 

photochemistry of DEC have been carried out. In this work, we present the results of the 

determination of the rate coefficient of DEC with chlorine atoms (used as surrogate of OH 
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radicals) and its photo-oxidation mechanism, which are both supported by experimental 

measurements and computational studies.

EXPERIMENTAL

General Information

Diethyl carbonate (98%, Sigma Aldrich), ethyl formate (97%, Riedel-deHaën), and formic 

acid (90%, Dorwil) were used as purchased, while ethyl acetate (Sintorgan) was distilled 

and stored in molecular sieves prior to use. 

Commercially available oxygen (4.8, AGA), nitrogen (4.8, AGA), and carbon 

monoxide (2.0, Praxair) were used as received. Chlorine (>98% purity) was synthesized by 

direct reaction between HCl and KMnO4 at inert atmosphere and further distilled, while 

NO2 was synthesized by the thermal decomposition of Pb(NO3)2 in the presence of oxygen 

and further distilled.

Procedures

Gaseous samples were manipulated using a glass vacuum line equipped with two 

different capacitance pressure gauges (0 to 760 Torr, MKS Baratron and 0 to 70 mbar, Bell 

and Howell).

Typical experiments were carried out as follows: a gas-phase mixture of DEC and 

Cl2 were prepared in a 5 L previously evacuated glass reactor. Then, either N2 (for the 

determination of rate coefficients) or O2 and NO2 (for photo-oxidation experiments) were 

added to reach atmospheric pressure. Finally, a fraction of the gas mixture was transferred 

to the thermostated infrared glass cell and the photolysis was carried out using two black 
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lamps. The reaction progress was followed using a Fourier Transform Infrared 

Spectrometer (Bruker IFS-28) following the temporal variation of reactants and products. 

All spectra were recorded in the range of 500 to 4000 cm−1 with a resolution of 2 cm−1. 

Control experiments were performed in darkness in order to check for possible 

heterogeneous reactions. 

The kinetics of DEC with chlorine atoms were obtained using the relative method, 

which employs a reference compound with a well-known rate coefficient and presents no 

complications such as unwanted secondary reactions.13 Ethyl acetate (EAc) and ethyl 

formate (EFor) were used as reference compounds and the results were plotted using 

Equation 1.

Eq. 1 
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The terms [DEC]0, [DEC]t, [reference]0 and [reference]t represent the concentrations of 

DEC and reference compound before and after the irradiation time t, respectively. The rate 

coefficients kDEC and kreference correspond to the reactions of chlorine atoms with DEC and 

with the reference compound, respectively. A linear fit of the ln([DEC]0/[DEC]t) vs. 

ln([reference]0/[reference]t) gives the slope corresponding to the ratio kDEC/kreference. The 

kwall value (which accounts for overall non-photolytic processes) in typical experiments was 

9 × 10−5 s−1.

In order to identify the new products observed as reaction products, their infrared 

spectrum was calculated using Density Functional Theory with the B3LYP/6-311+G(d,p) 

basis set and Gaussian09 Program. Frequencies were corrected according to Equation 2 to 

account for the anharmonicity of the molecule.14

νexp/νcalc = 1.0 − 0.00001356 νcalc Eq. 2
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The symbols νexp and νcalc correspond to the experimental and calculated wavenumbers, 

respectively.

RESULTS AND DISCUSSIONS

The rate coefficients for the reaction of DEC with chlorine atoms at 298 K 

(Reaction 1) relative to the reaction of EAc and EFor with chlorine atoms (Reactions 2 and 

3) were derived from the slope of the linear plot of ln([DEC]0/[DEC]t) vs. 

ln([reference]0/[reference]t) as showed in Figure 1.

CH3CH2OC(O)OCH2CH3 + Cl  Products (1)

CH3C(O)OCH2CH3 + Cl  Products (2)

CH3CH2OC(O)H + Cl  Products (3)
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Figure 1. Kinetic data (total pressure 1000 mbar at 298 K) for the reaction of DEC with 

chlorine atoms relative to EAc (solid circles) and EFor (open circles).

