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In the homogeneous case, the only curvature behavior which is still far from being understood is Ricci negative.
In this paper, we study which nilpotent Lie algebras admit a Ricci negative solvable extension. Different
unexpected behaviors were found. On the other hand, given a nilpotent Lie algebra, we consider the space of
all the derivations such that the corresponding solvable extension has a metric with negative Ricci curvature.
Using the nice convexity properties of the moment map for the variety of nilpotent Lie algebras, we obtain a
useful characterization of such derivations and some applications.
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1 Introduction

There are no topological obstructions on a differentiable manifold M to the existence of a complete Riemannian
metric with negative Ricci curvature (see [Lo]). However, in the presence of a Lie group G acting transitively on
M , it is natural to expect a nice interplay between any prescribed curvature behavior of G-invariant metrics and
not only the topology of M but also the algebraic structure of G.

Back in 1974, Heintze [H] (see also [AW]) proved that any homogeneous Riemannian manifold with Sec < 0
is isometric to a metric on a simply connected solvable Lie group (any metric on a Lie group is assumed to be
left-invariant from now on) satisfying the following strong structural property: the nilradical n of its Lie algebra
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2 J. Deré and J. Lauret: On Ricci negative solvmanifolds and their nilradicals

s has codimension one and there is an element Y ∈ s such that the derivation adY |n of n is positive, in the
sense that its real semisimple part adY |Rn , which is also in Der(n), has its eigenvalues (i.e. the real parts of the
eigenvalues of adY |n) all positive. Conversely, any solvable Lie group of this kind admits a metric with Sec < 0.
Surprisingly (or not), the obvious question of which nilpotent Lie algebras admit a positive derivation is still wide
open. We will show in this paper that such a problem seems to be hopeless.

The stronger pinching condition −4 ≤ Sec ≤ −1 was studied by Eberlein-Heber [EH]; for instance, they
showed that one additionally needs n 2-step nilpotent (or abelian) and Spec

(
adY |Rn

)
⊂ [1, 2]. On the other

hand, concerning the weaker condition Sec ≤ 0, it was proved by Azencott-Wilson [AW] (see also [Wo, A])
that the only homogeneous examples (up to isometry) are still simply connected solvable Lie groups. Here the
orthogonal complement a of the nilradical n in s can be of dimension > 1, though the conditions [a, a] = 0 and
adY |Rn ≥ 0 must hold, among other more technical conditions.

In the homogeneous case, the only curvature behavior which is still not understood is Ric < 0 (see e.g. [NNn,
Introduction]). In the 1980s, Dotti-Leite-Miatello [D, DL, DLM] proved that the only unimodular Lie groups that
can admit a Ric < 0 metric are the non-compact semisimple ones and showed that most of non-compact simple
Lie groups indeed have one, with some low dimensional exceptions, including SL2(C), Sp(2,R) and G2 (non-
compact). The existence of Ric < 0 metrics on such exceptions of non-compact simple groups is still open, the
only solved case is SL2(R), where the non-existence easily follows (see e.g. [Mi]). It was proved by Jablonski-
Petersen [JP] that a semisimple Lie group admitting a metric with Ric < 0 can not have compact factors, i.e. it is
of non-compact type. Recall that topologically, any (connected) Lie group is a product K × Rm, where K is its
maximal compact subgroup.

More recently, in 2016, unexpected examples of Lie groups admitting Ric < 0 metrics which are neither
semisimple nor solvable were constructed by Will [W1, W2]. The Levi factors of some of these examples are
compact, including SU(n) (n ≥ 2) and SO(n) (n ≥ 3), and therefore four of the nine topologies missed by
the semisimple examples in [DLM] are attained: K × Rm for K equal to SU(2), SU(3), SO(5) or SO(7). The
cases in which K is S1, Sp(3), Sp(4), Sp(5) or G2 remain open. It is worth pointing out that the homogeneous
space SO+(n, 2)/SO(n) (n ≥ 2), which is homeomorphic to S1 × Rk, does admit an invariant metric with
Ric < 0 (see [Nn, Example 1]). On the other hand, a general construction in [W2] gives that any non-compact
semisimple Lie group admitting a Ric < 0 metric can be the Levi factor of a non-semisimple Lie group with a
Ric < 0 metric. Non-abelian nilradicals are possible in most of these Will’s constructions. All this shows that an
algebraic characterization of Lie groups having a Ric < 0 metric is out of reach at the moment.

The study of the solvable case was also recently initiated by Nikolayevsky-Nikonorov [NNn] in 2015. They
obtained the following sufficient condition on a solvable Lie group S to admit a metric with Ric < 0:

There exists Y ∈ s such that adY |Rn > 0, (1)

where n is the nilradical of s. Note that the nilradicals involved in these examples are the same as those needed
for Sec < 0, although the condition [a, a] = 0 is not mandatory here as in the case of Sec ≤ 0. Also a necessary
condition was found in [NNn]:

There exists Y ∈ s such that tr adY > 0 and adY |Rz(n) > 0, (2)

where z(n) is the center of n.
We note that all the structural conditions on a solvable Lie group related to the existence of negative sectional

or Ricci curvature metrics have the same flavor, motivating the following fundamental question:

Which nilpotent Lie algebras can be the nilradical of some solvable Lie algebra admitting a Ric < 0
metric?

Such a Lie algebra will be called a Ricci negative nilradical (RN-nilradical for short). Since the existence of
a positive derivation is sufficient, even for Sec < 0, any nilpotent Lie algebra which is 2-step or has dimension
≤ 6 is a RN-nilradical.

In Section 4, we first show that for a nilpotent Lie algebra, the existence of a derivation of positive trace is a
condition that is stronger than admitting a non-trivial diagonalizable derivation, and that this is in turn stronger
than the property of having only nilpotent derivations. Secondly, we use condition (2) (the only obstruction

Copyright line will be provided by the publisher



mn header will be provided by the publisher 3

known) to exhibit many explicit examples of nilpotent Lie algebras which are not RN-nilradicals. They all have
a derivation of positive trace and the following characteristics are obtained (for the first three examples any
diagonalizable derivation has a zero eigenvalue on the center):

• dim n = 8.

• n is 3-step nilpotent.

• A continuous family of pairwise non-isomorphic algebras of dimension 13.

• n has a non-singular derivation but any diagonalizable derivation has a negative eigenvalue on the center.

On the contrary, we show that the fact that any diagonalizable derivation of n has a negative eigenvalue is not
an obstacle for n to be a RN-nilradical. All this suggests that, as in the study of Einstein nilradicals (see e.g.
[L1]), the search for new sufficient or necessary general conditions is a challenging problem.

In the light of the results obtained in [NNn, N2] in the general case as well as in the particular cases of
Heisenberg and filiform Lie algebras as nilradicals, a complete characterization of solvable Lie algebras admitting
Ric < 0 metrics is expected to take the following form:

There exists Y ∈ s such that adY |Rn belongs (up to automorphism conjugation) to certain open and
convex cone in the maximal torus of derivations of the nilradical n of s.

We study this problem in Section 3. At the core of this question one has the following situation. Given a
nilpotent Lie algebra n, each D ∈ Der(n) defines a solvable Lie algebra sD = Rf ⊕ n given as the semi-direct
sum such that ad f |n = D. We call D Ricci negative if trD > 0 and sD admits a Ric < 0 metric such that
Dt = D and f ⊥ n. Note that any D > 0 is Ricci negative (see (1)) and D|z(n) > 0 is a necessary condition (see
(2)). The following natural questions arise:

Given a basis {ei} of n, what kind of set is the cone of Ricci negative diagonal derivations? Is it open
in the space of diagonal derivations? Is it convex?

We prove that a diagonal derivation D is Ricci negative if and only if D belongs to certain open and convex
cone depending on D (see Corollary 3.4). Our main tool is the moment map for the GL(n)-action on the variety
of nilpotent Lie algebras, which is known from real geometric invariant theory to satisfy nice convexity properties
(see [HS]). In the case when the basis {ei} is nice (see Definition 3.13), a particularly neat characterization of
Ricci negative derivations is given. As an application, we obtain that any nilpotent Lie algebra of dimension 7
having a non-nilpotent derivation is a RN-nilradical (see Theorem 3.19). More applications are developed in the
forthcoming paper [LW2].

2 Preliminaries

2.1 The representation Λ2(Rn)∗ ⊗ Rn

We consider the space of all skew-symmetric algebras of dimension n, which is parameterized by the vector
space

V := Λ2(Rn)∗ ⊗ Rn.

There is a natural linear action of GLn(R) on V given by g · µ := gµ(g−1·, g−1·), for all g ∈ GLn(R), µ ∈ V ,
whose derivative defines the gln(R)-representation on V ,

E · µ = Eµ(·, ·)− µ(E·, ·)− µ(·, E·), E ∈ gln(R), µ ∈ V.

