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The non-collinear spin-spiral density wave of the uniform electron gas is studied in the framework
of Reduced-Density-Matrix-Functional Theory. For the Hartree-Fock approximation, which can be
obtained as a limiting case of Reduced-Density-Matrix-Functional Theory, Overhauser showed a long
time ago that the paramagnetic state of the electron gas is unstable with respect to the formation of
charge or spin density waves. Here we not only present a detailed numerical investigation of the spin-
spiral density wave in the Hartree-Fock approximation but also investigate the effects of correlations
on the spin-spiral density wave instability by means of a recently proposed density-matrix functional.

PACS numbers: 71.10.Ca, 71.15.-m, 73.22.Gk, 75.30.Fv

I. INTRODUCTION

For many decades, the uniform electron gas has
served as the model for the description of many-particle
systems1. However, the determination of its ground
state, without any symmetry assumptions, still remains
a challenge. Specific symmetries for the fully correlated
uniform electron gas have been investigated using Monte
Carlo methods2,3. These studies focus mostly on broken
spatial symmetry, i.e. , Wigner crystallization, or broken
global spin symmetry.

For the electron gas with constant electron density and
uniform spin-polarization, the ground-state energy is an-
alytically accessible in the Hartree-Fock approximation.
Overhauser showed in his seminal work4,5 that within
the Hartree-Fock approximation the aforementioned ho-
mogeneous ground state exhibits an instability w.r.t. the
formation of charge and spin density waves. Wigner
crystallization within Hartree-Fock has been investigated
in Ref. 6. Only recently the combined local spatial-
and spin-symmetry breaking of the Hartree-Fock ground
state has been studied using a Monte Carlo method which
optimizes the ground-state energy in the space of single
Slater-determinants7. However, this study still remains
in the regime of collinear spin polarization.

In the present work we investigate the case of lo-
cal spin symmetry breaking, specifically a non-collinear

spin-spiral symmetry. We employ Reduced-Density-
Matrix-Functional Theory both in the limiting case of the
Hartree-Fock approximation as well as for the correlated
electron gas using the recently proposed density-matrix-
power functional8,9.

II. THEORETICAL FRAMEWORK

A. Reduced-Density-Matrix-Functional Theory

The basic variable in Reduced-Density-Matrix-
Functional Theory (RDMFT) is the one-body-reduced
density matrix (1-RDM) defined by

γσσ′ (r; r′) ≡ TrN

{

D̂ψ̂†
σ′(r

′) ψ̂σ(r)
}

(1)

where D̂ is the zero-temperature statistical operator of
an ensemble of N -electron states

D̂ ≡
∑

i

ω2
i

∣

∣ΨN
i

〉 〈

ΨN
i

∣

∣ with
∑

i

ω2
i = 1, (2)

where ψ̂†
σ(r) and ψ̂σ(r) are fermionic creation and anni-

hilation operators, respectively. The 1-RDM is a Hermi-
tian operator in the single-particle Hilbert space and can
be represented by its spectral decomposition

γ(r; r′) =
∑

i

niΦi(r)Φ
†
i (r

′) , (3)

where the eigenvalues ni are called occupation numbers
(ON) and the corresponding single-particle Pauli-spinor

eigenstates Φi(r) = (ϕi↑(r) , ϕi↓(r))
T are referred to as

natural orbitals (NO). It was shown by Gilbert10 that
the N -particle ground state is a unique functional of the
ground state 1-RDM, i.e. ,

∣

∣ΨN
0

〉

=
∣

∣ΨN
0 [γgs]

〉

. Therefore
the ground state energy for a system of N interacting
electrons moving in an arbitrary but fixed (possibly non-

local) external potential V̂ is also a functional of the 1-
RDM:

EV[γ
gs] =

〈

ΨN
0 [γgs]

∣

∣ ĤV

∣

∣ΨN
0 [γgs]

〉

, (4)
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where ĤV = T̂ + V̂ + Ŵ + Eion is a generic interacting
many-body Hamiltonian with kinetic energy T̂ , external
potential V̂ , electron-electron interaction Ŵ , and a con-
stant energy contribution Eion from the degrees of free-
dom that are not treated quantum mechanically.
The ground-state-energy functional can be decom-

posed into the following components

EV[γ] = T [γ] + V [γ] +W [γ] + Eion, (5)

with the kinetic energy (atomic units are used through-
out the paper, and the superscript “gs” is omitted for
brevity)

