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We study the low-temperature properties of the generalized Anderson impurity model in which
two localized configurations, one with two doublets and the other with a triplet, are mixed by
two degenerate conduction channels. By using the numerical renormalization group and the non-
crossing approximation, we analyze the impurity entropy, its spectral density, and the equilibrium
conductance for several values of the model parameters. Marked differences with respect to the
conventional one-channel spin s = 1/2 Anderson model, that can be traced as hallmarks of an
impurity spin S = 1, are found in the Kondo temperature, the width and position of the charge
transfer peak, and the temperature dependence of the equilibrium conductance. Furthermore, we
analyze the rich effects of a single-ion magnetic anisotropy D on the Kondo behavior. In particular,
as shown before, for large enough positive D the system behaves as a “non-Landau” Fermi liquid
that cannot be adiabatically connected to a non-interacting system turning off the interactions. For
negative D the Kondo effect is strongly suppressed. While the model is suitable for the description
of a single Ni impurity embedded into an O doped Au chain, it is a generic one for S = 1 and two
channels and might be realized in other nanoscopic systems.

PACS numbers: 73.23.-b, 71.10.Hf, 75.20.Hr

I. Introduction

The Kondo effect, early found in metals containing
magnetic impurities1,2, is also frequently observed in
low dimensional systems. For instance, transport mea-
surements through semiconducting3–9 and molecular10–20

quantum dots (QDs), at low enough temperatures, ex-
hibit the Kondo phenomena. Here, the QD acts as a
single magnetic impurity while the contacts play the role
of metallic hosts.

The seminal work by Nozières and Blandin21 pointed
out the crucial role that the impurity and the conduction
host orbital structures play in the Kondo physics. There-
fore, real systems are expected to be modeled by Kondo
Hamiltonians where an arbitrary spin S is screened by n
conducting channels (bands with different symmetry) of
spin s = 1/2, and the nature of the ground state depends
on the relation between S and n. For n = 2S the models
have Fermi liquid ground states, while for n > 2S they
correspond to non-Fermi-liquids and for n < 2S the sys-
tems are singular Fermi liquids22. The existence of non-
Fermi-liquid ground states requires SU(n) symmetry in
the conducting channels, which is difficult to achieve in
real systems. For instance, in the case of the S = 1/2
two-channel model, the effect of symmetry-breaking per-
turbations was discussed by Sela et al.23 It is also found
that the presence of magnetic anisotropy can drastically
modify the low-temperature properties24–27.

The multiorbital Kondo physics can be found in molec-
ular QDs, which have rich inner electronic structures with
magnetic orbitals coupled in a such a way that the result-
ing spin is sometimes larger than the usual s = 1/2. For
instance, the underscreened Kondo effect, correspond-
ing to the case n < 2S, has been experimentally and

theoretically investigated for molecules with spin S =
114,15,19,24,28–31, and larger spin31–33. In other systems,
the spin 13,34,35 and also the anisotropy D35,36 can be
manipulated. On the other hand, a Co impurity in an O-
doped Au chain behaves as a QD with S = 3/225,26,37. In
this system, two conducting gold channels (5dxz, 5dyz),
degenerate by symmetry, screen only two electrons of the
Co atom (3dxz, 3dyz), while the electron on the 3dxy or-
bital is unaffected by the Au bands. In the presence of
a single-ion magnetic anisotropy DS2

z , with D > 0, the
effective impurity spin becomes S = 1/2 and the cor-
responding scenario was found to be the overscreened
Kondo effect, n > 2S (n = 2, S = 1/2)25,26,37.

A difference between the bulk systems and the low di-
mensional QD ones is that while in the former the fully
screened scenario n = 2S is frequent38, it seems rare in
the latter. However, as stated above, there are several
studies on nanoscopic systems with S > 1/2 and also
with degenerate orbitals25,37,39–41 so that this scenario is
expected to appear in the future. In particular, recently
a realization of the fully compensated high spin Kondo
phenomena in a low-dimensional system has been pro-
posed42. It was shown that a Ni impurity, within an O
doped Au chain, has two holes in the degenerate 3dxz,yz
orbitals, coupled to S = 1 because of a large Hund’s
interaction31,42. The coupling between the 5dxz,yz Au
bands (which doped with O cross the Fermi level) and
the 3dxz,yz of Ni states leads to a two-channel S = 1
Kondo effect. A scheme of the system is presented in
Fig. 1. Based on first-principles calculations, the elec-
tronic structure was studied and effective Anderson- and
Kondo-like Hamiltonians were derived in Ref. 42. Using
model parameters, an experimentally accessible Kondo
temperature TK ∼ 70 K was estimated (see Supplemen-
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tal Material of Ref.43). More recently we have shown
that the model has a topological phase transition as a
function of the impurity single-ion magnetic anisotropy
D43. However, so far, the general properties of the model
have not been studied.

O-doped

 Au chain

O-doped

 Au chain

Ni

xz

yz

FIG. 1: Scheme of the system proposed in Ref. 42. The Ni
ion has two holes, with total spin S = 1, that can jump to
conduction bands of the same symmetry either to the left or
to the right.

While the Kondo screening of a spin S = 1/2 has been
the focus of an intense research since the 70s, both ex-
perimentally and theoretically, this is not the case of the
full screening of the S = 1 case. For instance, the long-
known “Kondo resonance narrowing problem”, that is,
the exponentially decrease of the Kondo scale with the
impurity spin S44, has not received much attention until
the recent work by Nevidomskyy and Coleman38.

In this work, in order to deepen the understanding of
the high-spin fully compensated Kondo physics and to
serve as a guide to experimental characterizations, we
present calculations of the model presented in Ref. 42
for valence fluctuations between a configuration with one
particle (two doublets) and another one with two parti-
cles (a triplet). This model corresponds to an impurity
spin S = 1 screened by two degenerate conduction chan-
nels. The particles can be electrons or holes. To solve the
model, we use two complementary methods: the numer-
ical renormalization-group (NRG) and the non-crossing
approximation (NCA).

For D = 0, we present results for the impurity entropy
as a function of temperature S(T ), the impurity occu-
pancy as a function of the impurity level εd, the impurity
spectral density ρ(ω) for different εd including a study of
the position and width of the charge-transfer peak near
εd, the Kondo temperature as a function of εd, and the
conductance S(T ) as a function of temperature for sev-
eral values of εd. We also show how these results are
modified by anisotropy D. In Ref. 43 we have shown
some results for S(T ), ρ(ω) and G(T ) for fixed εd and
several D ≥ 0, to show that a sharp jump in these prop-
erties take place at a given critical anisotropy Dc due to a
topological quantum phase transition. Here, we add new
calculations in the Kondo limit particularly forD nearDc

which illustrate the sharpness of the transition. We also
study the case D < 0. While for a Ni impurity in a Au
chain a positive D or the order of a few meV has been
calculated42, one might expect that experimental real-
izations of the fully screened Kondo model with S > 1/2

and D < 0 appear in the future. In particular negative
tunable D has been calculated in some systems contain-
ing phtalocyanine molecules35,36. The Haldane system
Y2BaNiO5 has negative D45 and one might expect the
same for a Ni impurity in a similar environment.