The following slopes, which represent kDEC/kreference, were obtained from the plot presented 

in Figure 1: kDEC/kEAc = 0.74 and kDEC/kEFor = 1.05. Using the rate coefficient for EAc (1.37 

× 10−11 cm3 molec−1 s−1)15 and for EFor (9.92 × 10−11 cm3 molec−1 s−1), available in 

bibliography,16 values of 1.01 × 10−11 cm3 molec−1 s−1 and 1.04 × 10−11 cm3 molec−1 s−1 for 

kDEC were obtained, respectively. According to the errors derived from the linear fit of our 

experimental data (5%) and those informed for the rate constants of reference compounds 

(15% for EAc and 20% for EFor),15,16 the error rate is estimated at around 20-25%.

Structure-Activity Relationship

The Structure-Activity Relationship (SAR) method was used to corroborate the 

experimental data. This method, widely used,17,18 allows the calculation of the rate 

coefficients of organic molecules based on the estimation of methyl, methylene, and 

methine group rate constants (kprim, ksec, and ktert, respectively) and parameters (F) 

associated to the functional groups bonded to each one. The values available in 

bibliography for these mathematical terms are: kprim = 3.32 x 10-11 cm3 molecule-1 s-1, ksec = 

8.34 x 10-11 cm3 molecule-1 s-1, F(-CH3) = 1.00, F(-CH2-) = 0.79, and F(-CH2OC(O)) = 

0.075.19 Value for F(-OC(O)O) = 0.035 was derived from the attack of chlorine atoms on 

dimethyl carbonate, according to the experimental rate coefficient measured by Bilde et 

al.20

Considering the values presented above, the rate coefficient for DEC can be 

estimated as 1.08 × 10−11 cm3 molec−1 s−1, showing an excellent concordance with the 
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experimental value obtained in this work. This result also corroborates the value of the F(-

CH2OC(O)) factor obtained by Vila et al. for the study of the gas phase degradation of n-

butyl formate.19

From the SAR method, the relative reactivity trend for each hydrogen atom in the 

molecule can also be estimated. For instance, two possible attack positions are available at 

DEC moiety: the abstraction of an H-atom from the -CH2- groups and the corresponding 

one to -CH3 groups, herein named “via α” and “via β” respectively, according to their 

position with regards to the carbonate moiety. Using the above parameters, a relative 

reactivity trend of 54% for via α and 46% for via β were obtained, which shows that both 

are competitive vias.

Reaction mechanism of photo-oxidation

Photo-oxidation products were identified by infrared spectroscopy. The mixture 

containing DEC (0.41 mbar), Cl2 (0.30 mbar), and O2 (1013 mbar) was photolyzed during 

60 minutes and two infrared spectra were obtained: one immediately after the lights are 

turned off, and another after 18h of darkness to study the stability of the photochemical 

products. The first trace of Figure 2 shows the infrared spectrum obtained immediately after 

irradiation, in which signals of remaining DEC were already subtracted (“Products” trace). 

There are clear signals at 1105, 1775 cm-1, and 667 cm-1 (corresponding to HCOOH and 

CO2 respectively) and 1005, 1152, 1260, and 1828 cm-1 (indicated with an asterisk) whose 

assignment to products will be discussed in the next paragraphs. The subtraction of the 

spectra of HCOOH and CO2 to the first trace leads to Trace “A”. 
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Figure 2. Infrared spectra obtained in the photo-oxidation of DEC. Traces from top 

to bottom: photo-oxidation products; HCOOH reference; spectrum resulting from the 

subtraction of HCOOH and CO2 to the first trace (Trace “A”); dark products; H3CCOOH 

reference; spectrum resulting from the subtraction of HCOOH, H3CCOOH, and CO2 to 

Trace “A” (Trace “B”).

