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Abstract We have studied cracks traveling along
weak interfaces. We model them using harmonic and
anharmonic forces between particles in a lattice, both
in tension (Mode I) and antiplane shear (Mode III).
One of our main objects has been to determine when
supersonic cracks traveling faster than the shear wave
speed can occur. In contrast to subsonic cracks, the
speed of supersonic cracks is best expressed as a func-
tion of strain, not stress intensity factor. Nevertheless,
we find that supersonic cracks are more common than
has previously been realized. They occur both in Mode
I and Mode III, with or without anharmonic changes
of interparticle forces prior to breaking, and with or
without dissipation. The extent and shape of the super-
sonic branch of solutions depends strongly on details
such as lattice geometry, force law anharmonicity, and
amount of dissipation. Particle forces that stiffen prior
to breaking lead to larger supersonic branches. Increas-
ing dissipation also tends to promote the existence of
supersonic states. We include a number of other results,
including analytical expressions for crack speeds in the
high-strain limit, and numerical results for the spatial
extent of regions where particles interact anharmoni-
cally. Finally, we note a curious phenomenon, where
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for forces that weaken with increasing strain, cracks
can slow down when one pulls on them harder.
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1 Introduction

The terminal speed of cracks loaded in tension (Mode
I) has been an object of curiosity for over 60 years. Cal-
culations of Mott (1947) indicated that cracks should
reach a maximum speed at a fraction of the shear wave
speed, a conclusion that received support from exper-
imental work of Schardin (1955, 1959). Theoretical
study of energy flux to crack tips provided arguments
that the maximum speed of a crack should be the
Rayleigh wave speed cR (Freund 1990; Broberg 1999),
which is typically about 90% of the shear wave speed.
Experimentally cracks do not usually reach this speed,
and have terminal velocities that are around 0.6 cR .This
limit was eventually understood to result from instabil-
ities of the crack tip that cause it to begin branching
on small scales once the energy flux exceeds a crit-
ical value (Fineberg and Marder 1999). This line of
argument leaves open however the question of what
might happen if the crack-tip instabilities could be
suppressed.

Both for Mode II and Mode III cracks, motion faster
than the shear wave speed is known to be possible. In
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the case of Mode II, Andrews (1976) first showed that
intersonic motion (motion at speeds between shear and
longitudinal wave speeds) was possible. A more com-
prehensive discussion including the effects of a tip
cohesive zone was provided by Burridge et al. (1979)
and the results are now well established in fracture
mechanics (Broberg 1999). Rosakis et al. (1999) and
Rosakis (2002) provided direct experimental confir-
mation. In the case of Mode III cracks, experimen-
tal evidence of supersonic rupture was provided by
Petersan et al. (2004). Numerical and theoretical expla-
nations involve the consideration of dissipative effects
or spring nonlinearities, and were provided respectively
by Marder (2005), Marder (2006) and Guozden and
Jagla (2005). The experimental setting of the studies
here described as Mode III is arguable; it is thin sheets
of rubber, which when greatly stretched should obey the
equations of Mode III elastodynamics. Rubber appears
to suppress crack-tip instabilities spontaneously, per-
haps because toughness is a strong function of the local
stress state. This phenomenon is not yet well under-
stood. However, the numerical and theoretical findings
associated with the rubber rupture are unambiguous
and led to two main conclusions.

1. Supersonic cracks in Mode III are possible so long
as near-tip instabilities are suppressed.

2. The scaling behavior of supersonic cracks is dif-
ferent from that of subsonic cracks. For subsonic
cracks, crack speed is a function of K/Kc (the ratio
of stress intensity factor and fracture toughness)
or equivalently of energy flux to the crack tip. For
supersonic cracks, crack speed is a function of the
strain in the vicinity of the crack tip, and conven-
tional calculations involving energy flux are unin-
formative.

There has been evidence for some time that Mode I
cracks can move at speeds above the Rayleigh wave
speed as well. Following a study of the continuum
mechanics of intersonic cracks, Slepyan and Fishkov
(1981) obtained explicit analytical solutions for inter-
sonic Mode I cracks in a lattice model (Kulakhmetova
et al. 1984; Slepyan 2002). Buehler et al. (2003) also
found intersonic cracks in molecular dynamics simu-
lations, and they attributed the phenomenon to non-
linearities of the interatomic potentials.