We note that E · µ = 0 if and only if E ∈ Der(µ), the Lie algebra of derivations of the algebra µ. Let tn denote
the set of all diagonal n×n matrices. If {e1, ..., en} is the basis of (Rn)∗ dual to the canonical basis {e1, ..., en},
then

{µijk := (ei ∧ ej)⊗ ek : 1 ≤ i < j ≤ n, 1 ≤ k ≤ n}
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4 J. Deré and J. Lauret: On Ricci negative solvmanifolds and their nilradicals

is a basis of V of weight vectors for the above representation. Note that µijk is actually the bilinear form on Rn
defined by µijk(ei, ej) = −µijk(ej , ei) = ek and zero otherwise. The corresponding weights are given by

F kij := Ekk − Eii − Ejj ∈ tn, i < j,

where Ers denotes as usual the matrix whose only nonzero coefficient is 1 at entry rs. The structural constants
c(µ)kij of an algebra µ ∈ V are then given by

µ(ei, ej) =
∑
k

c(µ)kij ek, µ =
∑
i<j, k

c(µ)kij µijk.

We consider the Weyl chamber of gln(R) defined by

tn+ := {Dg(a1, . . . , an) : a1 ≤ ... ≤ an} ,

and the open cone
tn>0 := {Dg(a1, . . . , an) : ai > 0} .

The canonical inner product 〈·, ·〉 on Rn determines O(n)-invariant inner products on V and gln(R) making of
{µijk} and {Eij} orthonormal bases, respectively. All these inner products will also be denoted by 〈·, ·〉.

2.2 Moment map

The moment map (or GLn(R)-gradient map) from geometric invariant theory (see e.g. [HSS, HS, BL] for further
information) for the above representation is the O(n)-equivariant map

m : V r {0} −→ sym(n),

defined implicitly by

〈m(µ), E〉 = 1
|µ|2 〈E · µ, µ〉 , µ ∈ V r {0}, E ∈ sym(n). (3)

We are using gln(R) = so(n) ⊕ sym(n) as a Cartan decomposition, where so(n) and sym(n) denote the sub-
spaces of skew-symmetric and symmetric matrices, respectively. Note that m is also defined on the projective
space P(V ).

2.3 Convex subsets

Let W be a real vector space endowed with an inner product. A compact and convex subset E of W is called a
convex body and a subset F ⊂ E is said to be a face of E if it is convex and for each pair of points x, y ∈ E such
that the relative interior (i.e. the interior as a subset of the generated affine subspace) of the segment [x, y] meets
F one has that [x, y] ⊂ F . An extreme point of E is a point which is a face and a face F of E is called exposed
if there exists α ∈W such that

F = {x ∈ E : 〈x, α〉 = max{〈y, α〉 : y ∈ E}} .

Given a subset X ⊂W , its convex hull is defined by

CH(X) :=
{
a1x1 + · · ·+ akxk : xi ∈ X, ai ≥ 0,

∑
ai = 1, k ∈ N

}
.

Any convex body is the convex hull of its extreme points and also the disjoint union of the relative interiors of its
faces. The convex hull of two disjoint disks of same radius in R2 is an example of a convex body with four non
exposed extreme points.

If X is a finite subset, say X = {x1, . . . , xn}, CH(X) is called a convex polytope. In this case, all the faces
of CH(X) are exposed and it is easy to see that its relative interior is given by

CH◦(x1, . . . , xn) :=
{
a1x1 + · · ·+ anxn : ai > 0,

∑
ai = 1

}
.

A subset C ⊂W is called a cone if rx ∈W for any r > 0, x ∈W .
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2.4 Convexity properties of the moment map

In [HS, BGH], many nice and useful results on the convexity of the image of the moment map have been obtained.
In order to apply these results to our GLn(R)-representation V = Λ2(Rn)∗ ⊗ Rn (see Section 2.1), we use the
notation of the aforementioned articles and set

U := U(n), UC = GLn(C), Z := P(Λ2(Cn)∗ ⊗ Cn).

Thus P(V ) is a GLn(R)-invariant closed subset of Z. For any compatible subgroup G ⊂ GLn(R), one has that
K := G ∩ O(n) is a maximal compact subgroup of G, g = k ⊕ p is a Cartan decomposition and G = K exp p,
where p := g ∩ sym(n) and g, k denote the Lie algebras of G, K, respectively. Consider a ⊂ p, a maximal
abelian subalgebra. Thus the corresponding torus A = exp a ⊂ G is also a compatible subgroup.

The moment map m : V r {0} −→ p for the G-action is given by composing the moment map (3) for the
GLn(R)-action with the orthogonal projection from sym(n) to p, and the one for theA-action,ma : V r{0} −→
a, by projecting on a. Let a+ ⊂ a denote a Weyl chamber of G.

We now consider closed G-invariant subsets of P(V ). A subset X ⊂ P(V ) is called irreducible if it is a real
semi-algebraic subset whose real algebraic Zariski closure is irreducible (see [HS]). Note that the projection on
P(V ) of any orbit closure G · µ is an irreducible subset if G is connected.

Theorem 2.1 [HS] Let X be a closed G-invariant subset of P(V ).

(i) m(X) ∩ a is the union of finitely many convex polytopes;

(ii) m(X) ∩ a+ is a convex polytope if X is irreducible.

(iii) ma(X) is a convex polytope if X is irreducible.

In particular, m(G · µ) ∩ a+ and ma(A · µ) are both convex polytopes for any µ ∈ V . Note that part (iii) is
just part (ii) applied to G = A and that if W := NK(a)/CK(a) is the corresponding Weyl group, then for X
irreducible one has that

m(X) ∩ a =
⋃
k∈W

k · (m(X) ∩ a+). (4)

Let XA denote the set of A fixed points in X .

Theorem 2.2 [BGH] Let X be a closed G-invariant subset of P(V ).

(i) ma(XA) is a finite set whose convex hull is CH(ma(X)); in particular, CH(ma(X)) is a convex polytope
(see [BGH, Proposition 3.1]).

(ii) CH(m(X)) ∩ a = CH(ma(X)) and CH(m(X)) = K · CH(ma(X)) (see [BGH, Lemma 1.1]).

(iii) All faces of CH(m(X)) are exposed (see [BGH, Theorem 0.3]).

3 Ricci negative derivations

Given a nilpotent Lie algebra n, each basis {e1, . . . , en} of n identifies the vector space n with Rn, bringing the
whole setting described in Section 2, which will be used from now on without any further mention. When an
inner product is given on n, one can use any orthonormal basis. In this way, the Lie bracket [·, ·] of n becomes a
vector in V , the orbit GLn(R) · [·, ·] consists of those Lie brackets on n which are isomorphic to [·, ·] and the set
N of all nilpotent Lie brackets is a GLn(R)-invariant algebraic subset of V . Note that each µ ∈ N determines a
Riemannian manifold; namely, the Lie group (Nµ, 〈·, ·〉) endowed with the left-invariant metric defined by 〈·, ·〉.
A remarkable fact is that the moment map from Section 2.2 encodes geometric information; indeed

m(µ) = 4
|µ|2 Ricµ, (5)

where Ricµ is the Ricci operator of (Nµ, 〈·, ·〉) (see e.g. [LL]).
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6 J. Deré and J. Lauret: On Ricci negative solvmanifolds and their nilradicals

Each D ∈ Der(n) defines a solvable Lie algebra

s = Rf ⊕ n,

given as the semi-direct sum such that ad f |n = D. If 〈·, ·〉 is an inner product on s such that |f | = 1 and f ⊥ n,
then it is easy to see using e.g. [LL, (11)] that the Ricci operator of (s, 〈·, ·〉) is given by

Ric =


− trS(D)2 ∗

∗ Ricn + 1
2 [D,Dt]− tr(D)S(D)

 , (6)

where Ricn = |[·,·]|2
4 m([·, ·]) is the Ricci operator of (n, 〈·, ·〉), S(D) := 1

2 (D +Dt) and

〈Ric f,X〉 = − trS(D) adnX, ∀X ∈ n.

It is easy to see that ∗ = 0 if D is normal (see e.g. the proof [L2, Proposition 4.3]).
Definition 3.1 A derivation D of a nilpotent Lie algebra n with trD > 0 is said to be Ricci negative if the

solvable Lie algebra s = Rf ⊕ n defined above admits an inner product of negative Ricci curvature such that
Dt = D and f ⊥ n.