The fourth trace, “Dark products”, shows the spectrum of the irradiated sample after 

the dark period (unreacted DEC had already been subtracted). As can be seen, in addition to 

the presence of CO2 and HCOOH, there were signals of H3CCOOH indicating its formation 
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during darkness, while the absorbance of the peaks marked with asterisks in the first trace 

decreases. The subtraction of the identified products leads to Trace “B”.

According to the reaction mechanisms reported for carbo-oxigenated compounds 

with similar structures to DEC,20-22 the formation of CH3CH2OC(O)OC(O)CH3, 

CH3CH2OC(O)OCHO, and CH3CH2OC(O)OCH2CHO as stable photo-degradation 

products is possible. Using Density Functional Theory, spectra of those species were 

calculated and compared to our experimental data. The results are presented in Figure 3. A 

comparison of the theoretical spectrum of CH3CH2OC(O)OCH2CHO with Trace “B” (taken 

from Figure 2) shows a good agreement, indicating the correspondence of the experimental 

product to this product.  Finally, the subtraction of Trace “B” to Trace “A” leads to the 

spectrum of a new unstable product that disappears during the dark period (Trace “C”). 

This product was assigned to CH3CH2OC(O)OC(O)CH3, taking into account the agreement 

between the experimental and calculated infrared spectra showed in the last trace of Figure 

3. 
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Figure 3. Infrared spectra obtained in the photo-oxidation of DEC. Traces from top 

to bottom:  Trace “B” taken from Figure 2; theoretical spectrum of 

CH3CH2OC(O)OCH2C(O)H; spectrum resulting from the subtraction of Trace “B” to 

Trace “A” (Trace “C”); theoretical spectrum of CH3CH2OC(O)OCH2CH3.

The formation of the unstable CH3CH2OC(O)OC(O)CH3 was also proved by the 

appearance of acetic acid during the dark period, which comes from the heterogeneous 

degradation of the –OC(O)CH3 fragment. Similarly, the appearance of formic acid during 

photolysis was attributed to the formation of a more unstable anhydride containing the –

C(O)OC(O)H group, which decomposes completely during photo-oxidation: 

CH3CH2OC(O)OCHO.
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Photo-oxidation experiments in the presence of NO2 were also performed. Mixture 

of DEC (0.41 mbar), Cl2 (0.30 mbar), NO2 (0.40 mbar), and O2 (1013 mbar) was 

photolyzed and analyzed. The most remarkable result is the appearance of a set of signals at 

794, 1163, 1741, and 1842 cm-1, corresponding to the characteristic peaks of peroxy acetyl 

nitrate (PAN, CH3C(O)OONO2).23 This result suggests the formation of the CH3C(O) 

radical during the photo-oxidation, which leads the formation of PAN according to 

reactions 4 and 5.

CH3C(O) + O2  CH3C(O)OO (4)

CH3C(O)OO + NO2  CH3C(O)OONO2 (5)

Finally, a set of experiments varying the oxygen partial pressure (from 70 to 1013 

mbar) inside the photo-reactor were performed. Spectra were recorded at 60 minutes of 

photolysis and after 18 hours in darkness. The quantification of carbon monoxide, carbon 

dioxide, formic acid, and acetic acid was performed using their corresponding calibration 

curve at the same experimental conditions used in the experimental set-up. 

CH3CH2OC(O)OC(O)CH3 and CH3CH2OC(O)OCHO were quantified from their 

decomposition product (i.e. acetic and formic acid, respectively) after the dark period to 

ensure their complete decomposition. Formaldehyde was quantified from its photo-

oxidation product (CO) taking into account the rate coefficient of reaction between chlorine 

atoms and CH2O (7.3 x 10-11 cm3 molecule-1 s-1) is higher to the rate coefficient of reaction 

with DEC (1.02 x 10-11 cm3 molecule-1 s-1). Figure 4 shows the percentage of products 

relative to the disappearance of DEC, determined as a function of the oxygen partial 

pressure. As can be seen, when O2 partial pressure increases, the concentrations of CO and 

CO2 decrease while CH3CH2OC(O)OC(O)CH3 increases. It is interesting to note that the 
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concentration of CH3CH2OC(O)OCHO does not change in the analyzed range of O2 partial 

pressures. The high percentage of CO2 formation is a consequence that it is formed in 

several ways, as will be discussed later. PAN quantification (not showed in the plot) was 

also performed in the photo-oxidation in the presence of NO2 at 1013 mbar total pressure, 

leading to a percentage formation of 25%.