Our goal in this paper is to extend these studies. We
show that both supersonic and intersonic cracks occur
quite generically in Mode I. We describe branches of

intersonic and supersonic cracks in a variety of models.
The Mode I cracks are like those in Modes II and III.
Once near-tip instabilities are suppressed, supersonic
crack motion occurs quite naturally. Like their Mode III
counterparts, supersonic and intersonic cracks in Mode
I are controlled by near-tip strain rather than by stress
intensity factors. Many, although not all of the solutions
Slepyan found are physically realizable. Abraham and
Gao (2000) are correct in noting that details of the shape
of interatomic potentials greatly affect crack speeds,
but crack motion above the Rayleigh wave speed does
not necessarily require hyperelasticity, and may occur
even for strain softening potentials in the presence of
dissipation.

The work in this paper is theoretical. We use two
complementary numerical methods

1. The primary method is direct integration of
Newton’s equations of motion (molecular dynam-
ics) for atomic systems whose atoms interact with
forces that drop to zero past a critical extension and
hence permit solutions that correspond to cracks.
Here we restrict our study to force laws that are
piecewise linear, and to cracks moving along the
weakened center line of a strip. The numerical code
can be run by letting bonds ahead of the crack break
when a maximum extension is reached, or, in a
slight variation, can allow bonds on the crack line
to snap at specified time intervals. This last feature
enhances the ability to compare with the Wiener-
Hopf calculations described below.

2. The second is a method based on the Wiener-Hopf
technique (Marder and Gross 1995; Noble 1958)
that makes it possible to find the properties of cracks
in steady states by performing some integrals. The
advantage of this method is that it is very fast and is
suited to finding the relationship between calcula-
tions at the atomic scale and the macroscopic limit.
However, it is based on the assumption that bonds
along a crack line break in sequence at a steady rate
and can be employed only for a very specific class
of interatomic forces, those that are linear up to the
point of rupture.

By combining results from these two methods, we are
able to obtain a fairly comprehensive picture of the exis-
tence of intersonic and supersonic cracks. As a synthe-
sis of the results, and to serve as a guide for the rest of
the paper, in Tables 1 and 2 we summarize the condi-
tions under which supersonic propagation is obtained.
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Table 1 Summary of qualitative conditions for subsonic or supersonic propagation

Regime Mode Conditions Comments

Subsonic III δ/δG of order 1 See Fig. 2

I Any δ δ Has to be increased slowly to stay on this branch.
See Sect. 4

Supersonic III δ/δC finite See Fig. 2. For analytical expressions for the
divergence as δ → δC see (Fig. 6)

I δ/δC � 0.75 Finding these states requires proper choice of initial
conditions, which include changing δ suddenly,
giving large velocity to near-tip masses, or starting
at large strains and slowly decreasing δ. See Fig. 7.
Some supersonic regimes can be achieved by
changing the breaking sequence in square lattices,
as shown in Figs. 11 and 12

I and III γ > 1, δ/δC finite See Fig. 19

I and III Finite dissipation (Kelvin or Stokes), δ/δC finite Singularities near the crack tip similar to stiffening
nonlinearities, which may drive the crack
supersonically. See Sect. 4.1

The scaled values δ/δC and δ/δG are defined in Eqs. (17) and (16). γ is defined in Eq. (23). System is always harmonic (γ = 1) and no
dissipation is present except when explicitly stated

Table 2 Summary of quantitative conditions leading to supersonic cracks in lattices

Lattice Mode Non-linearity Minimum scaled strain δ/δC Comments

Triangular III None 0.24 Wiener–Hopf computation in systems 4,000 rows high

Square III None 0.95 Wiener–Hopf computation in systems 4,000 rows high

Triangular I None 0.76 Molecular dynamics computations in systems 20–80 high

Square I None 0.62 Molecular dynamics computations in systems 80 high

Triangular I Stiffening (γ = 2.) 0 Molecular dynamics computations in systems
20–180 high. The minimum strain continuously
decreases as system size increases

Triangular I Softening (γ = 0.5) 0.62 Molecular dynamics computations in systems 20–40 high

In all cases, the threshhold for appearance of supersonic states must be expressed in terms of a minimum scaled strain δ/δC rather than
fracture energy, or stress intensity factor. The scaled strain δ/δC is defined in Eq. (17). γ is defined in Eq. (23). Results are given in
absence of dissipation; dissipation changes quantitative values

The structure of the paper is as follows:

Section 2: We review the properties of ideal brittle
solids that form the setting for our work.