For D = 0, we have found, as expected21, several fea-
tures that correspond to a Fermi liquid behavior at low
enough temperatures, for example, the impurity entropy
Simp(T ) → 0 as T → 0. On the other hand, the im-
purity spectral density ρασ(ω) exhibits a single charge-
transfer tunneling resonance (the impurity configuration
with three particles is absent in the Hamiltonian), and
also the Kondo one within the Kondo regime. The fea-
tures of the resonances are discussed in comparison with
the corresponding one-channel S = 1/2 case. In par-
ticular, we have found that the temperature dependence
of the conductance can be used as a hallmark to char-
acterize a fully screened S = 1 impurity. On the other
hand, the presence of a single-ion magnetic anisotropy
D profoundly affects the Kondo physics. As we have
shown recently for particular parameters43, for positive
D there is a topological transition at a critical value Dc

to another Fermi liquid phase which cannot be adiabati-
cally connected to a non-interacting system. Instead for
D < 0, The Kondo physics is preserved but the Kondo
energy scale is strongly reduced because the remaining
two degenerate states of the localized triplet, with pro-
jections ±1 are mixed by an effective spin flip of fourth
order in the hybridization between localized and conduc-
tion states.

The paper is organized as follows. In section II we
introduce the model Hamiltonian as well as the NRG and
NCA approaches. In section III the numerical solution
of the model is presented, for several values of the model
parameters including the particular case of the Ni-Au-O
system considered in Ref. 42. Finally, in section IV the
conclusions are drawn.

II. Model Hamiltonian and Methods

The Hamiltonian that describes the system of a mag-
netic Ni atom in a substitutional position within an Au
chain doped with a small amount of oxygen can be writ-
ten by using hole operators, hσ, related with the electron

operators, d†σ, by h↑ = d†↓ and h↓ = −d†↑. This trans-
formation preserves the form of the Hamiltonian and the
spin operators, which have the same form in both rep-
resentations. Using these operators for all atoms in the
system, and retaining only the ground state of the d8 and
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d9 configurations, the model can be written in the form42

H =
∑
M2

(E2 +DM2
2 )|1M2〉〈1M2|+

∑
αM1

E1|αM1〉〈αM1|

+
∑
νkασ

ενkc
†
νkασcνkασ + (1)

+
∑

M1M2νkασ

Vνα〈1M2|
1

2

1

2
M1σ〉(|M2〉〈αM1|cνkασ+H.c.) ,

where Ei and Mi indicate the energies and the spin pro-
jections along the chain (chosen as the quantization axis)
of states with i = 1, 2 holes in the 3d shell of the Ni im-
purity.

The ground state configuration of the Ni atom, de-
scribed by the first term in Eq. (1) is found to have
two holes in the degenerate 3dxz,yz orbitals coupled to
spin S = 1 by means of a strong Hund’s coupling. The
state with maximum spin projection can be represented

by |11〉 = h†xz↑h
†
yz↑|0〉, where |0〉 stands for the full 3d10

configuration and the operator h†ασ creates a hole with
symmetry α = xz, yz and spin projection σ. The other
relevant states of the Ni d8 configurations can be ob-
tained by using the spin lowering operator on this state.
D represents the single-ion magnetic anisotropy.

The second term contains the relevant states of the
d9 configuration with |xzM1〉 = h†yzM1

|0〉 and |yzM1〉 =

h†xzM1
|0〉.

The third term represents the four conduction bands
for the two channels α and conduction leads ν. The op-

erator c†νkασ creates a hole in the a Au-O band with sym-
metry α, where ν = L,R denotes the left or the right side
of the Ni atom, respectively.

The last term characterizes the tunneling between
the Ni and Au states for each channel. The factor
Vνα defines the hybridization for each channel and lead,
and the Clebsch-Gordan coefficients 〈1M2| 12

1
2M1σ〉 de-

termine the ratio among different angular momentum
projections. For the calculations presented here, we take
Vνα = V independent of lead and channel

Note that the presence of O atoms within the conduct-
ing chain is a necessary ingredient for the applicability
of the model to the system, because electronegative O
atoms deplete the Au bands and are responsible for the
presence of 5dxz,yz Au bands at the Fermi level25,26,37.
With this condition, the tunneling mechanism responsi-
ble for charge transfer and spin-flip between Ni and Au
neighbors is warranted.

A. Numerical Renormalization Group

In order to obtain quantitatively reliable results at low
energies, we solve our Hamiltonian by means of NRG,
which is a numerically exact technique. In order to use
the NRG LJUBLJANA open source code46,47, we note
that the Hamiltonian in Eq. (1) can be derived as a par-
ticular case of a more general, pure fermionic, two-orbital

Anderson model given by

H̃ = H̃imp + H̃c + H̃mix (2)

where the impurity Hamiltonian including Coulomb
repulsion48 reads as follows

H̃imp =
∑
α

εαnα + U
∑
α

nα↑nα↓ + U ′nxznyz +

+JH
∑
σσ′

h†xzσh
†
yzσ′hxzσ′hyzσ +DS2

z + (3)

+JH(h†xz↑h
†
xz↓hyz↓hyz↑ + H.c.)

=
∑
α

εαnα + U
∑
α

nα↑nα↓ + (U ′ − JH/2)nxznyz +

−2JH ~Sxz · ~Syz +DS2
z + (4)

+JH(h†xz↑h
†
xz↓hyz↓hyz↑ + H.c),

being nα = nα↑ + nα↓, nασ = h†ασhασ where α indicates
the orbital index {xz, yz}. U (U ′) represents the intra-
(inter-)orbital Coulomb interaction and JH the Hund ex-
change coupling.

The conduction bands are considered as non-
interacting Hamiltonians,

H̃c =
∑
kασ

εkαc
†
kασckασ, (5)

and the hybridization term that mixes both contribution
is given by

H̃mix =
∑
kασ

(
Vαc
†
kασdασ + H.c

)
. (6)

For simplicity the analysis done below is restricted to
D = 0. The changes for the general case are straight-
forward. While the Hamiltonian is explicitly invariant
under spin rotations, the relation U ′ = U − 2JH comes
from spherical symmetry SO(3) of the Coulomb interac-
tion including orbital degrees of freedom48,49.