T [γ] =
∑

σ

∫

d3r lim
r′→r

1

2
∇′∇γσσ(r; r′) , (6)

and the energy contribution due to the external potential

V [γ] =
∑

σ

∫

d3rV (r) γσσ(r; r) . (7)

Here we are assuming a local, spin independent exter-
nal potential. The Hohenberg-Kohn theorem of Density-
Functional Theory (DFT) proves a one-to-one mapping
between the ground-state density and the N-particle
ground state, considering only local external potentials.
However, in RDMFT the Gilbert theorem ensures a
one-to-one correspondence between the ground-state 1-
RDM and the N-particle ground state by considering the
broader class of non-local external potentials. This also
implies the one-to-one mapping between a local poten-
tial and the ground-state 1-RDM. Note that in contrast
to usual Kohn-Sham DFT all single-particle contribu-
tions to the ground state energy EV are explicitly given
in terms of the ground state 1-RDM. However, the inter-
action energy

W [γ] =
∑

σ1σ2

∫∫

d3r1d
3r2

P gs
σ1σ2

[γ](r1, r2)

|r1 − r2|
, (8)

is only known explicitly in terms of the ground-state pair
density

P gs
σ1σ2

[γ](r1, r2) ≡
〈

ΨN
0 [γ]

∣

∣ ψ̂†
σ1
(r1) ψ̂

†
σ2
(r2) ψ̂σ2

(r2) ψ̂σ1
(r1)

∣

∣ΨN
0 [γ]

〉

. (9)

The basic idea of RDMFT is to extend the domain
of the ground-state-energy functional in Eq. (4) to all
ensemble-N -representable 1-RDMs [as defined in Eq. (1)]
and then employ the variational principle in order to find
the ground-state 1-RDM as well as the ground-state en-
ergy corresponding to a fixed external potential V . The
necessary and sufficient conditions for a 1-RDM to be
ensemble-N -representable are11:

∑

i

ni = N and 0 ≤ ni ≤ 1, (10a)

∑

σ

∫

d3rϕ⋆
iσ(r)ϕjσ(r) = δij . (10b)

In order to apply RDMFT in practice we need to approxi-
mate the functional dependence of the pair density on the
1-RDM. Since we want to study the spin-spiral density
wave (SSDW) instability in the uncorrelated (Hartree-
Fock, HF) and the correlated regime, we focus on the
so-called density-matrix-power functional introduced in
Ref. 8:

Pα
σ1σ2

[γ](r1, r2) ≡
1

2
γσ1σ1

(r1; r1) γσ2σ2
(r2; r2)

− 1

2
γασ1σ2

(r1; r2) γ
α
σ2σ1

(r2; r1) , (11)

for 0.5 ≤ α ≤ 1. Here the power of the 1-RDM has to be
read in the operator sense, i.e.

γα(r; r′) =
∑

i

nα
i Φi(r)Φ

†
i (r

′) . (12)

As limiting cases it contains both the uncorrelated HF
approximation (for α = 1) as well as the correlated
Müller or Buijse-Baerends functional (for α = 0.5)12,13.
Also, it was recently shown9 that the power functional
yields good correlation energies for the unpolarized uni-
form electron gas.

B. The Overhauser Instability of the uniform

electron gas

The system under investigation is the uniform electron
gas (UEG) in three dimensions, i.e. , a gas of interacting
electrons subject to an external potential induced by a
uniformly distributed positive background charge. Over-
hauser has proved that the true HF ground state does
not correspond to a homogeneous electron density (al-
though there are solutions to the HF equations where
the symmetry is not broken), since the HF energy can
be lowered by forming a charge density wave (CDW) or
spin density wave (SDW)5. As an explicit example he
assumed, in addition to the regular HF potential Vσk, a
potential gk in the HF Hamiltonian that couples plane
waves of opposite spin whose momenta differ by q:

ĤHF =
∑

kσ

{

k2

2
− Vσk

}

ĉ†kσ ĉkσ

−
∑

k

gk

{

ĉ†
k+ q

2
↑
ĉk− q

2
↓ + ĉ†

k− q

2
↓
ĉk+ q

2
↑

}

. (13)

Overhauser demonstrated that with the ansatz

Φ1k(r) =





cos
(

1
2θk
)

e−
i
2
q·r

sin
(

1
2θk
)

e
i
2
q·r





eik·r√
Ω
, (14a)