0 250 500 750 1000
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ct

s 
fo

rm
at

io
n 

(%
)

Oxygen pressure (mbar)

Figure 4. Products percentages relative to DEC disappearance as a function of O2 

pressure (70 − 1013 mbar): CO2 (down triangles), H2CO (upper triangles), 

CH3CH2OC(O)OC(O)CH3 (solid circles), and CH3CH2OC(O)OCHO (solid squares).

According to the experimental results, the following photo-oxidation mechanism 

was postulated (Scheme 1):
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Scheme 1. Proposed mechanism for the Cl-atoms initiated oxidation of DEC.

  Essentially, chlorine atoms attack DEC at both possible positions (-CH3 and -CH2- 

groups) abstracting an H-atom from each one. Both resulting radicals react with O2 to form 

the corresponding peroxy radical, which subsequently reacts either with chlorine atoms or 

another peroxy radical, leading to the secondary radical S1 (CH3CH2OC(O)OCHOCH3) 

and the primary radical P1 (CH3CH2OC(O)OCH2CH2O) radicals (via α and β, 

respectively).

It is well known that the main path for radicals with a chemical structure similar to 

S1 (R-C(O)OCH2O) is the α-ester rearrangement24,25 and the reaction with O2 and their 

relative importance are dependent of the oxygen pressure in the system.26 This agrees with 

the large amount of CH3CH2OC(O)OC(O)CH3 formed in the experiments carried out at 

higher oxygen pressures (Figure 4), as it is depicted in Scheme 1, Path B. 
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On the other hand, the α-ester rearrangement of S1 radical leads finally to the 

formation of CO2 (via the degradation of unstable CH3CH2OCOOH and the CH3C(O)O 

radical), formaldehyde, and additionally PAN when the photolysis is carried out in the 

presence of nitrogen dioxide. It is important to note that monoethyl carbonic acid ester 

(CH3CH2OCOOH) was not observed in our system due to its extreme instability and 

decomposed to an equimolar amount of CO2.27 

For the P1 radical (CH3CH2OC(O)OCH2CH2O), the reaction with O2 and rupture 

are both available degradation paths. The first one leads to the formation of 

CH3CH2OC(O)OCH2CHO (Scheme 1, Path C), while the second leads to the formation of 

CH3CH2OC(O)OCH2
 and formaldehyde (Scheme 1, Path D).

The CH3CH2OC(O)OCH2
 radical formed follows the same sequence previously 

mentioned for the primary step, leading to the formation of the CH3CH2OC(O)OCH2O 

radical, named P2 radical. At this point, two paths are available as discussed for the S1 

radical above: α-ester rearrangement and reaction with O2.21,24 The reaction with O2 

(Scheme 1, Path E) was corroborated by the formation of CH3CH2OC(O)OCHO. The α-

ester rearrangement was inferred considering that it is a competitive main path for the 

similar CH3CH2C(O)OCH2O radical.28 According to this, the final products of path F are 

CO2 (originated from the decomposition of the unstable CH3CH2OCOOH) and CO.

From the previous analysis and the percentages of product formation presented in 

Figure 4, the percentages of attack of the chlorine atom on the methyl group and methylene 

group were determined. The via α percentage can be determined from the sum of 

CH3CH2OC(O)OC(O)CH3 (32%) and PAN (25%). The percentage of via α (57%) was 
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determined according to these values and inferred the values for via β (43%) in agreement 

with those obtained from the SAR method (54% and 46%, respectively). 