Section 3: We review the scaling structure of sub-
sonic and supersonic cracks in Mode III
and provide some new results, including
an analytical expression for the speeds of
supersonic cracks in triangular and square
lattices.

Section 4: We examine the scaling structure of Mode
I solutions and demonstrate the existence
of a branch of supersonic solutions.

Section 5: We extend the numerical studies to con-
sider hyperelastic potentials between
atoms and determine their effect upon the
various branches of crack motion.

Section 6: Conclusions.

2 Details of the model

We focus on two-dimensional systems formed by sin-
gle layers of particles in a strip. The strip lies in the
x–y plane, with the axis along the x direction as shown
in Fig. 1. The dynamic variables of the problem are
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Fig. 1 Sketch of cracks
propagating in mode III in:
a a square lattice,
b a triangular lattice; and in
mode I in: c a square lattice,
d a triangular lattice

the displacements of lattice points with respect to their
equilibrium positions. There is a single out-of-plane
displacement ui for mode III conditions (i labels both
x and y coordinates at equilibrium), and there are two
in-plane displacements ui ≡ (ux

i , uy
i ) for mode I. We

consider both square and triangular lattices. The net
force fi on a given node i is calculated at each time by
summing up the contributions of all springs connecting
to that node. The explicit expressions for mode III and
mode I follow.

2.1 Mode III

For mode III we have for the force fi on particle i

fi =
∑

j

φ(ui j ). (1)

where

ui j = u j − ui .

We begin by taking the forces between neighbors to
have an ideal brittle form that remains linear up to the
breaking point. Both for triangular and square lattices,
we take

φ(ui j )

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

kui j if i & j are nearest
nbrs not on center line

0 if i & j are not nearest
neighbors

kui j θ̃ (ubk−|ui j (t)|) ifi & j are nearest
nbrs across center line

(2)

Here k is the lattice spring constant, and ubk is an exten-
sion past which points spanning the crack line break
due to the Heaviside function θ̃ . The reason for the
decoration on θ̃ is that we take the Heaviside func-
tion to depend upon the complete history of the bond
extension ui j (t). Once a bond stretches to a distance
greater than ubk the force between the two particles
drops irreversibly to zero and never appears again even
if the particles come back into contact. This choice
mimics irreversibility due to conformational changes
in brittle glasses and polymers. Thus there is a weak-
ened plane running across the center of the strip where
bonds can break and permit a crack to run. Weak planes
can be realized experimentally, for example by gluing
two pieces of material together, or by fracturing crys-
tals. We have deliberately chosen only to allow fracture
along the weak plane so as to suppress instabilities that
would otherwise arise (Fineberg and Marder 1999).
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2.2 Mode I

For mode I, we work in the limit of infinitesimal dis-
placements, namely where displacements are small
compared to the equilibrium lattice spacing. Thus the
two component force f = ( f x , f y) is given in this
case by

f i =
∑

j

φ(ui j ) ni j , (3)

where

ni j = (u0
j − u0

i )/|(u0
j − u0

i )|
is the constant unit vector joining the original equilib-
rium positions of nodes j and i and

ui j = |ui j |; ui j = u j − ui .

For triangular lattices in Mode I, we take

φ(ui j )

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

kui j if i & j are nearest
nbrs not on center line

0 if i & j are not
nearest neighbors

kui j θ̃ (ubk−|ui j (t)|) if i & j are nearest
nbrs across center line

(4)

while for square lattices in Mode I we take interactions
up to second neighbors in the form

φ(ui j )

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kui j if i & j are near
nbrs not on
crack line

kui j/2 if i & j are 2nd
nbrs not on
crack line

0 if i & j are further
than 2nd nbrs

k ui j θ̃ (ubk−|ui j (t)|) if i & j are near
nbrs across
crack line

kui j/2θ̃ (ubk/
√

2−|ui j (t)|) if i & j are near
nbrs across
crack line

(5)

The reason for choosing this particular second neighbor
interaction is to obtain an elastically isotropic square
lattice in linear elasticity.