Φ2k(r) =





− sin
(

1
2θk
)

e−
i
2
q·r

cos
(

1
2θk
)

e
i
2
q·r





eik·r√
Ω
, (14b)

the HF self-consistent equations are transformed into a
set of equations relating the orbital angles θk, the poten-
tial gk and the regular HF potential Vσk. Note that the
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generic single-particle index i here has been replaced by
the joint index i→{(b = 1, 2) ,k}. After taking the ther-
modynamic limit ( i.e. , the volume Ω and the number of
particles N are taken to be infinity such that N

Ω remains
constant), these equations read (cf. Ref. 14)

V↑k− q

2

=

∫

d3k′

(2π)
3

4π
∣

∣k − k
′
∣

∣

2

×
{

n1k′ cos2
(

θk′

2

)

+ n2k′ sin2
(

θk′

2

)}

,

(15a)

V↓k+ q
2

=

∫

d3k′

(2π)
3

4π
∣

∣k − k
′
∣

∣

2

×
{

n1k′ sin2
(

θk′

2

)

+ n2k′ cos2
(

θk′

2

)}

,

(15b)

2gk =

∫

d3k′

(2π)3
4π

∣

∣k − k
′
∣

∣

2 {n1k′ − n2k′} sin(θk′) . (15c)

The r.h.s. of Eqs. (15) implicitly depends on q via the
nbk and the θk. The nbk are the occupation numbers
(either 0 or 1) of the orbitals Φbk which comprise the HF
ground-state Slater-determinant and specify the Fermi
surface (the boundaries of the integration) in Eqs. (15a)
- (15c). The orbital angles θk on the other hand are given
by

tan(θk) =
2gk

ǫ↑k− q

2

− ǫ↓k+ q

2

, (16a)

ǫ↑k− q

2

=

(

k − 1
2q
)2

2
− V↑k− q

2

, (16b)

ǫ↓k+ q

2

=

(

k + 1
2q
)2

2
− V↓k+ q

2

. (16c)

Note that the origin in momentum space is shifted by q/2
compared to the definitions in Ref. 14. The energy contri-
bution due to the pairing potential gk favors a hybridiza-
tion of spin-up and spin-down plane waves differing by
q in their momenta. The orbital angles θk introduced
in Overhauser’s ansatz Eq. (14) describe this hybridiza-
tion. Another way of looking at the orbital angles θk is
to consider them, together with the angles φ(r) = q ·r,
as angles defining a rotation in spin space represented by

U(r;k) ≡ e−ıφ(r)σz

e−ıθkσ
y

=





cos
(

1
2θk
)

e−
i
2
q·r − sin

(

1
2θk
)

e−
i
2
q·r

sin
(

1
2θk
)

e
i
2
q·r cos

(

1
2θk
)

e
i
2
q·r



 , (17)

where σy/z are Pauli matrices. The orbitals of
Eq. (14a)[(14b)] can then be thought of as being con-
structed by transforming pure spin-up [spin-down] plane
waves in spin space according to the rotation Eq. (17).
First the plane wave is rotated around the y-axis by

FIG. 1: (Color online) The effects of the spin rotation U(r;k)
on pure spin-up (dashed arrow) or pure spin-down (solid ar-
row) natural orbitals (plane waves) for two momenta k1/2.
The angle θk specifies the cone on which the spin is rotating.
The position on the cone is given by the angle φ(r) = q ·r,
which is the same for all natural orbitals.

an angle θk, i.e. , an angle depending on its momen-
tum. Then it is rotated around the z-axis by an angle
φ(r) = q ·r which is the same for all plane waves, inde-
pendent of the wave vector, but depends on the spatial
position (see Fig. 1). With this consideration it is clear
that the angle θk has to be restricted to the interval [0, π]
in order to assign a unique azimuthal rotation angle.
In previous studies within RMDFT9,15 it was assumed

that the 1-RDM exhibits the symmetries present in the
Hamiltonian, i.e. , the NOs are pure spin-up(down) plane
waves, while here we use orbitals of the form of Eq. (14)
as NOs for our RDMFT treatment of the UEG. The spin-
spiral wave vector q and the angle θk will be treated as
variational parameters for the NOs. It can easily be ver-
ified that the NOs of Eq. (14) form a complete and or-
thonormal set and that the corresponding electron den-
sity ρ ≡ 3/

(

4πr3s
)