The diagonalization of H̃imp within the two-hole sub-
space results in the triplet states

h†xz↑h
†
yz↑|0〉,

1√
2

(h†xz↑h
†
yz↓ + h†xz↓h

†
yz↑)|0〉, (7)

h†xz↓h
†
yz↓|0〉,

with energy ET = E2 = εxz+εyz+U ′−JH , together with
the following two singlets, degenerate as a consequence
of the SO(3) symmetry of the interaction,

1√
2

(h†xz↑h
†
yz↓ − h

†
xz↓h

†
yz↑)|0〉,

1√
2

(h†xz↑h
†
xz↓ − h

†
yz↑h

†
yz↓)|0〉, (8)
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with energy ESlow = εxz + εyz +U ′+ JH , and finally one
excited singlet,

1√
2

(h†xz↑h
†
xz↓ + h†yz↑h

†
yz↓)|0〉 (9)

with energy ESex = εxz + εyz + U + JH .
The two-orbital model of Eq. (2), neglecting the pair-

hopping term [the last one in Eq. (3)], has been studied
by using NRG in the context of impurity50–55 and lattice
models within the dynamical mean field theory56. Specif-
ically, the work of Nishikawa and Hewson55 focuses on
the role of Hund’s interaction and as we shall see, some
of our results agree with theirs.

In any case, since we are interested in retaining only
the lowest triplet state in the configuration with two
particles, we can take U ′ = JH with JH and U large
enough so that the singlets play no role and can be re-
moved from the impurity Hilbert space. The condition
U ′ = U − 2JH is not satisfied but this only breaks the
symmetry of irrelevant high-energy singlet states. We
also neglect, as in previous works, the pair-hopping term
(the double occupied states with both holes in the same
orbital are excluded by large U). Then, the surviv-
ing two-particle states belong to the triplet with energy
E2 = ET = εxz+εyz, and the other relevant configuration
has two one-particle doublets with energy E1 = εα. Note
that the zero-particle state has a finite energy E0 = 0,
but higher than the one-particle state energies; conse-
quently, it can also be discarded in the study of the low
energy physics of the S = 1 impurity.

The resulting accessible Hilbert space contains only the
three components of the two-particle spin S = 1 and the
two one-particle doublets and, therefore, the Hamiltonian
mixes these two configurations in identical form that the
corresponding one in Eq. (1). These assumptions highly
simplify the use of NRG.

As mentioned in the introduction, we present calcu-
lations in the strong Hund’s coupling limit, in which a
S = 1 ground state is screened by spin-1/2 electrons.
Furthermore, the role of the anisotropy term, not in-
cluded in previous studies, DS2

z is considered. We note
that Ref. 56 analyzes some aspects of this anisotropy con-
tribution.

B. Non Crossing Approximation

Although the non-crossing approximation57 for fully
screened models fails to accurately reproduce Fermi liq-
uid relationships at zero temperature, it gives accurate
results at finite and high excitation energies. For in-
stance, the intensity and the width of the charge-transfer
peaks of the spectral density (those which correspond
to differences in energy between neighboring configura-
tions, such as the dot level ε and ε + U in the simplest
one-channel SU(2) impurity Anderson model) given by
NCA were found58,59 to be in agreement with other the-
oretical methods60,61 and also with experiments in which

a marked asymmetry in the intensity and width of the
resonances for bias voltage V 6= 0 was observed, de-
pending on the polarity of V 62. Furthermore, it has a
natural extension to non-equilibrium conditions63 and it
is especially suitable for describing satellite peaks away
from the zero bias voltage26,28,64. In addition, the NCA
Haldane shift65 (the renormalization of the bare εα en-
ergy due to many body correlations) was found to be in
agreement with the Haldane’s prediction58,59,64. We re-
mind the reader that the charge-transfer peaks as any
other satellite peak in the spectral function are artifi-
cially broadened within NRG due to the logarithmic dis-
cretization of the conducting band66 and hence the NCA
solution, which is free of this shortcoming became a use-
ful alternative treatment. For the (S = 1/2) one-channel
case, the NCA reproduces well the scaling relations with
temperature T and bias voltage in the Kondo regime67.

Within the NCA framework, we rewrite the Hamilto-
nian in Eq. (1) by using a pseudo-particle representa-

tion of the Hubbard operators |Mi >< Mj | −→ â†Mi
âMj

,
which renders the model to the following form

H ′ =
∑
M2

(E2 +DM2
2 )â†M2

âM2
+
∑
αM1

Eαâ
†
αM1

âαM1
+

+
∑
νkασ

ενkc
†
νkασcνkασ + (10)

+
∑
M1M2

∑
ανkσ

Vνα〈1M2|
1

2

1

2
M1σ〉(â†M2

âαM1cνkασ+H.c.).

In addition, the number of pseudo-particles should satisfy
the constraint∑

M2

â†M2
âM2 +

∑
αM1

â†αM1
âαM1 = 1. (11)

The approximation makes use of an individual dynam-
ics of each class of particles, which obeys the follow-
ing self-consistent equations for the corresponding self-
energies

Σα(ω) =
1

π

∫
dεf(ε)∆ᾱ(ε)

[
G21(ε+ ω) +

1

2
G20(ε+ ω)

]
,

Σ2(ω) =
1

π

∫
dεf(−ε)

∑
α

∆α(ε)Gᾱ(ω − ε), (12)

where ∆α(ε) = πV 2
αρ

(c)
α (ε) represents the hybridization of

the impurity with the α-channel of conduction electron of

density ρ
(c)
α (ε). The retarded Green function G21 (G20)

takes into account the ±1 (0) components of the triplet,
while Gα stands for the doublet of symmetry α. The
temperature is included within the Fermi function f(ε).

Details of the technique and its numerical evaluation
can be found in the above mentioned references.

III. Numerical results

For a numerical resolution of the model at hands, con-

stant and symmetric unperturbed conduction bands, ρ
(c)
α ,
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in the range [−W,W ] are considered. Furthermore, with-
out loss of generality (except for the magnitude of the
current) we assume symmetric coupling to the leads,

VαL = VαR = Vα/
√

2, independent of energy, which im-

plies a constant resonant-level width ∆α = πV 2
αρ

(c)
α . We

also define ∆ = ∆xz + ∆yz

We restrict ourselves to the case in which both con-
ducting band densities ρ

(c)
α , hybridization hoppings, Vα,

and the impurity levels εα are degenerate by symme-
try, inspired in the real situation of the Ni impurity in
an Au chain (along the z-axis) for which the relations

ρ
(c)
5dxz

(ω) = ρ
(c)
5dyz

(ω), Vxz = Vyz, and εxz = εyz hold.