We ask for the positivity of the trace in the above definition since the isomorphism class of s = Rf ⊕ n
is invariant up to a nonzero scaling of D. Furthermore, unimodular solvable Lie algebras do not admit Ricci
negative metrics (see [D]), so trD 6= 0 is a necessary condition. Note that any Ricci negative derivation is
diagonalizable. It easily follows from (6) that if D > 0 (i.e. all its eigenvalues are positive) then D is Ricci
negative. On the other hand, the only known necessary condition for a derivation D to be Ricci negative is that
D must be positive when restricted to the center of n (see [NNn, Theorem 2, (1)]). We consider in Section 4 the
problem of which nilpotent Lie algebras admit a Ricci negative derivation.

The following natural question arises:

(Q1) Given a nilpotent Lie algebra n with a basis {ei}, what kind of set is the cone

{D ∈ Der(n) : D is diagonal relative to {ei} and Ricci negative}?

Is it open in the space of diagonal derivations? Is it convex?

In [NNn, N2], it was proved that this cone is open and convex for Heisenberg and filiform Lie algebras
endowed with the standard bases.

3.1 Ricci negative derivations in terms of the moment map

Let GD denote the connected component of the identity of the centralizer subgroup of D in GLn(R) and let gD
be its Lie algebra. Given an inner product 〈·, ·〉 on a vector space n, we denote by sym(n) the space of symmetric
operators of n and by sym(n)>0 the open cone of positive definite ones. Ifm is the moment map defined as in (3)
by 〈·, ·〉, then the moment map mD for the GD-action satisfies that mD(µ) is the orthogonal projection of m(µ)
on sym(n)∩gD. Since m(µ) commutes with any symmetric derivation of (n, µ) and D is a derivation of any Lie
bracket in the set GD · [·, ·], we obtain that

mD = m on GD · [·, ·] if D ∈ sym(n). (7)

Theorem 3.2 Let n be a nilpotent Lie algebra endowed with an inner product and consider D ∈ Der(n) ∩
sym(n) with trD > 0. Then the following conditions are equivalent:

(i) D is Ricci negative.
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(ii) D ∈ R>0m (GD · [·, ·]) + sym(n)>0.

(iii) D ∈ R>0m
(
GD · [·, ·]

)
+ sym(n)>0.

P r o o f. Let 〈·, ·〉 denote the inner product endowing n, which we extend to s by setting f ⊥ n and |f | = 1. We
first assume part (i) and denote by 〈·, ·〉1 the Ricci negative inner product on s such thatDt = D and f ⊥ n, which
up to scaling can be assumed to satisfy |f |1 = 1. There exists h ∈ sym(n)>0 such that 〈·, ·〉1|n×n = 〈h·, h·〉,
giving rise to an isometry

(s = Rf ⊕ n, 〈·, ·〉1) −→ (s1 = Rf ⊕ n, 〈·, ·〉), (8)

where the Lie bracket of s1 is defined by ad1 f |n = hDh−1, [·, ·]1|n×n = h · [·, ·]. The isometry is produced by
the orthogonal isomorphism sending f to f and each X ∈ n to h(X). Since D is also symmetric with respect to
〈·, ·〉1 we obtain that h ∈ GD, and so the Ricci operator of (s1, 〈·, ·〉), which is also negative definite by (8), is
given by

Ric1 |n = rm(h · [·, ·])− tr(D)D,

for some r > 0 (see (6) and (5)), from which part (ii) follows .
Since (iii) follows trivially from (ii), it would only remains to show that part (iii) implies (i). Assume that

D = rm(µ) + E for some r > 0, E ∈ sym(n)>0 and that there exist hk ∈ GD such that hk · [·, ·] converges
to µ, as k → ∞. Thus D ∈ Der(hk · [·, ·]) for any k, D ∈ Der(µ) and by scaling µ appropriately we obtain
that Ricµ− tr(D)D is negative definite (see (5)). This implies that (s1, 〈·, ·〉) has negative Ricci curvature if we
define the Lie bracket on s1 using D and µ as above, and consequently, (s2, 〈·, ·〉) with Lie bracket defined by D
and hk · [·, ·] is also negatively Ricci curved for a sufficiently large k by continuity. By applying the isometry (8),
one shows that 〈hk·, hk·〉 produces a Ricci negative metric on s, concluding the proof.

Remark 3.3 In much the same way as in the above proof, one obtains that the solvable Lie algebra s = Rf⊕n
admits an Einstein (non-flat) inner product such that Dt = D and f ⊥ n if and only if D ∈ R>0m (GD · [·, ·]) +
R>0I .

Recall that a linear operator of n is diagonalizable over R if and only if it is symmetric with respect to some
inner product on n. If instead of an inner product we fix a basis of the Lie algebra n, then the above proposition
can be rewritten as follows for diagonal derivations.

Corollary 3.4 Let n be a nilpotent Lie algebra endowed with a basis and consider D ∈ Der(n) ∩ tn with
trD > 0. Then the following conditions are equivalent:

(i) D is Ricci negative.

(ii) D ∈ R>0m (GD · [·, ·]) ∩ tn + tn>0.

(iii) D ∈ R>0m
(
GD · [·, ·]

)
∩ tn + tn>0.

(iv) D ∈ R>0m
(
GD · [·, ·]

)
∩ aD+ + tn>0, where aD+ ⊂ tn is any Weyl chamber of GD.

Remark 3.5 The cones in parts (ii)-(iv) are all open in tn as tn>0 is so. Moreover, the subset in part (iv) is

indeed an open and convex cone since m
(
GD · [·, ·]

)
∩ aD+ is a convex polytope by Theorem 2.1, (ii). Note that

actually a Ricci negative D must belong to the intersection of all the convex cones obtained by running over all
the Weyl chambers. This provides a very useful insight to work on question (Q1).
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8 J. Deré and J. Lauret: On Ricci negative solvmanifolds and their nilradicals

P r o o f. If D is diagonal when written in terms of the basis, then we consider the inner product on n making
this basis orthonormal and the equivalence between (i), (ii) and (iii) follows in much the same way as the above
theorem. The only observation to make is that at the end of the proof of the fact that (i) implies (ii), since
[Ric1 |n, D] = 0, there exists g ∈ O(n) ∩ GD such that gRic1 |ng−1 ∈ tn, and thus gRic1 |ng−1 = rm(gh ·
[·, ·])− tr(D)D, from which part (ii) follows.

Finally, assume that part (ii) holds, say D = rM + E, where r > 0, M = m(g · [·, ·]) ∈ tn for some g ∈ GD
and E ∈ tn>0. Thus M belongs to some Weyl chamber a2 of GD, which has to be of the form a2 = haD+h

−1 for
some h ∈ O(n) ∩GD. We therefore obtain that

D = h−1Dh = rh−1Mh+ h−1Eh = rm(h−1g · [·, ·]) + h−1Eh,

with m(h−1g · [·, ·]) ∈ m (GD · [·, ·]) ∩ aD+ and h−1Eh ∈ tn>0, from which part (iv) follows, concluding the
proof.

Given a nilpotent Lie algebra n endowed with a basis {ei}, we introduce the following notation:

d := Der(n) ∩ tn, dRN := {D ∈ d : D is Ricci negative},

and T ⊂ GLn(R) will denote the (connected) torus with Lie algebra tn (i.e. the subgroup of diagonal matrices
with positive entries).

Example 3.6 Let n be the 3-dimensional Heisenberg Lie algebra with basis {e1, e2, e3} and Lie bracket
[e1, e2] = e3. We have that

d = {D := Dg(d1, d2, d1 + d2) : d1, d2 ∈ R},

and if D is generic (i.e. d1, d2 are different nonzero real numbers), then GD = T , T · [·, ·] = R≤0[·, ·] and
m(µ) = F 3

12 for any µ = x[·, ·]. Therefore, according to Corollary 3.4, a generic D ∈ d with trD > 0 belongs
to dRN if and only if there exists a ≥ 0 such that

d1 + a > 0, d2 + a > 0, d1 + d2 − a > 0,

or equivalently, d1 + d2 > a > −d1,−d2. By using d1 + d2 > 0 we obtain that this is in turn equivalent to
2d1 + d2 > 0 and d1 + 2d2 > 0. This implies that

dRN = {D ∈ d : 2d1 + d2 > 0, d1 + 2d2 > 0},

an open and convex cone. Indeed, since any non-generic derivation D0 with positive trace belongs to the cone on
the right and T ⊂ GD0 , so D0 ∈ dRN also by Corollary 3.4.

Example 3.7 Let n be the 4-dimensional nilpotent Lie algebra with basis {e1, . . . , e4} and Lie bracket

[e1, e2] = e3, [e1, e3] = e4.