Computational Studies

Quantum chemical calculations using the DFT level of theory (B3LYP/6-

311+G(d,p) functional, Gaussian09 Program system)29 have been carried out in order to 

investigate the main reaction paths of DEC. Full geometry optimizations were performed, 

followed by harmonic frequency calculations at the same level of theory, which also 

allowed the characterization of the nature of the stationary points.30,31

As depicted above in the mechanism reaction showed in Scheme 1, we suggest two 

main ways (vias  and β). Besides the fact that the H abstraction from DEC by Cl are quite 

energetically similar for both positions, calculations show that, after oxidation, the resulting 

S1 radical is about 39 kJmol-1 lower in energy than the P1 radical. 

Figure 5 shows the energy corresponding to the main path reactions of S1 and P1 

radicals. As can be seen, the formation of unstable CH3CH2OC(O)OH from α-ester 

rearrangement of S1 (path A, left panel) is favored over the formation of the stable 

CH3CH2OC(O)OC(O)CH3 coming from the reaction between S1 and O2 (path B, right 

panel). Unraveling the different possibilities to achieve CH3CH2OC(O)OH, calculation 

showed that it could be obtained through two possible processes that occur in a concerted 

but slightly asynchronous manner, with an energy difference of only 2 kJ mol-1. On the 

other hand, conformational analysis for path B allows to identify the conformer that leads to 

the formation of CH3CH2OC(O)OC(O)CH3 through the H atom subtraction with a relative 
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energy barrier of 108 kJmol-1, which is higher than those which lead to a 

CH3CH2OC(O)OH formation.  

Figure 5. Partial reaction coordinates for S1 radical: path A (left) and path B (right).

In the same way, reaction paths for P1 radical (Scheme 1, via β) were also analyzed 

theoretically. Theoretical calculations (Figure 6, left panel) show that either energy 

activation that leads to CH3CH2OC(O)OCH2CHO from its reaction with molecular oxygen 

(Scheme 1, Path C) or CH3CH2OC(O)OCH2
 radical generated by C-C bond fragmentation 

(Scheme 1, Path D) are high enough to explain the low occurrence of these paths. However, 

a comparison of the activation energy of both paths shows that the formation of 

CH3CH2OC(O)OCH2
• radical and formaldehyde is 62.7 kJmol-1 and is favored over the 

formation of CH3CH2OC(O)OCH2CHO. 

Computational calculations were also extended to determine the most favorable 

reaction pathway for the CH3CH2OC(O)OCH2O• radical (P2) originated from the 
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CH3CH2OC(O)OCH2
• radical. The energy required for both available paths (E and F), that 

is for the reaction with O2, and for the α-ester rearrangement, are very different indicating 

that path E is favored. Moreover, as it was described above for path A, the formation of 

CH3CH2OC(O)OH could be achieved through two possible processes which are, at least, 64 

kJmol-1 lesser in energy than path E.  

Figure 6. Partial reaction coordinates for P1 radical: path C and D (left panel) and path E 
and F (right panel).

CONCLUSIONS

The rate coefficient for DEC with chlorine atoms was determined using the relative 

method and a mean value of (1.0 ± 0.2) × 10−11 cm3 molecule-1 s-1 was obtained. This value 

is in good agreement with those calculated using the Structure-Activity Relationship 

method (1.08 × 10−11 cm3 molec−1 s−1). 

The reaction mechanism for the Cl-atoms initiated by photo-oxidation was 

determined from the products identification and numerical calculations performed for the 
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main paths reactions. Results show that the chlorine attacks both methyl (43%) and 

methylene groups (57%), leading to the formation of CH3CH2OC(O)OCHO, 

CH3CH2OC(O)OCH2CHO, CH3CH2OC(O)OC(O)CH3, CH2O, CO2, and CO. Theoretical 

calculations show that decomposition via α-ester rearrangement and reaction with 

molecular oxygen are competitive atmospheric reaction paths for both 

CH3CH2OC(O)OCH2OCH3 and CH3CH2OC(O)OCH2O radicals, while rupture is the 

main path for the CH3CH2OC(O)OCH2CH2O radical.
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