We define the unit of energy (W = 1) such that
∆ = 0.01. We also take U ′ = JH = 1000 in the rest of
the paper, unless otherwise stated. This choice displaces
to very high energy all excited states of the d8 configura-
tion, leaving only the triplet states |1M2〉 at low energies.
As explained in Section II A, this choice allows us to rep-
resent the model Eq. (1) in a form suitable for the NRG
code. Except for the subsection III E, in the rest of the
paper we take an anisotropy D = 0.

For the cases in which the system is in the Kondo
regime, that is for ∆ much smaller than the other bare
energy scales, we define the Kondo temperature TK
from the equilibrium conductance in the following way,
G(TK) = G(T → 0)/2. This definition of TK gives val-
ues of the same order of magnitude than the correspond-
ing one obtained from the half width at half maximum
of the Kondo resonance in the spectral density68. Re-
garding the bare orbital energies, we employ the notation
εd = E2 − E1.

A. Entropy and occupancy

We start our discussion of the numerical results of the
model of Eq. (1) by analyzing the NRG results for the
impurity contribution Simp(T ) to the total entropy as a
function of temperature. The top panel of Fig. 2 shows
the calculated Simp(T ) for four different set of param-
eters, εd = {−4,−3.5,−3,−2.5,−2}∆ as a function of
temperature. The case εd = −2∆ correspond to the ab-
initio parameters for the Ni impurity in an O-doped Au
chain42 (black solid line).

At large enough temperatures, eSimp saturates at the
value imposed by the dimension of the local Hilbert space
g = 7 given by the three components of the triplet and
the 4-fold degenerate states corresponding to the two
doublets. As the temperature is lowered, an intermediate
plateau can be observed in which eSimp ' 3, due to the
triplet. This is the local-moment regime characterized by
the fact that the charge fluctuations are frozen. It corre-
sponds to the Kondo limit of the model, obtained from a
Schrieffer-Wolff transformation in Ref. 42, in which only
spin fluctuations are present.

As expected for the symmetry of the model, in which
two spin-1/2 conduction bands coherently screen the to-
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FIG. 2: Top panel: NRG impurity contribution to the en-
tropy as a function of temperature, Simp(T ), for the model
of Eq. (2). Lower panel: Same data in units of T/TK , being
TK = 6.7×10−7, 1.7×10−7, 4.0×10−8, 9.2×10−9, 2.1×10−9

for −εd/∆ = 2, 2.5, 3, 3.5, 4, respectively.

tal impurity spin S = 1, when the temperature falls un-
der TK , the system enters the strong-coupling regime,
and the value of eSimp tends to one, corresponding to the
Fermi-liquid non-degenerate Kondo ground state.
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FIG. 3: (Color online) NRG total impurity occupancy, nimp−
(M−1), as a function of εd, being M the number of channels.
Squares indicate the results for the model of Eq. (2), M = 2.
The circles correspond to the impurity population for the spin
s = 1/2 infinite U -limit one-channel Anderson model where
M = 1.

In the lower panel of Fig. 2 we show the same data but
with temperatures scaled by the corresponding Kondo
ones. It is clear that, within the local-moment and
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strong-coupling regimes, the system displays universality
and all curves have the same temperature dependence
when the latter is expressed in units of TK , being this
the only relevant scale of the model.

Note that, for the ab-initio parameters, there is also
an extended range of temperatures, of about 7 decades,
10−5 . T/TK . 102, in which eSimp falls on top of
the others corresponding for more negative values of εd.
This is a common feature of the regime of parameters
εd � −∆ for which the Kondo model is valid. However,
εd = −2∆ would seem not negative enough to suppress
charge fluctuations. Indeed, the relation εd = −2∆ for
the case of the well studied one-channel spin-1/2 An-
derson impurity characterizes the mixed valence regime
of the model67. To clarify this point, we compared the
NRG results for the total impurity occupancy nimp as
a function of the energy εd in the present case of the
2-channel S = 1 model and the one corresponding to
the one-channel spin-1/2 impurity model. The result is
shown in Fig. 3.

Remarkably, the mixed valence regime in the case of
the 2-channel S = 1 is strongly suppressed in the range
of negative values of εd. In fact, when −εd/∆ = 1 the im-
purity is near 70% occupied as compared with near 50%
in the case of the ordinary one-channel spin-1/2 model.
From this result, we conclude that the realistic param-
eters representing the Ni impurity in the Au chain cor-
respond to a description of the system within its Kondo
regime. This point will be discussed further in the fol-
lowing subsections.

B. Spectral density

In Fig. 4 we show the NRG impurity spectral den-
sity per channel and per spin ρασ as a function of the
frequency for several values of the bare energy level εd
and at sufficiently low temperature as compared with the
Kondo one for each εd. The resulting spectral function is
quite similar to the corresponding one in the case of the
one-channel infinite U -limit spin-1/2 Anderson impurity.
Indeed, there is only one charge transfer peak located
near the bare energy εd = E2 − E1 which indicates the
energy needed to put a second hole (-electron) in the im-
purity to form one of the triplet states. Furthermore,
the narrow Kondo peak at the Fermi level has a width
of the order of TK (visible in the inset of the figure) and
its intensity is imposed by the usual Friedel sum rule,
ρασ(0) = 1

π∆ sin2(πnα2 ), where nα is the total population
of the α-level.

However, there are non-trivial differences between the
spectral density of the present model and one-channel
infinite U -limit spin-1/2. The first one is related to
the reduced width of the Kondo resonance, whose
discussion will be given in detail in the next subsection.
Here we focus on the manifestation of the many-body
interactions in the charge-transfer peak. Specifically,
we examine its width and position. To this purpose,
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FIG. 4: NRG impurity spectral density as a function of fre-
quency for the same set of values of εd and other parameters
as in Fig. 2.

we employ the NCA results for the spectral density.
Although the NCA does not provide accurate results
for the low energy physics of the model at hands, in
particular TK is found to be overestimated as we will
show in the appendix A, it is especially suitable for the
study of the charge transfer peak. We remind the reader
that the logarithmic discretization of the conduction
band produces an artificial broadening of the charge
transfer peaks within the NRG procedure66. Therefore,
we use NCA when analyzing high energy scales.