Since
d = {D := Dg(d1, d2, d1 + d2, 2d1 + d2) : d1, d2 ∈ R},

we obtain that D is generic if and only if d1, d2 6= 0 and d1 ± d2 6= 0. In that case, GD = T and T · [·, ·] is given
by the linear subspace of V of nilpotent Lie brackets µ = µ(x, y) defined by

µ(e1, e2) = xe3, µ(e1, e3) = ye4, x, y ≥ 0,

and the moment map is given by

m(µ) =
2

|µ|2


−(x2 + y2)

−x2
x2 − y2

y2

 =
1

x2 + y2
(
x2F 3

12 + y2F 4
13

)
,
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which implies that m
(
T · [·, ·]

)
∩ t4 = m

(
T · [·, ·]

)
= CH(F 3

12, F
4
13). Let us now show that

dRN = {D ∈ d : d1 + d2 > 0, 2d1 + d2 > 0},

which is open and convex as in the above example. It follows from Corollary 3.4 that a generic D ∈ d belongs to
dRN if and only if there exist a, b ≥ 0 such that

d1 + a+ b > 0, d2 + a > 0, d1 + d2 − a+ b > 0, 2d1 + d2 − b > 0. (9)

The last inequality implies that 2d1 + d2 > 0 and the condition d1 + d2 > 0 follows by adding the last three
inequalities. To prove that these two conditions are sufficient we proceed as follows. Note that (9) is equivalent
to the existence of b ≥ 0 such that

2d1 + d2 > b > −d1 − a,−d1 − d2 + a,

which holds if and only if there is an a ≥ 0 such that

3d1 + 2d2 > a > −3d1 − d2,−d2,

that is, 2d1 + d2 > 0 and d1 + d2 > 0 since 3d1 + 2d2 > 0. On the other hand, the only non-generic derivation
with positive trace is D0 = (1,−1, 0, 1) (up to scaling), and it easy to check that

m(GD0 · [·, ·]) ∩ t4 = CH◦(F 3
12, F

4
13) ∪ CH◦(F 3

24, F
1
34).

This also follows from (4). Thus D0 is not Ricci negative by Corollary 3.4; indeed, D0 = aF 3
24 + bF 1

35 + E,
a, b ≥ 0, E ∈ tn>0, implies that a > 1 > b and b > a, a contradiction.

The following corollary of Theorem 3.2 follows from Theorem 2.1, (iii) and provides a necessary condition
for a symmetric derivation to be Ricci negative. We denote by Diag(A) the diagonal part of a matrix A.

Corollary 3.8 Let n be a nilpotent Lie algebra endowed with an inner product. IfD is a symmetric derivation
of n which is Ricci negative, then relative to any orthonormal basis of n, the diagonal part of D belongs to the
cone

R>0 Diag
(
m
(
GD · [·, ·]

))
+ tn>0.

Recall from Theorem 2.1, (iii) that this cone is open and convex.

3.2 Using the convexity properties of the moment map

The characterizations of Ricci negative derivations obtained in Corollary 3.4 lead us to apply the results from real
GIT described in Section 2.4 to try to understand the set

m
(
GD · [·, ·]

)
∩ tn.

This coincides with m(X) ∩ a in the case when G = GD, a = tn and X = P
(
GD · [·, ·]

)
. Recall from (7) that

the moment maps for GD and GLn(R) coincide on X in this situation. However, the Weyl chambers for GD can
be much larger. It follows from Theorem 2.1, (ii) that m

(
GD · [·, ·]

)
∩ aD+ is a convex polytope for any Weyl

chamber aD+ ⊂ tn of GD and hence, as in (4), one obtains that m
(
GD · [·, ·]

)
∩ tn is the union of finitely many

convex polytopes by running over all Weyl chambers for GD. In particular, it is convex if GD = T .
In view of the the fact that the torus T ⊂ GLn(R) is always contained in GD for any D ∈ d, we need to

deepen the study of the subset
m
(
T · [·, ·]

)
∩ tn.

So in what follows, according to the notation in Section 2.4, we consider G = GLn(R), thus a = tn and A = T .
Recall that ma = Diag ◦m.

For each µ ∈ V , we define the following convex subsets of tn,

CHµ := CH
(
F kij : c(µ)kij 6= 0

)
, CH◦µ := CH◦

(
F kij : c(µ)kij 6= 0

)
,

where c(µ)kij are the structural constants of µ (see Section 2.1). Note that F kij = m(µijk).
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Lemma 3.9 Diag
(
m
(
T · µ

))
= CHµ.

P r o o f. For any E ∈ tn and λ ∈ V one has that

E · λ =
∑
〈E,F kij〉c(λ)kij µijk,

so it follows from (3) that

ma(λ) = 2
|λ|2

∑
i<j

(
c(λ)kij

)2
F kij ∈ CHλ, ∀λ ∈ V. (10)

In particular, m
(
T · µ

)
∩ tn is contained in CHµ for any µ ∈ V .

On the other hand, since

c(h · µ)kij =
hk
hihj

c(µ)kij , ∀h := Dg(h1, . . . , hn) ∈ T,

one obtains that CHλ ⊂ CHµ for any λ ∈ T · µ, which implies that ma(T · µ) ⊂ CHµ by (10). But µijk ∈ T · µ
for any c(µ)kik 6= 0; indeed, etα · µ converges to µkij as t → ∞ for α ∈ tn defined by αr = 1 for r = i, j and
equal to 2 otherwise. This implies that if c(µ)kij 6= 0, then F kij ∈ ma(T · µ), which is convex by Theorem 2.1,
(iii), and so CHµ ⊂ ma(T · µ), concluding the proof.

An alternative proof of the above lemma can be given by using Theorem 2.2, (i) and the fact that the T fixed
points are given by

P(V )T = {[µijk]} , T · [µ]
T

=
{

[µijk] : c(µ)kij 6= 0
}
,

and their m-images by

m
(
PV T

)
=
{
F kij
}
, m

(
T · [µ]

T
)

=
{
F kij : c(µ)kij 6= 0

}
.

We now show that T · µ is actually determined by CHµ, which is in a sense a converse to Lemma 3.9. For
each subset J ⊂ Iµ := {(i, j, k) : c(µ)kij 6= 0}, consider the bracket

λJ :=
∑

(i,j,k)∈J

c(µ)kij µijk.

Note that ma

(
T · λJ

)
= CH

(
F kij : (i, j, k) ∈ J

)
(see (3.9)). We recall that some basic convex geometry termi-

nology was given in Section 2.3.

Lemma 3.10 The closure of the orbit T · µ is given by

T · µ =
{
λJ : CH

(
F kij : (i, j, k) ∈ J

)
is a face of CHµ

}
.

Moreover, if c(µ)kij 6= 0, then µkij ∈ T · µ and F kij is an extreme point of CHµ.

P r o o f. It follows from [BL, Theorem 1.1, (ii)] that a Lie bracket λ belongs to T · µ if and only if there exists
α ∈ tn such that etα ·µ converges to λ, as t→∞. In particular, λ = λJ for some J ⊂ Iµ, and such convergence
is equivalent to 〈α, F kij〉 = 0 for any (i, j, k) ∈ J and negative otherwise. But the existence of an α ∈ tn with
such properties is necessary and sufficient to have that CH

(
F kij : (i, j, k) ∈ J

)
is a face of CHµ, concluding the

proof.

Corollary 3.11 Diag (m (T · [·, ·])) = CH◦µ.

The situation in Example 3.7 concerning convexity properties can drastically change if we consider a different
basis for that Lie algebra, as next example shows.
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Example 3.12 If the Lie bracket is defined by

[e1, e2] = e3 + e4, [e1, e3] = e4,

then T · [·, ·] is given by the brackets µ = µ(x, y, z) such that

µ(e1, e2) = xe3 + ye4, µ(e1, e3) = ze4, x, y, z ≥ 0.

According to Lemma 3.10, T · [·, ·] consists, besides of the open and dense orbit T · [·, ·] (x, y, z > 0), of other
six nonzero T -orbits defined by the (external) faces of the triangle CH[·,·] = CH(F 3

12, F
4
12, F

4
13). The moment

map is given by

m(µ) =
2

|µ|2


−x2 − y2 − z2

−x2 − y2 −yz
−yz x2 − z2 xy

xy y2 + z2


=

1

x2 + y2 + z2
(
x2F 3

12 + y2F 4
12 + z2F 4

13 − yzF5 + xyF6

)
,

where

F5 :=

[
0
0 1
1 0

0

]
, F6 :=

[
0
0
0 1
1 0

]
.

Thus m(T · [·, ·]) ∩ t4 = ∅,
m
(
T · [·, ·]

)
∩ t4 = CH(F 3

12, F
4
13) ∪

{
F 4
12

}
,

and recall from Lemma 3.9 that Diag
(
m
(
T · [·, ·]

))
= CH(F 3

12, F
4
12, F

4
13). Nevertheless, it easily follows from

Corollary 3.4 that dRN = {(0, d, d, d) : d > 0} by using only F 4
12.