, given in terms of the Wigner-Seitz ra-
dius rs, is still spatially constant. The magnetization of
the UEG is defined by

m(r) ≡− 1

2

∑

σσ′

〈Ψ| ψ̂†
σ′(r)σσσ′ ψ̂σ(r) |Ψ〉 (18)

=−





Rγ↑↓(r; r)
Iγ↑↓(r; r)

1
2{γ↑↑(r; r)− γ↓↓(r; r)}



 ,

and varies in space as

m(r) =−





A cos(q ·r)
A sin(q ·r)

B



 , (19a)

A ≡1

2

∫

d3k

(2π)
3 {n1k − n2k} sin(θk) , (19b)

B ≡1

2

∫

d3k

(2π)3
{n1k − n2k} cos(θk) , (19c)

i.e. , the x- and y-components of the magnetization ro-
tate in space along the direction of q with a periodicity
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given by the wavelength q = |q|. This geometry of the
magnetization is usually referred to as SSDW28.

III. NUMERICAL IMPLEMENTATION

Having chosen a functional and having made an ansatz
for the NOs, we minimize the functional for the ground-
state energy. The functional depends on nbk , θk and the
spin-spiral wave vector q. The contribution Eion coming
from the uniform positive background charge cancels ex-
actly the classical contribution of the interaction energy,
since the density is constant. Accordingly the energy per
electron reads

eα[nb, θ](q) = t[nb, θ](q)−wα1[nb, θ]−wα2[nb, θ] , (20)

with the kinetic energy per electron

t[nb, θ](q) =
1

2ρ

∫

d3k

(2π)
3

{

(n1k + n2k) k
2

− q ·k(n1k − n2k) cos(θk)
}

+
q2

8
, (21)

the energy contribution from exchange-like terms of or-
bitals with the same b (intra-band exchange)

wα1[nb, θ] =
1

2ρ

∫∫

d3k1d
3k2

(2π)
6

4π

(k1 − k2)
2

×{(n1k1
n1k2

)
α
+(n2k1

n2k2
)
α}

× cos2
(

θk1
− θk2

2

)

, (22)

and the energy contribution from exchange-like terms of
orbitals with opposite b (inter-band exchange)

wα2[nb, θ] =
1

2ρ

∫∫

d3k1d
3k2

(2π)
6

4π

(k1 − k2)
2

×{(n1k1
n2k2

)
α
+(n2k1

n1k2
)
α}

× sin2
(

θk1
− θk2

2

)

. (23)

We assume that the symmetry is only broken along the
direction of q which is chosen to be parallel to the z-
axis. Accordingly we can use cylindrical coordinates in
momentum space, i.e. , nbk = nbkρkz

and θk = θkρkz
. We

also use the following additional symmetry assumptions

nbkρ−kz
=nbkρkz

, n1k ≥ n2k, (24a)

θkρ±|kz| =
π

2

{

1∓ akρ|kz|

}

, (24b)

with 0 ≤ ak ≤ 1. In this way we guarantee that the en-
ergy gain in the part of the energy which explicitly de-
pends on q is maximized. The z-component of the mag-
netization vanishes under these symmetry assumptions
(planar spiral).

The configurations

nPM
1k =Θ(|k − ezkf | − kf ) + Θ(|k + ezkf | − kf ) ,

nPM
2k =0 , aPM

k = 1 , q = 2kfez (25a)

and

nFM
1k =Θ

(∣

∣

∣k − 21/3kf

∣

∣

∣

)

,

nFM
2k =0 , aFMk = 0 , q = 0, (25b)

kf ≡
(

9π

4

)1/3
1

rs
,

which are compatible with Eq. (24), correspond to the
non-magnetic (usually in this context called paramag-
netic [PM]) and ferromagnetic (FM) state of the UEG
within HF, respectively.
When discretizing the integrals of Eqs. (21)-(23) we

assume that the ONs nbk and the angles ak are constant
within annular regions in k-space

Ωi ≡
{

k
∣

∣ ki−ρ ≤ kρ ≤ ki+ρ ; ki−z ≤ kz ≤ ki+z

}

. (26)

Then the discretized energy contributions are

t[nbi, θi](q) =
∑

bi

nbiDKIi +
q2

8

− q
∑

i

(n1i − n2i) cos(θi) DQIi , (27a)

wα1[nbi, θi] =
1

2

∑

bij

(nbinbj)
α
cos2

(

θi − θj
2

)