Position and width of the charge transfer peak. In
Fig. 5 we present the NCA results for the spectral density
for the same set of parameters as in Fig. 4.
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FIG. 5: Same as Fig. 4 calculated with NCA. The inset shows
the charge-transfer peaks shifted by ε∗d (see Eq. 13).
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Renormalization of the bare energy εd: The Haldane
shift. By means of scaling theory, Haldane65 has showed
that for the asymmetric spin s = 1/2 one-channel An-
derson model (U � |εd|,∆), the renormalized value of
the level εd is given by ε∗d = εd + (∆/π)ln(W/∆). As we
have mentioned in section (II B), the NCA has proved to
be capable of providing accurate results for such energy
shift58,59,64. The sign and the main features of the de-
pendence with ∆ of the Haldane shift can be understood
by a simple argument. Due to the hybridization with the
conduction band, the bare energies of the empty and the
single occupied states are renormalized. While the empty
state is mixed with both single occupied states and, con-
sequently, its energy is lowered by an amount propor-
tional to 2∆, a single occupied state can only be mixed
with the empty state, so its bare energy εd is reduced
an amount ∝ ∆. As ε∗d is the energy difference between
both renormalized energies, we have ∆ε ≡ ε∗d − εd ∝ ∆.
Of course, the logarithmic term in ∆ε = (∆/π)ln(W/∆)
can only be obtained through the scaling process. This
approach is easy to generalize to the SU(N) impurity An-
derson model for valence fluctuations between the con-
figurations with zero and one localized particles59.

In the case of the model describing a Ni impurity and
following Haldane’s approach, starting from the triplet

state |11〉 = h†xz↑h
†
yz↑|0〉 there are two different processes

with hybridization V that connect this state with one
containing only one hole, implying that its renormal-
ized energy goes down an amount ∝ 2∆. On the other
hand, starting from a given state |α ↑〉 and assuming
JH → ∞ there are also two processes, one to the state
|11〉 with hybridization V and other one to the state

|10〉 = 1√
2
(h†xz↑h

†
yz↓ + h†xz↓h

†
yz↑)|0〉 with hybridization

V/
√

2, in such a way that the bare energy of the one-
hole state goes down ∝ 3∆/2. This energy gain is lower
than that corresponding to the triplet states, and so we
expect ∆ε ∝ −∆/2. In fact, using scaling arguments
similar to those of Ref. 65, the renormalized energy ε∗d
becomes

ε∗d = εd − (∆/2π)ln(W/∆). (13)

Note that in comparison to the known one-channel s =
1/2 case, the shift ∆ε has the opposite sign and its mag-
nitude is reduced by a factor 1/2.

We calculate ε∗d as the energy position of the maxi-
mum in the charge-transfer peak of the spectral density
in both, NRG and NCA. Fig. 5 explicitly shows the shift
towards negative energies. In Fig. 6 the values of ε∗d are
shown as a function of εd in units of ∆. Both techniques
display a linear behavior, however with NCA we obtain
a remarkably better well defined linear function (corre-
lation coefficient 0.999) with a slope close to 1 and a
constant of −0.722 in agreement with the second term of
the r.h.s. of Eq. 13, −0.733.

Width of the charge-transfer peak. The inset of Fig. 5
shows a detail of the charge-transfer peak shifted by ε∗d.
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y = -0.722 + 0.991 x

FIG. 6: Renormalized position of the charge-transfer peak,
ε∗d, as a function of εd. Other parameters as in Fig. 2.

We remind the reader that the half-width of this peak
in the case of the one-channel s = 1/2 case is found to
be 2∆, where ∆ corresponds to the one-body broaden-
ing already present in the non-interacting model60. The
prefactor which in general is N for the SU(N) case 59 has
its origin in effects of the interaction.

In the present case the half-width of the charge-transfer
peak is 3∆/2. We trace back this difference with the
following qualitative argument: the half-width 2∆ in the
one-channel s = 1/2 model reflects the two processes
by which the excited empty state is connected to the
single-occupied ground state with hybridization V 59. On
the other hand, for the s = 1 model, the excited one-
hole states are connected to the Sz = 1 (or Sz = −1)
component of the ground state with hybridization V , and
to the Sz = 0 component with hybridization V/

√
2. As

a consequence, the half-width is now 3∆/2.

C. Kondo temperature and Kondo resonance
narrowing effect

The Kondo temperature is undoubtedly the most rel-
evant energy scale in the Kondo phenomena simply be-
cause it represents a universal scale, in terms of which all
physical properties follow a given dependence as a func-
tion of T/TK without being affected by the other param-
eters of the model. Therefore, it is always desirable to
have an analytical expression for such a scale.

Previous studies on the basis of NRG calculations have
found that the introduction of Hund’s coupling into the
Anderson model causes an exponential reduction in the
Kondo temperature55,56. Particularly, our model as-
sumes an infinite Hund’s coupling and belongs to the
same class as the one studied by Nevidomskyy and Cole-
man in Ref. 38 by means of scaling arguments. Ap-
plied to our case, their main result was the existence
of a factor 1/2 in the exponent of the expression of TK
for the full screened spin S = 1 model in comparison
with the corresponding one for the spin s = 1/2. In
general, all approaches agree in the exponential depen-
dence of the Kondo scale, given by exp

(
πεd
∆

)
instead of

exp
(
πεd
2∆

)
of the usual one-channel spin s = 1/2 case.
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Therefore, a relation of the form TS=1
K ∼

(
T
s=1/2
K

)2

is

expected being T
s=1/2
K =

√
W∆ exp

(
πεd
2∆

)
. Note that

the latter can be obtained from the Haldane65 expression

T
s=1/2
K = ∆ exp

(
πε∗d
2∆

)
using ε∗d = εd + (∆/π)ln(W/∆).

Following similar arguments, using TS=1
K = ∆ exp

(
πε∗d
∆

)
and the renormalized level position given by Eq. (13) we
obtain

TS=1
K = c

√
∆/W 3

(
T
s=1/2
K

)2

= c
√

∆3/W e
πεd
∆ , (14)

being c a constant of the order of one.
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FIG. 7: Top panel: The squares indicate the NRG Kondo
temperature as a function of |εd|/∆ calculated for |JH | =
1000W . Dashed line: linear fitting giving ln(TK) = −8.70 −
2.80|εd|/∆ with a correlation coefficient of 0.999. Lower panel:

T ∗ = TK(JH)/
√

∆/W 3(T
s=1/2
K )2 as a function of JH for

|εd|/∆ = 3.

Our numerical NRG data for the Kondo temperature
in case of large enough JH , in such a way that the local
moments become locked into a spin S = 1, confirm this
exponential dependence. In the top panel of Fig. (7) we
show TK (obtained from the conductance as described
at the beginning of this Section) as a function of |εd|/∆,
together a linear fit of the data which exhibits a slope
that differs from the factor π in less than 10%.