3.3 Nilpotent Lie algebras with a nice basis

The better behavior of m
(
T · [·, ·]

)
∩ t4 in Example 3.7 compared to what happened in Example 3.12 is due to

special properties of the basis chosen.
Definition 3.13 A basis {e1, . . . , en} of a Lie algebra is said to be nice if every bracket [ei, ej ] is a scalar

multiple of some element ek in the basis and two different brackets [ei, ej ], [er, es] can be a nonzero multiple of
the same ek only if {i, j} and {r, s} are either equal or disjoint.

Lemma 3.14 [LW1] The following conditions are equivalent:

(i) m
(
T · µ

)
∩ tn = CHµ.

(ii) {ei} is a nice basis for µ.

(iii) m (T · µ) ⊂ tn.

P r o o f. The equivalence between parts (ii) and (iii) is precisely the result proved in [LW1]. Part (i) follows
from (iii) and (3.9), so we only need to prove that part (i) implies (iii). If h ∈ T , then ma(h · µ) = m(g · µ) for
some g ∈ T by (i) and (3.9). But this implies that h = tg for a nonzero t ∈ R since ma : T · [µ] −→ ma(T · µ)
is a diffeomorphism (see [HS, Proposition 3]) and thus m(h · µ) ∈ tn, concluding the proof.

The following result was proved in [N1, Section 4].
Corollary 3.15 If n is a nilpotent Lie algebra with a nice basis, then Diag(D) ∈ Der(n) for anyD ∈ Der(n).

P r o o f. For any h ∈ T one has that tr Diag(D)m(h · [·, ·]) = trDm(h · [·, ·]) = 0, thus tr Diag(D)F kij = 0

for each ckij 6= 0 by Lemma 3.10, that is, Diag(D) ∈ Der(n).

The above lemma together with Corollary 3.4 also give the following.
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12 J. Deré and J. Lauret: On Ricci negative solvmanifolds and their nilradicals

Corollary 3.16 Let n be a nilpotent Lie algebra endowed with a nice basis. Then the open convex cone in d
given by (

R>0 CH[·,·] +tn>0

)
∩ {D ∈ d : trD > 0},

is contained in dRN .

It follows from Theorem 2.2, (ii) that

CH
(
m
(
GD · [·, ·]

))
∩ tn = CH

(
Dg
(
m
(
GD · [·, ·]

)))
,

a convex polytope. However, both m
(
T · µ

)
∩ tn and m

(
GD · µ

)
∩ tn can be tricky subsets if the basis is not

nice, as next example shows.
Example 3.17 Let n be the 5-dimensional nilpotent Lie algebra with basis {e1, . . . , e5} and Lie bracket

[e1, e2] = e3 + e4, [e1, e3] = e5, [e1, e4] = e5.

It is easy to see that if D is generic, then

GD = G :=



h1

h2
H

h5

 : H ∈ GL+
2 (R), hi > 0

 .

We consider G acting on the cone C ⊂ V of nilpotent Lie brackets µ = µ(x, y, z, w) defined by

µ(e1, e2) = xe3 + ye4, µ(e1, e3) = ze5, µ(e1, e4) = we5, x, y, z, w ≥ 0.

The moment map m : C r {0} −→ p is given by

m(µ) =
2

|µ|2


−(x2 + y2 + z2 + w2)

−x2 − y2
x2 − z2 xy − zw
xy − zw y2 − w2

z2 + w2


=

1

x2 + y2 + z2 + w2

(
x2F 3

12 + y2F 4
12 + z2F 5

13 + w2F 5
14 + (xy − zw)F

)
,

where

F :=

[
0
0
0 1
1 0

0

]
.

It is easy to check that C r {0} is the disjoint union of three orbits: G · [·, ·], G · µ123 and G · µ135; and the first
one is given by

G · [·, ·] = {µ : xz + yw 6= 0}, G · [·, ·] = C.

This implies that

m
(
G · [·, ·]

)
∩ t5 ={aF 3

12 + bF 4
12 + cF 5

13 + dF 5
14 : a, b, c, d ≥ 0, (11)

a+ b+ c+ d = 1, ab = cd}
={Dg(−1,−a− b, a− c, b− d, c+ d) ∈ t5 : a, b, c, d ≥ 0, (12)

a+ b+ c+ d = 1, ab = cd}.

Since

F 3
12 − F 4

12 = F 5
14 − F 5

13 = Dg(0, 0, 1,−1, 0) ⊥ (0,−1, 1, 1,−1) = F 4
12 − F 5

13 = F 3
12 − F 5

14,
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these four points
{
F 3
12, F

4
12, F

5
13, F

5
14

}
in t5 are the vertices of a rectangle with center F0 := (−1,− 1

2 , 0, 0,
1
2 ),

which is precisely CH[·,·] = Diag
(
m
(
G · [·, ·]

))
. It is not so hard to see by using (11) that m

(
G · [·, ·]

)
∩ t5

is the union of two triangles, given by the convex hulls of {F 4
12, F

5
13, F0} and {F 3

12, F
5
14, F0}, respectively. Such

computation becomes clearer if one translates everything to the origin by subtracting the vector F0 from all the
vectors involved. The two Weyl chambers are given by

(a+)1 = {Dg(a1, . . . , a5) : a3 ≤ a4}, (a+)2 = {Dg(a1, . . . , a5) : a3 ≥ a4},

thus the convex polytope m
(
G · [·, ·]

)
∩ (ad+)1 can be obtained by adding to (11) or (12) the condition a+ d ≤

b + c, and so it coincides with the triangle {F 4
12, F

5
13, F0}. The other triangle corresponds to the other Weyl

chamber.

Concerning T -orbits, it follows from Lemma 3.10 that T · [·, ·] consists of the open and dense orbit T · [·, ·] =
{µ : xz = yw 6= 0} and other eight nonzero T -orbits corresponding to the edges and vertexes of the rectangle
CH[·,·]. From (11) we obtain that

m
(
T · [·, ·]

)
∩ t5 ={aF 3

12 + bF 4
12 + cF 5

13 + dF 5
14 : a, b, c, d ≥ 0, (13)

a+ b+ c+ d = 1, ab = cd, ac = bd}.

It is easy to check that these conditions hold if and only if either a = d = 0, or b = c = 0, or a = d and b = c,
hence m

(
T · [·, ·]

)
∩ t5 is the union of three segments, F 3

12F
5
14, F 4

12F
5
13 and the one having as extremes their

middle points. The interior of this last segment coincide with m (T · [·, ·]) ∩ t5.

Remark 3.18 In the above example, in terms of the notation in [HS], we have the compatible group G = Gd

acting on the closed subset X := P(W ), with Cartan decomposition

g = R2 ⊕ gl2(R)⊕ R, p = R2 ⊕ sym(2)⊕ R, a = t5, A = T 0.

The A fixed points in X are exactly [E21], [E31], [E42], [E43], i.e. the weight vectors for the A-representation W ,
which have as m-images the matrices F 3

12, F
4
12, F

5
13, F

5
14, respectively. It follows that m(X) ∩ a is not a union

of convex hulls of subsets of m-images of A fixed points in X , in spite X is irreducible, as asserted in the first
theorem in the introduction of [HS].

3.4 An application in low dimension

Any nilpotent Lie algebra of dimension ≤ 6 has a positive derivation. In dimension 7, the first examples such
that any derivation is nilpotent appear. Note that these algebras do not admit any non-nilpotent solvable exten-
sion, they are called characteristically nilpotent. An inspection of the classification of nilpotent Lie algebras of
dimension ≤ 7 (see e.g. [M] or [FC] and the references therein), which includes more than one hundred algebras
and some continuous families, gives that among those which are not characteristically nilpotent only four do not
admit a positive derivation. We now apply the results obtained in this section to show that each of these four
nilpotent Lie algebras has a solvable extension admitting a Ricci negative metric.

Theorem 3.19 Any nilpotent Lie algebra of dimension ≤ 7 which is not characteristically nilpotent admits a
Ricci negative derivation.
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P r o o f. The four 7-dimensional algebras mentioned above are defined by

[e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6, [e1, e6] = e7, [e2, e3] = e5 + e7, (14)

[e3, e4] = −e6, [e3, e5] = −e7, D = Dg(0, 1, 0, 1, 1, 1, 1).

[e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6, [e1, e6] = e7, [e2, e3] = e6 + e7, (15)

[e3, e4] = −e7, D = Dg(0, 1, 0, 1, 1, 1, 1).

[e1, e2] = e3, [e1, e3] = e4, [e1, e5] = e6, [e2, e3] = e5, [e2, e4] = e6, (16)

[e2, e5] = e7, [e2, e6] = e7, [e2, e5] = −e7, D = Dg(0, 1, 1, 1, 2, 2, 3).

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e6] = e7, [e2, e3] = e6, (17)

[e2, e4] = e7, [e2, e5] = e7, [e3, e4] = −e7, D = Dg(0, 1, 1, 1, 1, 2, 2).