DXIij ,

(27b)

wα2[nbi, θi] =
∑

ij

(n1in2j)
α
sin2

(

θi − θj
2

)

DXIij ,

(27c)

where the integral weights are given by

DKIi ≡
1

8π2ρ

∫∫

Ωi

dkρdkz
(

k3ρ + kρk
2
z

)

(28a)

DQIi ≡
1

8π2ρ

∫∫

Ωi

dkρdkz(kρkz) (28b)

DXIij ≡
1

2ρ

∫∫∫

Ωi

dkρ1dkz1dφ1

(2π)
3

∫∫∫

Ωj

dkρ2dkz2dφ2

(2π)
3

× 4πkρ1kρ2

k2ρ1 + k2ρ2 +(kz1 − kz2)
2 − 2kρ1kρ2 cos(φ1 − φ2)

.

(28c)

The integrals (28a) and (28b) are readily solved and the
integrals (28c) can ultimately be reduced to elliptic in-
tegrals, which are numerically accessible with high ac-
curacy. Since the momenta are treated as continuous
variables we stay in the thermodynamic limit. Thus all
energies obtained numerically are variational. The error
introduced by the discretization is solely due to the as-
sumption that the nbk and θk are constant within the
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0 0.5 1 1.5 2
q/kf

-0.0005

0

0.0005

0.001

0.0015

0.002
e(

q)
-e

(2
k f) 

(a
.u

.)
rs=4.50
rs=5.00
rs=5.20
rs=5.35
rs=5.45
rs=5.65

FIG. 2: (Color online) Hartree-Fock total energy per electron
of the SSDW state as function of the spin-spiral wave vector
q at various rs. The value e(q = 2kf ) is subtracted in order
to emphasize the behavior of the minimum at different den-
sities. For increasing density (decreasing rs) the minimum
shifts to higher values of qopt and the energy gained against
the paramagnetic state by forming a spin spiral decreases.

elementary volume elements Ωi and can systematically
be reduced by increasing the number of discretization
points.
After having discretized the problem, the minimiza-

tion of the energy functional of Eq. (20) becomes a high-
dimensional optimization problem. We use a steepest
descent algorithm for the minimization and ensure that
the constraints, Eq. (10), are satisfied during the mini-
mization process. Starting from some initial 1-RDM and
some initial discretization in momentum space the energy
is minimized for a fixed spin-spiral wave vector q. Then
the discretization is refined in those regions of momen-
tum space where the nbi and/or the ai show the largest
variations. The minimization on the refined momentum
space mesh starts from a re-initialized 1-RDM in order
to prevent dependencies on the result of the minimiza-
tion on the coarser grid. Finally we compare the total
energies at different q in order to determine the optimal
spin-spiral wave vector qopt for various densities.

IV. RESULTS

A. Hartree-Fock

We first use our numerical implementation to investi-
gate Overhauser’s SSDW state in the HF approximation,
i.e. , the density-matrix-power functional with α = 1.
From the considerations in Eqs. (25) we see that it is
sufficient to minimize w.r.t. a 1-RDM whose ONs are
only non-zero for orbitals with b = 1 and |q| ∈ [0, 2kf ]
since both the paramagnetic and the ferromagnetic HF
solutions are accessible under these conditions. The min-
imization at q = 0 and q = 2kf yields exactly the ONs nbi

and angle parameters ai given in Eqs. (25b) and (25a),

4.8 5 5.2 5.4 5.6
rs (a.u.)

-0.048

-0.047

-0.046

-0.045

-0.044

-0.043

-0.042

e 
(a

.u
.)

ePM
eFM
eSSDW

4.8 5 5.2 5.4 5.6
rs (a.u.)

0.1

0.2

0.3

0.4

0.5

0.6

A
 (

10
-3

 a
.u

.)

FIG. 3: (Color online) Dependence of the energy per electron
on rs, within the Hartree-Fock approximation, for the para-
magnetic, ferromagnetic and SSDW phase in the region of
the paramagnetic-ferromagnetic crossover. The inset shows
the behavior of the amplitude A, defined in Eq. (19b), at the
optimal spin-spiral wave vector.

respectively. Therefore we can read the total energy per
particle as function of the spin-spiral wave vector in the
following way: e(q = 0) is the energy of the ferromagnetic
state, e(q = 2kf ) corresponds to the energy of the para-
magnetic state. For intermediate values, 0 < q < 2kf ,
e(q) corresponds to a SSDW configuration with mz = 0
(planar spiral). Overhauser’s statement can then be ex-
pressed as ∂qe(q)|q=2kf

> 0, i.e. , the paramagnetic con-

figuration is unstable w.r.t. the formation of a SSDW.