2.3 Dynamics and other details

The force on each node is evaluated at each time step,
and it is used to integrate the corresponding Newton
equation of motion, namely

m
∂2ui

∂t2 = fi mode III (6)

m
∂2ui

∂t2 = f i mode I (7)

where m is the mass associated with each node.
The system is composed of L y rows along the y

direction, and Lx sites on each row. The driving force
for crack propagation is imposed as a constant displace-
ments on top and bottom rows, namely those for which

uy
i = 0 (bottom) (8)

uy
i ′ = (L y − 1)a (

√
3/2) (top, triangular lattice)

uy
i ′ = (L y − 1)a (top, square lattice),

where a is the lattice constant.
Here i and i ′ label points so that ui and ui ′ are at the

same horizontal position but on the bottom and top rows
respectively and a is the lattice parameter. To describe
the driving force for crack motion, we define δ to be the
nominal displacement from equilibrium between verti-
cal rows ahead of the crack. The imposed displacements
are

ui ′ − ui = δ (9)

for mode III, and

uy
i ′ − uy

i = δ (10)

ux
i ′ − ux

i = 0 (11)

for mode I.
In mode I, on the left and right borders of the system

we impose a variety of boundary condition; sometimes
ux

0, j = ux
Lx , j = 0 and at other times a damping region

(Marder 2004). We use values of Lx ranging from 2L y

to 4L y .

As springs break during the simulation we shift the
system to the left, so the crack tip remains near the
center of the simulation lattice. This is done by add-
ing a new columns at the right of the system (ahead of
the crack), and deleting left columns (behind the crack).
Crack velocity is measured as the average rate of spring
breaking.

To this point we have not referred to dissipative
terms in our simulations. In the absence of strong dis-
sipative effects the kinetic energy released by the crack
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travels to the left hand side of the system and either
decays in a damping region or is removed when col-
umns of material are discarded. We have verified that
our results do not depend upon the details of how the
left and right boundaries are treated. Note that in most
treatments of Linear Elastic Fracture Mechanics, en-
ergy dissipation mechanisms are supposed to be pres-
ent so that high-frequency kinetic energy generated
by the crack advance is dissipated in an infinitesimal
neighborhood of the crack tip. This means that the
generation of kinetic energy in our model can be con-
sidered to be part of the crack energy as usually defined
in textbooks. Moreover, the increase of crack energy
with crack velocity is accounted for in our model pre-
cisely by the generation of kinetic energy in high-fre-
quency modes.

Nonzero dissipation is known to produce or enhance
supersonic propagation (Marder 2005). We have con-
ducted some studies with phenomenological Kelvin
and Stokes dissipation. The equations of motion for
the Kelvin case are

m
∂2ui

∂t2 =
(

1 + β
∂

∂t

)
fi mode III (12)

m
∂2ui

∂t2 =
(

1 + β
∂

∂t

)
f i , mode I (13)

and for the Stokes dissipation case

m
∂2ui

∂t2 = fi − β
∂ui

∂t
mode III (14)

m
∂2ui

∂t2 = f i − β
∂ui

∂t
. mode I (15)

Unless otherwise stated, the results presented corre-
spond to the limit of vanishingly small β.

These equations are not quite accurately expressed;
we do not allow the time derivative β∂/∂t to act on
the θ function when bonds snap. As bonds snap we
send the force due to the snapping bond immediately
to zero, both in numerical routines and in the Wiener–
Hopf solutions. This choice avoids unphysical singu-
larities in the force at the moment of bond rupture.

Under mode III conditions, there is a single charac-
teristic velocity c for the propagation of elastic distur-
bances For our square and triangular lattices the wave
speeds are c = a

√
k/m and c = a

√
3k/2m respec-

tively, where a is the lattice parameter. These wave
speeds are computed by finding the long-wavelength
limit of the phonon spectrum for the lattice.

In mode I there are two primary wave speeds: shear
(cS) and longitudinal (cP ). In terms of the elastic

constants of the bulk material, the shear wave velocity
is related only to the shear modulus since it involves
only constant volume perturbations, whereas the lon-
gitudinal wave velocity depends both on the shear and
bulk modulus of the material. It always turns out that
cS ≤ cP . In our lattices, the values obtained for the
wave speeds are cS = a

√
3k/8m, cP = 3a

√
k/8m

for the triangular lattice, and cS = a
√

k/2m, cP =
a
√

3k/2m for the square lattice. Note that both lattices
have the same relation cS/cP = 1/

√
3 and thus the same

Poisson coefficient ν = 1/3.
An additional very important velocity in mode I

crack propagation problems is that known as the Ray-
leigh velocity cR (Broberg 1999). This is the velocity at
which elastic waves propagate along a free boundary of
the system (which can be the crack surface). This veloc-
ity is a well defined function of the ratio cS/cP . For our

lattices we obtain cR =
√

2
3

(
3 − √

3
)

cS � 0.9194 cS .