We will prove that the derivation D given in each case is Ricci negative, from which the theorem follows. For
the algebra (14) , we can use α := Dg(−1, 0,−2,−1,−2,−3,−4) to show that CH(F kij : ckij 6= 0, F kij 6= F 7

23)

is a face of CH[·,·] which corresponds to the degeneration λ := [·, ·] − µ237 ∈ T · [·, ·] (see Lemma 3.10). Note
that λ is nice, and we have that D −M > 0 for M := 1

2 (F 4
12 + F 5

23) ∈ CHλ. Thus D is Ricci negative by
Corollary 3.16. The case (15) follows in identical way by setting α := Dg(−1, 0,−3,−1,−2,−3,−4) and
M := 1

2 (F 4
12 + F 6

23).
For the algebra (16), we use that µ156 ∈ T · [·, ·] (see Lemma 3.10), hence

M := F 6
15 ∈ m

(
T · [·, ·]

)
∩ t7 ⊂ m

(
GD · [·, ·]

)
∩ t7,

and so D is Ricci negative by Corollary 3.4 since D −M > 0. Finally, in the case of (17) one can use µ167,
concluding the proof.

It is shown in Proposition 4.3, (i) that the above theorem already fails in dimension 8.

4 Ricci negative nilradicals

In this section, we consider the following question:

(Q2) Which nilpotent Lie algebras can be the nilradical of some solvable Lie algebra admitting a Ricci
negative metric?

We call such a Lie algebra a Ricci negative nilradical (RN-nilradical for short). The name is motivated by Einstein
nilradicals (see e.g. the survey [L1]). The existence of a positive derivation (i.e. the real part of each eigenvalue
is positive) is sufficient to be a RN-nilradical (see [NNn, Theorem 2, (1)]); in particular, any 2-step nilpotent Lie
algebra is a RN-nilradical. Furthermore, it follows from Theorem 3.19 that any non-characteristically nilpotent
nilpotent Lie algebra of dimension ≤ 7 is a RN-nilradical.

On the other hand, a first necessary condition on a nilpotent Lie algebra to be a RN-nilradical is the existence
of a derivation with nonzero trace. This follows from the fact that unimodular solvable Lie algebras do not admit
Ricci negative metrics (see [D]). In what follows, we recall some algebraic notions and facts related to such
condition.

Let n be a real nilpotent Lie algebra. Given D ∈ Der(n), consider the additive Jordan decomposition for D
given by

D = Ds +Dn, [Ds, Dn] = 0, Ds = DR +DiR, [DR, DiR] = 0,

where Ds is semisimple (i.e. diagonalizable over C), Dn is nilpotent, DR is real semisimple (i.e. diagonalizable
over R) and DiR is semisimple with only imaginary eigenvalues. It is well-known that Ds, Dn, DR, DiR ∈
Der(n). Note that Spec(D) = Spec(Ds) and Re Spec(D) = Spec(DR).

A maximal abelian subspace of real semisimple derivations is called a maximal torus and is known to be unique
up to conjugation by automorphisms; its dimension is called the rank of n and will be denoted by rank(n). Recall
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that a Lie algebra is said to be characteristically nilpotent if it has only nilpotent derivations (i.e. its complex rank
is zero). The first example was found in [DL] sixty years ago.

It is proved in [N1] that for any Lie algebra n, there exists a real semisimple φn ∈ Der(n) such that trφnD =
trD for all D ∈ Der(n). Such special derivation, which is unique up to automorphism conjugation, is called
a pre-Einstein derivation. Note that φn = 0 if and only if trD = 0 for any D ∈ Der(n), so φn 6= 0 is a first
obstruction for n to be a RN-nilradical.

It clearly follows that

n characteristically nilpotent ⇒ rank(n) = 0 ⇒ φn = 0.

An obvious natural question is whether the converse assertions hold. Curiously enough, we could not find any
answer in the literature. Examples 4.1 and 4.2 below show that the converse assertions are both false.

The Lie algebras under consideration usually have a natural diagonal derivation D. To study the other deriva-
tions, we will consider other real semisimple derivations D′ which commute with the given derivation D. By
taking quotients by invariant ideals and using the low dimensional classifications in [M], which contains the full
description of derivations, we find information about the general derivation and about the rank of the Lie algebra.
When we define a derivation D : n→ n, we will sometimes only define its value on generators of the Lie algebra
n. In these cases, it is left to the reader to check that it indeed defines a derivation on the whole Lie algebra n.

The existence of a nice basis on a nilpotent Lie algebra n (see Definition 3.13) makes the computations con-
cerning derivations more manageable. Indeed, if D′ ∈ Der(n), then the linear map defined by the diagonal of the
matrix of D′ with respect to a nice basis is also a derivation (see Corollary 3.15). Since the given derivation D is
already diagonal and D′ commutes with D, the diagonal of D′ will also commute with D. In some cases we will
conclude that the diagonal of D′ is equal to λD for some λ ∈ R and since D′ is real semisimple, this will imply
that D′ is equal to its diagonal.

We note that all the examples provided in this section are written in terms of a nice basis with the only
exception of Proposition 4.3, (i).

Example 4.1 Consider the Lie algebra n with basis vectors X1, . . . , X5, Y1, . . . , Y5, Z and brackets defined
as

[X1, X2] = X3 [X1, X3] = X4 [X1, X4] = X5 [X2, X3] = X5

[Y1, Y2] = −X3 [Y1, Y3] = −X4 [Y1, Y4] = −X5 [Y2, Y3] = −X5

[X1, Y2] = Y3 [X1, Y3] = Y4 [X1, Y4] = Y5 [X2, Y3] = Y5

[Y1, X2] = Y3 [Y1, X3] = Y4 [Y1, X4] = Y5 [Y2, X3] = Y5

[X1, Y1] = Z [X2, Y2] = Z.

It is straightforward to check that the Jacobi identity holds. Let Dg(d1, . . . , d11) be a diagonal derivation. The
first four brackets show that di = id1 for 1 ≤ i ≤ 5. From the brackets which lead to Y3, we find that
d1 + d7 = d6 + d2. The last two brackets leading to Z imply that d1 + d6 = d2 + d7, from which we conclude
that d1 = 0. The other brackets then easily give that Dg(d1, . . . , d11) = 0.

However, sinceD defined byD(Xi) = iYi, D(Yi) = −iXi for all 1 ≤ i ≤ 5 andD(Z) = 0 is a derivation, we
conclude that n is not characteristically nilpotent. Note that the basis is nice, so the diagonal of every derivation
is again a derivation. If D′ is any real semisimple derivation which commutes with D, then its diagonal is equal
to 0 and hence it is of the form D′(Xi) = λiYi, D

′(Yi) = λiXi for 1 ≤ i ≤ 5 and D′(Z) = µZ. A similar
computation as above shows that λi = iλ1 and µ = 0, which imlies that D′ = λ1D. We conclude that n is of
complex rank 1.

To see that rank(n) = 0, take any diagonalizable derivation D′ : n→ n. Since the basis is nice, the diagonal
of D′ is again equal to 0. Let D′(Xi) = λiYi + Ui and D′(Yi) = µiXi + Vi for i = 1, 2 and with Ui, Vi a linear
combination of the other basis vectors. Let m = 〈X4, X5, Y4, Y5, Z〉, which is invariant under D′ as the sum of
Z(n) and [[n, n], n]. The relations leading to X3 then show that

D′(X3) ≡ (λ1 + λ2)Y3 ≡ −(µ1 + µ2)Y3 (mod m)

D′(Y3) ≡ (−λ1 + µ2)X3 ≡ (µ1 − λ2)X3 (mod m)
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and hence λi = −µi for i = 1, 2. Since D′ is diagonalizable over R, this implies that λ1 + λ2 = 0. As the rank
of n over C is equal to 1, the derivation D′ is conjugate over C to a multiple of D, which implies that in fact
D′ = 0. We conclude that n has real rank 0 but complex rank 1.

The above is therefore an example of a nilpotent Lie algebra which is neither characteristically nilpotent nor
a RN-nilradical. The following example shows that the existence of a nonzero diagonalizable derivation is not
sufficient to be a RN-nilradical either.

Example 4.2 Let n be the Lie algebra of dimension 11 with basis X1, . . . , X5, Y1, . . . Y5, Z and bracket

[X1, X2] = X3 [X1, X3] = X4 [X1, X4] = X5 [X2, X3] = X5

[Y1, Y2] = Y3 [Y1, Y3] = Y4 [Y1, Y4] = Y5 [Y2, Y3] = Y5

[X1, Y1] = Z [X2, Y2] = Z.