Regarding the dependence of TK with JH , in the lower
panel of Fig. (7) we show the calculated Kondo temper-

ature in units of
√

∆/W 3
(
T
s=1/2
K

)2

for a fixed value

of |εd|/∆ = 3. It can be observed that the relation in
Eq. (14) is satisfied in the asymptotic behavior JH →∞,
being the constant c = 0.49 ∼ 1/2. In fact, we have ver-
ified that this constant varies between 0.5 to 1.0 for the

whole set of values of |εd|/∆ presented in top panel of
Fig. (7).

D. Electrical conductance

Since the ground state of model Eq. (1) for D = 0
is a Fermi liquid, transport measurements through the
proposed nanowire should exhibit universal behavior at
low enough temperatures, for parameters that drive the
system inside the Kondo regime. However, as we have
shown in previous sections, the universal dependence of
the observables, for instance as a function of temper-
ature, is expected to be different from the well known
spin s = 1/2 case. Here, we analyze the NRG results
for the equilibrium electrical conductance, G(T ). The
temperature dependence of the conductance through the
Ni atom depends on the total impurity spectral function
ρ(ω) =

∑
ασ ρασ(ω), and it can be calculated from the

following expression63

G(T ) = G0
π∆

2

∫
dω(−f ′(ω))ρ(ω), (15)

where G0 = 2e2/h is the quantum of conductance. Note
that from the expected Friedel sum rule at zero tempera-
ture,

∑
ασ ρασ(0) ∼ 4

π∆ , the maximum value of the con-
ductance should be G(T → 0) = 2G0, twice of the usual
one channel case. We remind the reader that this is not
always the case in two-channel models. For instance, in
the overscreened s = 1/2 two-channel case, the maximum
value of the total conductance is found to be G0/2

25,26.
The present result is a consequence of the Fermi liquid
nature of the ground state, due to the full screening of
the impurity spin.

In the top panel of Fig. 8, we show the NRG results for
G(T ) that correspond to the model of Eq. (2) for several
values of εd. The lower panel displays the same data as
in the top panel with the temperature scaled by the cor-
responding Kondo one. As expected, for temperatures
T . TK the whole set of curves follows the same depen-
dence in units of T/TK , which confirm that TK is the
only one relevant energy scale of the model within the
Kondo regime. Furthermore, the case −εd/∆ = 2 also
follows the universal dependence reinforcing the conclu-
sion that, for the parameters representing the Ni impu-
rity in the O-doped Au chain, the system lies within the
Kondo regime.

Regarding the dependence of G with T/TK , it is well
known that the empirical expression

G(T ) =
Gs[

1 +
(
21/s − 1

)
(T/TK)

2
]s , (16)

with s = 0.22 and Gs the conductance at temperature
T = 0, matches not only experimental results but also
NRG calculations in the case of the spin s = 1/2 one-
channel Anderson model3,69. A similar scaling law has
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FIG. 8: Top panel: Equilibrium conductance G(T ) in units of
2e2/h as a function of temperature. Lower panel: The same
data that in the top panel in units of T/TK (see caption of
Fig. 2 for the values of TK) and normalized by the saturated
conductance Gs = G(T → 0)

.

been used to fit experimental data and one-channel NRG
results for the resistivity due to magnetic impurities with
spin S = 1/2, 1 and 3/2 in Fe and Ag by Costi et al70.
Although the scaling function in this case is different from
that of G(T ) both coincide for T � TK

71. Similar scaling
functions were used to fit G(T ) for the underscreened
Kondo model18,72. Here, we show that also for our model
the scaling is noticeable different that in the s = 1/2 case,
in spite of being a fully compensated Kondo effect.

Fig. (9) displays the NRG results for the total conduc-
tance per channel, Gα(T ) =

∑
σ Gασ(T ), in units of its

maximum Gs as a function of T/TK for a selected value
of εd well inside the Kondo regime. The red solid line
indicates the temperature dependence given by Eq. (16)
for the spin s = 1/2 model. As it can be seen, the numer-
ical data corresponding to the full screening of the spin
S = 1 appreciably deviates from the latter.

Our results indicate that the relation given in Eq. (16)
is still valid in the present case but with a different fac-
tor s = 0.15. We have verified that similar coefficients,
0.15 < s < 0.17, appear when the formula is applied to
other, negative enough, values of εd. Curiously, a similar
exponent s = 0.16 was found for the fit of the resistiv-
ity due to S = 1 Kondo impurities in the underscreened
case. Empirical formulas like (16) have been shown to be
a very useful tool in order to discern the spin of impuri-
ties in experimental underscreened Kondo systems18,72,
and so, the good agreement between the NRG G(T ) and
Eq. (16), would allow to identify S = 1 fully screened
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FIG. 9: (Color online) Squares: NRG data for Gα(T ) =∑
σ Gασ(T ) in units of its maximum Gs as a function of

T/TK , for εd = −4∆. Dashed black line: fitting of numer-
ical data with expression Eq. (16) with s = 0.15. Solid red
line: Eq. (16) with s = 0.22.

systems.

E. Role of the single-ion magnetic anisotropy

A key ingredient in magnetic nanosystems is the pres-
ence of rather large single-ion magnetic anisotropiesDS2

z ,
due to the enhanced spin-orbit coupling brought about
by the lower symmetries than in bulk systems73–77. In
fact, cluster and ab-initio calculations42 yields an appre-
ciable positive D ∼ 8.5 meV for the Ni atom embedded
into the O-doped Au chains.

Very recently, working with the same model of Eq. (2),
we have uncovered a topological quantum phase transi-
tion between two Fermi liquids as a function of the mag-
netic anisotropy43. For D < Dc ' (2 − 3)T 0

K (T 0
K is

the Kondo temperature for D = 0), the impurity is fully
Kondo screened as in the D = 0 case, with a Kondo
temperature that, surprisingly, scales as a power law of
D,

TK(D) ∝ T 0
K

(
Dc −D
Dc

)2

. (17)

close to Dc
43. On the hand, for D > Dc the impurity spin

is quenched by the anisotropy, giving rise to a topological
non-trivial Fermi liquid ground state, with a non-zero
Luttinger integral IL