In Fig. 2 we show the dependence of the total energy
per particle on the spin-spiral wave vector q for vari-
ous densities. Consistent with Overhauser’s proof, the
derivative of e(q) is positive at q = 2kf . It is clear from
Fig. 2 that the optimal spin-spiral wave vector moves
away from the paramagnetic configuration (q = 2kf ) as
the density decreases. Furthermore the difference be-
tween the total energy at the minimum and the total
energy at q = 2kf increases with increasing rs, i.e. , the
instability is more pronounced at lower densities. Below
some critical density, however, the ferromagnetic state
(q = 0) becomes the most stable solution. This is not
in contradiction with Overhauser’s statement since the
spin-spiral state is still lower in energy than the param-
agnetic state. A comparison of the energy per electron in
the paramagnetic, ferromagnetic and SSDW phase is de-
picted in Fig. 3. We provide results for the non-collinear
magnetic states of the UEG in order to extend the pic-
ture given in Ref. 7. It seems that the gain in energy
by forming a collinear SDW/CDW state as presented in
Ref. 7 is larger compared to the energy gain by forming a
SSDW. This is consistent with the qualitative argument
already given by Overhauser, that the superposition of a
left- and right-rotating SSDW yielding a collinear SDW
will increase the gain in energy5.

To describe the resulting behavior of qopt(rs) we pro-
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1 2 3 4 5
rs (a.u.)

1

1.5

2
q op

t/k
f

FIG. 4: (Color online) Dependence of the Hartree-Fock opti-
mal spin-spiral wave vector qopt on the density, given by rs.
The proposed approximation by a simple scaling law Eq. (29)
is shown as the dashed line.

0 0.5 1 1.5 2
q/kf

-0.0475

-0.047

-0.0465

-0.046

-0.0455

-0.045

e(
q)

 (
a.

u.
)

initial mesh
1 mesh refinement
2 mesh refinements
paramagnetic energy (analytic)

FIG. 5: (Color online) Hartree-Fock total energy per electron
as function of the spin-spiral wave vector q at the density
corresponding to rs = 5.0. The data sets represent results at
different discretizations. The dashed horizontal line visualizes
the analytic value of the paramagnetic ground state energy.
The optimal spin-spiral wave vector is qopt ≈ 1.6kf .

pose a simple, empirical scaling law for the optimal spin-
spiral wave vector

qopt(rs) = 2kf

(

1−
(

rs
r0

)3
)β

, (29)

where r0 ≈ 5.7 and β ≈ 0.2. The proposed scaling behav-
ior of qopt reproduces the numerical data very accurately
as can be seen in Fig. 4. It should be emphasized that we
do not find any optimal spin-spiral wave vector qopt < kf .
Note that for densities close to the transition to the fer-
romagnetic state the optimum wave vector qopt can be
quite different from 2kf while for higher densities it is
very close to this value.
The effect of the refinement of the discretization in mo-

mentum space is shown in Fig. 5. By sampling nbi and ai

-2 -1 0 1 2
kz/kf

-0.2

0

0.2

0.4

e H
F
 (

a.
u.

)

q=0.0kf (FM)
q=1.6kf (SSDW)
q>2.0kf (PM)

FIG. 6: (Color online) Hartree-Fock single-particle dispersion
(kρ = 0) at rs = 5.0 for the paramagnetic (q ≥ 2kf ), ferro-
magnetic (q = 0kf ) and the SSDW state (qopt = 1.6kf ). The
single-particle energies are shifted such that the dashed hor-
izontal line corresponds to the Fermi energy for all q. The
difference between the two symmetric minima corresponds to
the spin-spiral wave vector q. The paramagnetic dispersion
may also be viewed as a spin-spiral dispersion with the ori-
gin in momentum space shifted by ±q for the different spin
channels [cf. Eqs. (25)].