Consider the derivationD given byD(Xi) = iXi,D(Yj) = −jYj andD(Z) = 0 and letD′ be a real semisimple
derivation which commutes withD. ThenD′ is diagonal in this basis, sinceD has 11 different eigenvalues. From
the first four brackets between theXi it follows thatD′(Xi) = iλXi for some λ ∈ R. Similarly for the Yj we find
that D′(Yj) = jµYj for some µ ∈ R. The last two brackets, leading to the vector Z, imply that λ+µ = 2λ+ 2µ
or equivalently that D′ = λD. We conclude that rank(n) = 1 and however, every derivation has trace 0, i.e.
φn = 0.

All this suggests a reformulation of question (Q2) by adding the condition φn 6= 0 on the nilpotent Lie
algebras involved. The only other known necessary condition for being a RN-nilradical was obtained in [NNn]:
there must exist a derivationD with trD > 0 whose restriction to the center z(n) of n is positive, in the sense that
DR|z(n) > 0, or equivalently, the eigenvalues of D|z(n) have all positive real part (see [NNn, Theorem 2, (1)]).
Using this obstruction, we now prove that φn 6= 0 is still not sufficient. More precisely, the following proposition
shows that the two sufficient conditions to be a RN-nilradical mentioned above (i.e. 2-step and dim n ≤ 7, n non-
characteristically nilpotent) are actually sharp. Furthermore, we found a curve of nilpotent Lie algebras which
are not RN-nilradicals. Recall that any real semisimple derivation belongs to some maximal torus, hence it is
always conjugate to some derivation in a given maximal torus.

Proposition 4.3 There exist nilpotent Lie algebras such that φn 6= 0 but any real semisimple derivation has a
zero eigenvalue on the center and with the following properties:

(i) dim n = 8, n is 5-step nilpotent, the dimensions of the descendent central series are (8, 5, 4, 3, 1), dim z(n) =
2, rank(n) = 1 and Dg(0, 1, 0, 1, 1, 1, 1, 0) ∈ Der(n).

(ii) dim n = 10, n is 3-step nilpotent with descendent central series dimensions (10, 6, 2), dim z(n) = 3,
rank(n) = 2 and

Dg(0, 0, 0, 1, 1, 1, 0, 0, 0, 0), Dg(0, 0, 0, 0, 0, 0, 1, 1, 1, 1) ∈ Der(n).

(iii) A continuous family of pairwise non-isomorphic 13-dimensional 6-step nilpotent Lie algebras such that
dim z(n) = 3, rank(n) = 1 and

Dg(1, 2, 3, 4, 5, 6, 7,−1,−2,−3,−4,−5, 0) ∈ Der(n).

P r o o f. Part (i). Consider the Lie algebra n of dimension 8 with basis X1, . . . , X7, Y and bracket

[X1, X2] = X4 [X1, X4] = X5 [X1, X5] = X6 [X1, X6] = X7

[X2, X3] = X6 +X7 [X3, X4] = −X7 [X1, X3] = Y.

The center is z(n) = 〈X7, Y 〉. Note that the Lie algebra nX = n�〈Y 〉 has rank 1, as it is equal to the Lie algebra
G7,1.01(ii) of [M]. Consider the derivation D : n→ n given by D(X1) = D(X3) = 0 and D(X2) = X2. Every
derivation D′ which commutes with D satisfies D′(Y ) = µY , since 〈Y 〉 is equal to the intersection of [n, n]
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and the eigenspace of D of eigenvalue 0. So, by considering the map induced by D′ on n�〈Y 〉 one sees that
D′(X1), D′(X3) ∈ 〈Y 〉. In particular,

D′(Y ) = [D′(X1), X3] + [X1, D
′(X3)] = 0.

If D′ is real semisimple, then D′(X1) = D′(X3) = 0 and hence D′ = λD for some λ ∈ R. So every real
semisimple derivation has eigenvalue 0 on the center and the proposition follows.

Part (ii). Let n be the Lie algebra with basis X1, X2, X3, Y1, Y2, Y3, Z1, Z2, Z3, Z4 and bracket

[X1, Y1] = Y2 [X1, Y2] = Y3 [X2, Y1] = Y3

[X1, Z1] = Z2 [X2, Z1] = Z3 [X1, Z2] = Z4

[X2, Z3] = Z4 [X1, X2] = X3.

The center is generated by X3, Y3, Z4. Let D be the derivation given by D(Xi) = 0, D(Yi) = Yi, D(Zj) = 2Zj
for all i ∈ {1, 2, 3}, j ∈ {1, 2, 3, 4}. If D′ is a real semisimple derivation commuting with D, then D′(X3) =
λ3X3 for some λ3 ∈ R since X3 spans the intersection of the eigenspace of D for eigenvalue 0 and [n, n]. We
will demonstrate that λ3 = 0, which implies the proposition.

Note that, since the basis is nice, we can assume that D′ is a diagonal derivation. Write D(Xi) = λiXi,
D(Y1) = µY1 and D(Z1) = νZ1. By applying D′ to the second and the third equation, we get

2λ1 + µ = λ2 + µ.

Similarly, by applying D′ to the sixth and seventh equation we get

ν + 2λ1 = ν + 2λ2.

Hence λ1 = λ2 = 0 and therefore also λ3 = λ1 + λ2 = 0. The other parts follow immediately.

Part (iii). Finally, consider the Lie algebra nt with basis X1, . . . , X7, Y1, . . . , Y5, Z and bracket

[X1, X2] = X3 [X1, X3] = X4 [X1, X4] = X5

[X1, X5] = X6 [X1, X6] = X7 [X2, X3] = X5

[X2, X4] = X6 [X2, X5] = tX7 [X3, X4] = (1− t)X7

[Y1, Y2] = Y3 [Y1, Y3] = Y4

[Y1, Y4] = Y5 [Y2, Y3] = Y5

[X1, Y1] = Z [X2, Y2] = Z.

The center is z(n) = 〈X7, Y5, Z〉. Let D be the derivation given by D(Xi) = iXi, D(Yj) = −jYj and
D(Z) = 0. Similarly as in Example 4.2 one can show that this Lie algebra has rank 1, using that both the Lie
algebras nX and nY have rank one, where nX and nY are the subalgebras spanned by the vectors Xi and Yj
respectively. Hence every real semisimple derivation is conjugate to λD for λ ∈ R and will have an eigenvalue 0
on the center.

Now we show that the Lie algebras of (iii) are pairwise non-isomorphic and thus give us a one-parameter fam-
ily of examples. We denote γ2(n) := [n, n], γ3(n) := [n, [n, n]] and so on. Note that γ4(nt) = 〈X5, X6, X7, Y5〉
and thus the centralizer is given by

C(γ4(nt)) = 〈X3, X4, X5, X6, X7, Y1, Y2, Y3, Y4, Y5, Z〉.

Now define the subspaces

U := [C(γ4(nt)), C(γ4(nt))] ⊃ 〈Y3, Y4, Y5〉,
V := C(U) = 〈X1, . . . , X7, Y3, Y4, Y5, Z〉.
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Similarly, γ5(nt) = 〈X6, X7〉 and

W := C(γ5(nt)) ∩ V = 〈X2, . . . , X7, Y3, Y4, Y5, Z〉.

Let ϕ : ns → nt be an isomorphism and V,W ⊆ ns, V ′,W ′ ⊆ nt the subspaces as constructed above. These
subspaces are characteristic, in the sense that ϕ(V ) = V ′ and ϕ(W ) = W ′. Let λ, µ, a ∈ R such that

ϕ(X1) ≡ λX ′1 + aX ′2 (mod γ2(nt))

ϕ(X2) ≡ µX ′2 (mod γ2(nt)).

A computation shows that µ = λ2 and that

ϕ(Xi) ≡ λiX ′i (mod γi(nt))

for all i ≥ 2. So in particular, we get that

sλ7X ′7 = ϕ(sX7) = ϕ([X2, X5]) = [ϕ(X2), ϕ(X5)] = λ7[X ′2, X
′
5] = tλ7X ′7.

Because λ 6= 0 the claim follows.

In view of the above proposition, besides φn 6= 0, we may add to question (Q2) the existence of a non-singular
derivation. The following proposition shows that this does not suffice either.

Proposition 4.4 There exist nilpotent Lie algebras with φn 6= 0 and the following properties:

(i) dim n = 13, n is 5-step nilpotent, dim z(n) = 3, rank(n) = 1 and

D = Dg(1, 2, 3, 4, 5, 6, 7,−1,−2,−3,−4,−5, 1) ∈ Der(n), D|z(n) = Dg(7,−5, 1).

(ii) dim n = 17, n is 5-step nilpotent, dim z(n) = 4, rank(n) = 1 and

D = Dg(−1,−2,−3,−4,−5,−6,−7, 1, 2, 3, 4, 5, 6, 7,−1, 2, 1) ∈ Der(n),

D|z(n) = Dg(−7, 7,−1, 1), trD = 2.