43,78. Due to this fact the system
cannot be adiabatically connected to a non-interacting
one. Therefore we have named it a non-Landau Fermi
liquid43. At the critical point, the system exhibits several
non-Fermi liquid signatures of the two-channel s = 1/2
Kondo (2CK) effect.
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We remind the reader that in a Fermi liquid, as in a
simple pure metal, the life time of the quasiparticles for
small excitation energy ω from the Fermi energy, scales
as ω−2 at zero temperatures. Landau postulated that
due to restrictions of phase space imposed by Pauli prin-
ciple, the same behavior should take place in interacting
systems. However for some strongly interacting systems,
like the overscreened Kondo models, this picture breaks
down and the quasiparticles have finite lifetime even at
ω = 0. An intermediate case are the marginal Fermi liq-
uids (corresponding to underscreened Kondo models) in
which the lifetime is infinite at ω = 0 but has a non ana-
lytical dependence on ω22,29 In our case for D 6= Dc, the
system is a Fermi liquid. Until recently, the natural ex-
pectation was that a Fermi liquid, like a non-interacting
system was characterized by IL = 0, but as shown first
by Curtin et al.78, some interacting system (such as ours
for D > Dc) behave as Fermi liquids with IL 6= 0. IL
has a topological character and can only have discrete
values43,79.
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FIG. 10: (Color online) NRG conductance Gα(T )/G0 of the
S = 1 Kondo impurity model for several positive magnetic
anisotropies D across the topological quantum phase transi-
tion. The black (red) curves correspond to D < Dc (D > Dc).
From top to bottom: D = 0.0, 1×10−4, 1.15×10−4, 1.3×10−4,
1.35 × 10−4, 1.3505 × 10−4, 1.351 × 10−4, 1.315 × 10−4,
1.352 × 10−4, 1.3525 × 10−4, 1.353 × 10−4, 1.3535 × 10−4,
1.354×10−4, 1.345×10−4, 1.355×10−4, 1.4×10−4, 1.6×10−4.
The parameters are J = 0.2 and W = 1. We take Λ = 3 and
keep 4000 NRG states. For these parameters, T 0

K = 4.2×10−5

and Dc = 1.352× 10−4.

To illustrate the generic appearance of this topolog-
ical quantum phase transition for the S = 1 impurity,
we consider the Kondo limit of the two-orbital Anderson
model (2), that is, a S = 1 impurity coupled through
an exchange interaction J with two-degenerate conduc-
tion bands. In Fig. 10, we show the NRG conductance of
the Kondo model as a function of temperature, for sev-
eral positive D, below and above the critical anisotropy
Dc = 1.352 × 10−4 (J = 0.2, W = 1). It can be seen
that for D < Dc, G(T ) reaches the unitary limit at low

temperatures, corresponding to a fully-screened Kondo
effect; on the other hand, for D > Dc, the conductance
goes to zero, as the magnetic moment of the impurity is
quenched by the single-ion anisotropy. Close to Dc, G(T )
exhibits an extended plateau at one-half of the unitary
limit value, a typical characteristic of the 2CK effect.
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FIG. 11: (Color online) Normalized NRG spectral function
ρα(ω) of the S = 1 Kondo impurity model as a function of
T/T 0

K , for several positive D across the topological quantum
phase transition. The black (red) curves correspond to D <
Dc (D > Dc). From top to bottom: D = 0.0, 5 × 10−5,
8 × 10−5, 1 × 10−4, 1.15 × 10−4, 1.2 × 10−4, 1.21 × 10−4,
1.22×10−4, 1.23×10−4, 1.25×10−4, 1.3×10−4, 1.35×10−4,
1.6×10−4, 1.8×10−4, 2×10−4, 5×10−4. The parameters are
W = 1, J = 0.2. We take Λ = 2 and keep 3000 NRG states.
For these parameters, Dc = 1.225×10−4 and T 0

K = 3.8×10−4.

As another signature of the quantum phase transition
that occurs for D = Dc, Fig. 11 displays the spectral
density of states in the Kondo limit80 calculated with
NRG of the S = 1 Kondo impurity model, around the
Fermi level energy, for several positive D across the crit-
ical one. For D < Dc (black curves) the full screening
of the S = 1 impurity gives rise to a Kondo resonance,
while for D > Dc (red curves) a dip appears at the Fermi
level due to the anisotropy-driven quenching of the mag-
netic degree of freedom of the impurity. At D ' Dc, the
spectral density at ω = 0 takes half of its value in the
fully screened Kondo phase. This is another indication
of the emergence of 2CK physics at critical Dc.

With the aim of complementing the above mentioned
results, now we analyze the behavior of our model (2)
with negative D. In this case, the isolated impurity has
a doubly degenerate ground state, corresponding to Sz =
±1. Although these spin projections differ in |∆Sz| = 2
and, consequently, they cannot be connected by the usual
second order hybridization processes that originate the
Kondo exchange interaction, we have found that fourth-
order hybridization processes (see Fig. 12) lead to a fully
Kondo screening of the S = 1 impurity for negative D.

The left panel of Fig. (13) displays the NRG impurity
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FIG. 12: (Color online) A fourth-order hybridization process
that leads to an effective spin-flip between the Sz = ±1 pro-
jections for negative D.

entropy contribution as function of the normalized tem-
perature T/T 0

K , for D = −16T 0
K . It can be seen that, as

for D = 0, at the higher temperatures eSimp saturates at
the value given by the localized Hilbert space. At inter-
mediate temperatures, once the charge fluctuations are
frozen, a plateau can be observed with eSimp ' 2, cor-
responding to the double degenerate impurity Sz = ±1
degrees of freedom. As these magnetic states are fully
Kondo screened at lower temperatures, the impurity en-
tropy goes to zero. On the other hand, the right panel
of Fig. (13) shows the NRG impurity spectral function
as function of frequency around the Fermi level, at a
very low temperature. ρασ has the typical structure of
a Kondo state, and it can be seen that it satisfies the
Friedel sum rule. Both curves, entropy and spectral func-
tion, along the NRG spectra, indicates that for negative
D the ground state of model (2) is a conventional local
Fermi liquid.

Finally, through the NRG conductance (see Fig. (14),
we can estimate the Kondo temperature using the usual
rule G(TK) = G(T → 0)/2. It can be seen that this en-
ergy scale TK(D) rapidly goes down as D becomes more
negative. In fact, TK(D) obeys an exponential scaling
law with |D| :

TK(D) ∝ T 0
Kexp

[
−c
(
D

T 0
K

)2
]

(18)

with c a constant of order of one.