more often in regions of higher variations we both lower
the energy and reduce the numerical noise in e(q). The
convergence of the total energy can be inferred from the
values e(q = 2kf ) at different discretizations and compar-
ing to the analytic paramagnetic energy. For the case of
rs = 5.0 we obtain a spin-spiral energy that is lower than
the analytic paramagnetic energy at the optimal value of
the spin-spiral wave vector. At higher densities (lower
rs) the energy gain by forming a SSDW is lower, so we
would need a very fine discretization to obtain numeri-
cal results lower than the analytic paramagnetic energy.
However, considering the numerical value of the param-
agnetic energy at the same discretization is sufficient to
demonstrate the instability w.r.t. a SSDW formation be-
cause the computed energies are variational as discussed
in Sec. III. In order to determine the dependence of the
optimal spin-spiral wave vector qopt on the density, we
therefore refine the momentum space discretization until
qopt is converged.
For our numerical results we have verified that the ONs

and the angular parameters ai satisfy Overhauser’s self-
consistent equations (15) and (16) by iterating them only
once. The difference between the angles ai in the occu-
pied regions before and after the iteration is numerically
zero for all values of q. This means that choosing a spin-
spiral wave vector we can always find a solution of the
self-consistent equations derived by Overhauser. Since
the total energy does not depend on the ai in regions
where nbi = 0, one self-consistency loop furthermore fixes
the angles ai in unoccupied regions of k-space because
they appear only on the left-hand side of Eqs. (16).
This is necessary to construct the proper HF dispersions
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FIG. 7: (Color online) Orbital angles θ(kρ = 0, kz) for vari-
ous densities, specified by rs, at the optimal spin-spiral wave
vector. The horizontal dashed line corresponds to the orbital
angles at q = 0 (ferromagnetic) and the step-like dashed line
corresponds to q = 2kf (paramagnetic). For increasing rs the
optimal spin-spiral wave vector becomes smaller, such that
the Fermi spheres, separated at q = 2kf , begin to overlap. In
order to gain energy the spin-up and spin-down orbitals in the
overlapping region hybridize and the orbital angle θ describes
the mixing of the spin-up and spin-down states.

(cf. Fig. 6) also for the unoccupied states. In a comple-
mentary work we have investigated the SSDW state using
the Optimized-Effective-Potential (OEP) method within
the framework of non-collinear Spin-Density-Functional
Theory (SDFT)16. In contrast to our findings within the
OEP-DFT framework, i.e. , an effective single-particle
theory restricted to local external potentials, here we do
not find holes below the Fermi surface (cf. Ref. 16 for de-
tails). This is expected because it was shown in Ref. 17
that the HF ground state has no holes below the Fermi
surface if the interaction is repulsive. Therefore our as-
sumption of occupying only one band is justified.

At the single-particle level we have an intuitive un-
derstanding of the instability: as the two distinct spin-
up and spin-down regions of the paramagnetic state are
squeezed into each other, the orbitals in the overlapping
region hybridize. This hybridization then leads to the
opening of a direct gap between the HF single-particle
dispersions corresponding to b = 1, 2 at kz = 0 as well as
to a lowering of both the symmetry and the total energy
of the system. The mixing of the spin-up and spin-down
orbitals is given by the orbital angles θk, capable of de-
scribing a continuous transition between the paramag-
netic and the ferromagnetic state [Eqs. (25a) and (25b)
respectively]. The behavior of the orbital angles at the
optimal spin-spiral wave vector is shown in Fig. 7.

0 0.5 1 1.5 2 2.5 3 3.5
q/kf

-0.002

0

0.002

0.004

0.006

0.008

0.01

e(
q)

-e
(q

=
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α=0.7
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FIG. 8: (Color online) Total energies per electron of the
SSDW state described with the density-matrix-power func-
tional as a function of the spin-spiral wave vector q for vari-
ous values of α at rs = 5.0. The total energy per electron at
q = 0 is subtracted in order to emphasize the behavior with
increasing q.

B. Correlated Functionals

The density-matrix-power functional reduces to the
uncorrelated HF approximation for α = 1 and to the
Müller functional for α = 0.5. The latter one is known15

to over-correlate and therefore one expects that decreas-
ing α from 1 → 0.5 increases the amount of correla-
tion in the system. This picture was verified in Ref. 9,
where an optimal value of α ≈ 0.6 was found in the re-
gions of metallic densities for the paramagnetic UEG. In
Fig. 8 the dependence of the total energy per particle
at rs = 5.0 is shown for various α. It should be noted
that the configuration for q > 2kf cannot be interpreted
as the paramagnetic state in the correlated case. This
is due to the fact that correlations smear out the sharp
step found for the uncorrelated case in the momentum
distribution around the Fermi surface (see Ref. 15 for de-
tails). Therefore at q = 2kf the (fractionally) occupied
regions in momentum space are not necessarily disjoint.
Only when the occupied regions separate into two parts
the configuration may corresponds to the paramagnetic
state. However, the configuration at q = 0 may still be
interpreted as the ferromagnetic state.
From Fig. 8 it is clear that the instability w.r.t. a