P r o o f. Part (i). Let n be the Lie algebra with nice basis X1, . . . , X7, Y1, . . . , Y5, Z and bracket

[X1, X3] = X4 [X1, X4] = X5 [X1, X5] = X6

[X1, X6] = X7 [X2, X3] = X5 [X2, X4] = X6

[X3, X4] = −X7 [X2, X5] = X7

[Y1, Y2] = Y3 [Y1, Y3] = Y4 [Y1, Y4] = Y5

[Y2, Y3] = Y5 [X2, Y1] = Z [X3, Y2] = Z.

The center is z(n) = 〈X7, Y5, Z〉. Let nX , nY and nZ be the vector spaces spanned by the vectors Xi, Yj
and Z respectively. These are all Lie subalgebras of n of rank 1, which follows from [M] or from an explicit
computation. Consider the invertible derivation D defined as D(Xi) = iXi, D(Yj) = −jYj and D(Z) = Z and
let D′ be any real semisimple derivation commuting with D. The subalgebra nZ is invariant under D′ since it is
the intersection of [n, n] and the eigenspace of D of eigenvalue 1 and similarly,

D′(nX ⊕ nZ) ⊆ nX ⊕ nZ , D′(nY ) ⊆ nY .

Consider now the induced map by D′ on n�nY ⊕ nZ ≈ nX and n�nX ⊕ nZ ≈ nY . Since these quotients have
rank one, we find that D′(Xi) ∈ λiXi + nZ and D′(Yj) = −µjYj for some λ, µ ∈ R and every 1 ≤ i ≤ 7, 1 ≤
j ≤ 5. Now

D′(Z) = [D′(X3), Y2] + [X3, D
′(Y2)] = 3λZ − 2µZ

= [D′(X2), Y1] + [X2, D
′(Y1)] = 2λZ − µZ,
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and hence λ = µ. Moreover, X1 and Z are eigenvectors of D′ for the eigenvalues λ, so D′ = λD since it is real
semisimple.

Part (ii). Define the Lie algebra n with nice basis X1, . . . , X7, Y1, . . . , Y7, Z1, Z2, Z3 and bracket

[X1, X3] = X4 [X1, X4] = X5 [X1, X5] = X6

[X1, X6] = X7 [X2, X3] = X5 [X2, X4] = X6

[X3, X4] = −X7 [X2, X5] = X7

[Y1, Y3] = Y4 [Y1, Y4] = Y5 [Y1, Y5] = Y6

[Y1, Y6] = Y7 [Y2, Y3] = Y5 [Y2, Y4] = Y6

[Y3, Y4] = −Y7 [Y2, Y5] = Y7

[X3, Y2] = Z1 [X2, Y1] = Z1

[Y3, X1] = Z2 [Z2, X1] = Z3.

Define the subalgebras nX and nY as in (i), then almost the same computations show that n has rank 1. Any real
semisimple derivation is conjugate to a multiple of the derivation D given by D(Xi) = iXi, D(Yj) = −jYj and
hence D(Z1) = Z1, D(Z2) = −2Z2, D(Z3) = −Z3. The center is the vector space spanned by X7, Y7, Z1 and
Z3 and thus D has trace 0 when restricted to the center. Note that the tr(D) = −2 6= 0.

Note that none of the Lie algebras in Propositions 4.3 and 4.4 can be a RN-nilradical, since every non-trivial
real semisimple derivation has either a zero or negative eigenvalue on the center. It follows from Theorem 3.19
that nilpotent Lie algebras such that any real semisimple derivation has a zero eigenvalue can be RN-nilradicals.
We may ask whether the existence of a negative eigenvalue for every real semisimple derivation could be an
obstruction to be a RN-nilradical. The answer is no, as the following example shows.

Example 4.5 Consider the Lie algebra n with nice basis X1, . . . , X6, Y1, . . . , Y4 and bracket

[X1, X2] = X3 [X1, X3] = X4 [X1, X4] = X5

[X1, X5] = X6 [X2, X3] = X6

[X1, Y1] = Y2 [X1, Y2] = Y4 [X2, Y1] = Y3 [Y1, Y3] = Y4.

So dim n = 10, n is 5-step nilpotent with descendent central series dimensions (10, 7, 4, 2, 1) and z(n) =
〈X6, Y4〉. Let D be the derivation which maps D(X1) = X1, D(X2) = 3X2 and D(Y1) = −Y1. We show
that n has rank 1. Let D′ be a real semisimple derivation which commutes with D. First assume that D′ is
diagonal. Write D′(X1) = λ1X1, D

′(X2) = λ2X2 and D′(Y1) = µY1 for λ1, λ2, µ ∈ R. By applying D′ to
bracket 4 and 5, we find that λ2 = 3λ1. Furthermore, the brackets which result to Y4 show that µ = −λ1. So
D′ = λ1D and the claim follows. Now let D′ be a general real semisimple derivation which commutes with D.
Since the basis is nice, the diagonal part also is a derivation which commutes with D and hence the diagonal is
equal to λ1D for some λ1 ∈ R. Since D′ is real semisimple, this implies that D′ is equal to its diagonal.

Finally, we show that n is a RN-nilradical. Write F1, F2, F3 for the weights corresponding to the brackets
[X1, Y2] = Y4, [X2, Y1] = Y3, [Y1, Y3] = Y4. Note that for

M :=
1

6
F1 +

2

3
F2 +

2

3
F3 ∈ R>0 CH[·,·],

it holds that M(Y1) = − 4
3Y1, M(Y2) = − 1

6Y2, M(Y3) = 0, M(Y4) = 5
6Y4 and MXi = miXi with mi ≤ 0

for all i. We conclude that D ∈ M + tn>0 ⊆ R>0 CH[·,·] +tn>0 and thus Corollary 3.16 implies that n is a
RN-nilradical.

We now show that, contrary to the observed properties in low dimensions, a characteristically nilpotent Lie
algebra can admit a nice basis.
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Example 4.6 We give two examples of dimension 12 with a nice basis. The first example n1 has basis
X1, X2, X3, Y1, Y2, Y3, Z1, Z2, Z3, U1, U2, U3 and bracket

[X1, X2] = Y1 [X2, X3] = Y2 [X3, X1] = Y3

[X1, Y1] = Z1 [X2, Y2] = Z2 [X3, Y3] = Z3

[X1, Z1] = U1 [X2, Z2] = U2 [X3, Z3] = U3

[X1, Y3] = U3, [X2, Y1] = U1 [X3, Y2] = U2.

So n is 4-step nilpotent with descendent central series dimensions (12, 9, 6, 3) and z(n) = 〈U1, U2, U3〉. Let D
be any derivation of n1. The diagonal of D is again a derivation and an easy computation shows that this must
be 0. Now write D(X1) = aX2 + bX3 + V and D(Y2) = cY1 + dY3 + eZ1 +W where V and W are a linear
combination of the other basis vectors. Consider

0 = D([X1, Y2]) = [D(X1), Y2] + [X1, D(Y2)] = aZ2 + bU2 + cZ1 + dU3 + eU1,

which implies that a = b = 0. A similar computation for X2 and X3 shows that

D(n1) ⊆ [n1, n1]

which implies that n1 is characteristically nilpotent.
For the second example, we consider the Lie algebra n2 with basisX1, . . . , X5, Y1, . . . , Y5, Z1, Z2 and bracket

[X1, X2] = X3 [X1, X3] = X4 [X1, X4] = X5 [X2, X3] = X5

[Y1, Y2] = Y3 [Y1, Y3] = Y4 [Y1, Y4] = Y5 [Y2, Y3] = Y5

[X1, Y1] = Z1 [X2, Y2] = Z1 [X1, Y2] = Z2 [X2, Y1] = Z2.

Let D be any derivation of n2, then again the diagonal is 0 by an easy computation. Now write D(X1) =
aX2 + bY1 + cY2 + V and D(X2) = a′X1 + b′Y1 + c′Y2 +W with V,W ∈ γ2(n2), then

0 = D([X1, Y3]) = [D(X1), Y3] + [X1, D(Y3)] = bY4 + cY5 + d1X4 + d2X5

0 = D([X2, Y3]) = [D(X2), Y3] + [X2, D(Y3)] = b′Y4 + c′Y5 + d3X4 + d4X5

for some di ∈ R. Hence b = c = b′ = c′ = 0. Now consider

D(X5) = D([X2, X3]) = [D(X2), X3] + [X2, D(X3)] = a′X4 + d′X5

for some d′ ∈ R and hence a′ = 0, since D(γ4(n2) ⊆ γ4(n2). A similar computation for Y1 and Y2 shows that
D is nilpotent since D2(n2) ⊆ γ2(n2). With some more work, one can show that D(n2) ⊆ γ2(n2), but since we
don’t need this fact, we don’t give the proof here.
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