IV. Conclusions

In this work, we have studied a spin-1 Anderson
impurity model –in which the triplet ground state is
mixed with a configuration with two doublets by means
of two degenerate conduction channels–, that describes
a single Ni impurity embedded in an O-doped Au
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FIG. 13: (Left) NRG impurity entropy Simp as a function
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K . (Right) NRG impurity spectral function ρασ(ω) as
a function of ω/T 0

K . The model parameters are ∆ = 0.1,
εd = −0.2∆, with a corresponding T 0

K ' 1.245 × 10−3, and
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FIG. 14: (Color online) NRG conductance Gα(T ) as a
function of T/T 0

K for three different negative magnetic
anisotropies D. The other parameters are the same as in
Fig. (13).

chain42. In agreement with the predictions of Nozières
and Blandin21, this two-orbital two-channel impurity
model exhibits a fully-screened Kondo effect at low tem-
peratures. As the experimental realizations of the fully-
screened Kondo effect for high-spin quantum dots are
rare at present as compared to what happens in bulk
systems, our results provide a useful guide to potential
experimental studies of the Ni impurity in gold chains
or related systems, allowing, for example, to discern
the spin of the impurity. In this sense, to be more
realistic, we have included the effect of a single ion
anisotropy D in the impurity. There is a plethora of
experiments on nanoscopic systems, which cannot be de-
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scribed with the single channel S = 1/2 Anderson (or
Kondo) model, in particular several experimental real-
izations with S > 1/214,15,19,24,28,30,33,34 and also with
degenerate orbitals39–41 have been studied. Therefore, it
is reasonable to expect that experimental realizations of
fully compensated Kondo impurities will appear in the
near future.

We have solved the impurity model using two meth-
ods that give very reliable information at complementary
energy scales: the numerical renormalization group, nu-
merically exact at low energies of the order of the Kondo
temperature, and the non-crossing approximation, that
takes correct account of the charge transfer processes at
higher energies.

For D = 0, we have found the expected signatures
of the local Fermi liquid behavior at low temperatures:
the universality with a single Kondo energy scale, the
vanishing of the impurity entropy contribution, the large
electrical conductance in agreement with the Friedel sum
rule, among others. However, the Kondo temperature is
strongly reduced in comparison with the s = 1/2 case,
a phenomenon that has been experimentally observed in
bulk systems since the 1960’s38. Furthermore, the empir-
ical expression of the conductance as a function of tem-
perature (Eq. 16), that is used to experimentally discern
the spin value of the impurity18, has a noticeable different
fitting s parameter as compared with the fully screened
spin-1/2 and the underscreened spin-1 Kondo cases. An-
other interesting feature is that the mixed valence regime
seems to be much suppressed in the spin−1 case.

At higher energies, the charge transfer peak for the
spin-1 model exhibits a very different behavior in com-
parison with the spin-1/2 model: the Haldane shift of
the bare energy εd is cut in half and has an opposite sign
(ε∗d is closer to the Fermi level), while the width of the
charge transfer peak is reduced to ' 3∆. This last result,
together with suppression of the mixed valence regime,
points out that charge fluctuations are significantly re-
duced for high-spin impurities.

As found earlier43, the single-ion anisotropy D has a
strong effect on the Kondo physics: while for any negative
D the Kondo effect survives, with a reduced TK(D), for a
critical positive Dc there is a topological quantum phase
transition, from the usual local Fermi liquid at lower D
to a topologically non-trivial non-Landau Fermi liquid for
larger anisotropies. Just at the transition, the impurity
shows the signatures of a non-Fermi liquid two-channel
Kondo behavior. In this work we have calculated the
conductance and the spectral density in the Kondo limit
very near the transition, showing the abrupt remarkable
changes of both quantities at Dc.

For negative D the Kondo effect always persists at
low enough temperatures, but the Kondo temperature is
strongly reduced because the remaining degenerate states
of the impurity are mixed by a higher (fourth) order pro-
cess in the hybridization between impurity and conduc-
tion electrons.

We hope that our detailed study of the spin−1 Ander-

son impurity model encourages the experimental search
of low dimensional high-spin fully-screened Kondo sys-
tems, like the proposed Ni impurity in O-doped Au-chain.
As we have shown, there are several observables that
can be used to differentiate the high-spin and the usual
spin−1/2 cases.
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A. Kondo temperature within the NCA
approximation

In this Appendix, we show that the Kondo scale is
overestimated within the non-crossing approximation.

In the isotropic case, D = 0, and for degenerate levels
(as for the Ni impurity in the O-doped Au chain), the sys-
tem of equations that determines the NCA self-energies
is reduced to

Σ1(ω) =
3∆

2π

∫ W

−W
dεf(ε)G2(ε+ ω),

Σ2(ω) =
2∆

π

∫ W

−W
dεf(ε)G1(ω + ε), (A1)

where G2(ω) and G1(ω) represent the Green’s function
of the triplet and both doublets α = xz, yz components,
respectively.

With the help of the redefinition ∆ = 2∆′ for the hy-
bridization, it can be seen that the set of self-energies
equations is the same as for the NCA treatment of
the SU(N) × SU(M) generalization of the multichan-
nel single-impurity Kondo model, with M = 4 identical
conduction bands and being N = 3 the degeneracy in the
impurity spin quantum number81,

Σ1(ω) =
3∆′

π

∫ W

−W
dεf(ε)G2(ε+ ω),

Σ2(ω) =
4∆′

π

∫ W

−W
dεf(ε)G1(ω + ε). (A2)

For this system, the characteristic energy scale TNCA
K

can be obtained analytically from the zero temperature
limit of the self-energies, and it is given by the expres-
sion81,82

TNCA
K = W

(
∆′

πW

)M
N

× exp
( πεd
N∆′

)
. (A3)

For the simplest case of the one-channel (M = 1), infinite
Coulomb repulsion, and spin s = 1/2 (N = 2) Anderson
model, NCA gives the Kondo temperature

T
s=1/2
K,NCA =

√
∆W

π
eπεd/2∆. (A4)
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This value coincides with the exact Kondo energy except
for the prefactor 1/

√
π ≈ 0.5.

On the other hand, for the case of interest we derive
the following NCA Kondo scale,

TS=1
K,NCA = W

(
∆

2πW

)4/3

e2πεd/3∆, (A5)

which can be written in terms of T
s=1/2
K and in units of

W as follows

TS=1
K,NCA =

√
8

(
∆

2π

)2/3 (
T
s=1/2
K

)4/3

. (A6)

The relation with the asymptotic Kondo temperature
for the spin S = 1 obtained from the NRG calculations in

Eq. (14), c
√

∆
(
T
s=1/2
K

)2

, shows that the NCA largely

overestimates the Kondo scale as

TS=1
K

TS=1
K,NCA

≈ c(2π)4/3∆1/6eπεd/3∆ � 1, (A7)

for typical εd and ∆ values in the Kondo regime.

Intensity of the Kondo peak within the NCA
approximation

For such a model, the NCA spectral density at the
Fermi level is expected to be ρ(0) ∼ 2π

(N+M)2∆′ , (see Ap-

pendix B of Ref. 82). We have verified that our calcula-
tions satisfy this rule (An additional factor 2 was included
due to the definition of the physical operator).
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