SSDW is still present for α = 0.9. For higher values of α
the instability disappears and for α = 0.5, 0.6 the energy
has a maximum in the SSDW region. Thus for values of
α which provide good correlation energies for the UEG
in the paramagnetic regime there is no SSDW formation.
In order to understand the reason for this it is instruc-
tive to look at various contributions to the total energy.
In Fig. 9 we compare the correlation energy contribution
with the contribution coming from the kinetic and ex-
change terms. The minimum is still present considering
only kinetic and exchange contributions, but for decreas-
ing α the correlation contribution damps out the insta-
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FIG. 9: (Color online) Comparison of the correlation energy
with the contribution from kinetic plus exchange terms (KEX)
for α = 0.6, 0.7, 0.8 at rs = 5.0. All energy contributions are
shifted such that the value at q = 0 is zero. For decreasing α

the minimum in the KEX contribution shifts to higher values
of q. The correlation contribution however damps out this
instability for values of α that yield good total energies at
metallic densities.
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FIG. 10: (Color online) Relative correlation energy as a func-
tion of the spin-spiral wave vector q for various rs at α = 0.6.
Correlations are more important around the ferromagnetic
configuration. In the region of the Hartree-Fock SSDW insta-
bility correlations have the smallest effect. This indicates why
the instability is not sustained when correlations are included
at the level of the density-matrix-power functional.

bility more and more. One might suspect that at high
densities, where exchange dominates correlations, the in-
stability sustains. Our findings in Sec. IVA show that
in the HF approximation the energy gain decreases when
the density increases, which is consistent with an ana-
lytic argument18 that at high densities the energy gain
by forming a SDW and/or CDW is overcome by correla-
tions. Furthermore our results indicate that correlation
effects dominate the SSDW instability also at intermedi-
ate densities.

In order to gain some insight into the role of correla-

tions we define the relative correlation energy δec as

δeαc ≡ wα − wHF

|eα|
. (30)

In Fig. 10 we show the dependence of this quantity on
the spin-spiral wave vector for the correlation parame-
ter α = 0.6. The absolute value of the relative correla-
tion is smallest in the region of the SSDW instability
(q = kf → 2kf ), which explains why the instability is no
longer present when correlations are included. Further-
more we can see that the relative correlation is dom-
inant in the region of the ferromagnetic configuration.
This can be understood by noticing that the density-
matrix-power functional approximates the correlation en-
ergy by a prefactor times a Fock integral (most present-
day functionals in RDMFT approximate correlations in
this way13,15,19,20,21,22,23,24,25,26,27). Since Fock integrals
imply that equal spins are particularly correlated, one
would expect a similar dependence of the relative corre-
lation energy for other RDMFT functionals.

V. SUMMARY AND CONCLUSION

We have investigated the instability of the uniform
electron gas w.r.t. the formation of a spin-spiral density
wave within Reduced-Density-Matrix-Functional Theory,
which includes the Hartree-Fock approximation as an im-
portant limiting case. To our knowledge this is the first
numerical Hartree-Fock study of the spin-spiral state in
the electron gas, despite the fact that Overhauser pre-
sented his analytical work on the problem more than
four decades ago. In Overhauser’s work, the optimal
spin-spiral wave vector was not determined. Our study
shows that, in contrast to common belief, the optimal
spin-spiral wave vector is not always close to 2kf . While
at high densities we confirm this value for the optimal
wave vector, for lower densities (just before the transi-
tion to the ferromagnetic state) the optimal wave vectors
even approaches kf .
Within the framework of Reduced-Density-Matrix-

Functional Theory we also studied the effect of corre-
lations on the spin-spiral density wave instability using
the recently proposed density-matrix-power functional.
Not unexpectedly, we find that the inclusion of corre-
lations suppresses the instability, which is explained by
the behavior of the correlation energy in the region of the
spin-spiral density wave instability.
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stituto Balseiro, 8400 S. C. de Bariloche, Ŕıo Negro, Ar-
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