In a constant displacement experiment in a strip
geometry, there are two important values of the dis-
placement δ that play a special role in all the analysis.
One is the Griffith displacement δG

δG =

⎧
⎪⎪⎨

⎪⎪⎩

2√
3

ubk/
√

L y − 1 triangular lattice,

Modes I and III
ubk/

√
L y − 1 square lattice,

Modes I and III

(16)

where the elastic energy stored in a unit length of mate-
rial in the direction of crack advance equals the energy
of a spring at the rupture point. Crack propagation can-
not occur for δ < δG . The second important displace-
ment value is that at which even a strip with no seed
crack breaks. This value δC is called the limit of uniform
breakdown, and is independent of the strip height L y :

δC=
{

2√
3
ubk triangular lattice, Modes I and III

ubk square lattice, Modes I and III
(17)

3 Mode III (tearing mode)

In this section we study the dependence of crack veloc-
ity on displacement δ for a crack propagating in systems
of different widths under mode III conditions, extend-
ing the studies of previous authors (Marder 2005, 2006;
Kessler 1999, 2000).

Literal realizations of Mode III fracture, where
masses travel only perpendicular to their original
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Ly=240
Ly=160
Ly=80

V c
V c

δ/δC

10.80.60.40.20

2.5
2

1.5
1

0.5
0

V c
V c

δ/δG

1614121086420

2.5
2

1.5
1

0.5
0

Fig. 2 Velocity of a mode III crack running on triangular lattices
with different number of rows. Note that the plot as a function
of δ/δG produces the collapse of the data for V < c, whereas
for V > c the collapse is produced by preparing the plot as a
function of δ/δC . δG and δC are defined in Eqs. (16) and (17)

locations in a very thin sample, are experimentally diffi-
cult to achieve. Theoretically, this configuration allows
one to explore all the concepts that appear in the more
physical Mode I case with much less formal complex-
ity. In addition, the in-plane rupture of rubber can be
described by Mode III equations to a surprisingly high
degree of accuracy.

In Fig. 2 we plot the results of our simulations for
triangular lattices. Two well defined regimes can be ob-
served: when the crack velocity is lower than the wave
speed in the system c, the dependence of the results
on the width of the system can be absorbed by plot-
ting V as a function of δ/δG (Fig. 2a). However, there
is a regime in which V > c, and to scale the results in
this case the plot has to be prepared in terms of δ/δC

(Fig. 2b). We analyze now both regimes separately.
The plot in terms of δ/δG shows that for ‘macro-

scopic’ samples (L y → ∞) V is a function of δ/δG that
asymptotically reaches the wave speed c. It is useful to
combine this result with those provided by LEFM. In
this framework, assuming a stationary propagation of
a crack with some velocity V , a well defined relation is
obtained between the energy flux to the crack tip E per
unit of crack advance, and the amplitude of the most
singular term of the stress field close to the crack tip.
This amplitude (appropriately normalized) is the stress
intensity factor KIII. The result obtained in LEFM for
Mode III configurations is (Broberg 1999; Field and
Baker 1961)

Fig. 3 The same data as in Fig. 2, plus the equivalent ones ob-
tained in a square lattice, plotted in a way that suggests a power
law dependence for V → c

E = K 2
III

2µ
√

1 − (V/c)2
. (18)

In the strip configuration with fixed displacement
boundary conditions the energy flux E is simply given
by the elastic energy stored in a unit length well ahead
of the crack. Thus

E = E0(δ/δG)2 (19)

where E0 is the value of E at the Griffith threshold,
In our case, E0 = k

a u2
bk for the triangular lattices, and

E0 = k
a

u2
bk
2 for the square lattice. Combining Eqs. (18)

and (19) we obtain

KIII = √
2µE0(1 − (V/c)2)1/4 δ

δG
(20)

The prediction of LEFM is limited to this expression.
In particular it does not give the dependence of V on
δ/δG , which is to be expected since it is dependent upon
microscopic details. In Fig. 3 we see results for the
triangular lattice of Fig. 2, along with the equivalent
ones for a square lattice plotted in a slightly differ-
ent form that allows one to infer a systematic power
law dependence of

√
1 − (V/c)2 on δ/δG for large sys-

tems. Inserting these results into expression (20) we
obtain the values of KIII as a function of V shown in
Fig. 4.

We see how the simple change of lattice geome-
try produces important effects. Whereas KIII decreases
with V and tends to a constant value for V → c for the
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δ/δ G

KIII√
2µE0

15105

2

1

0
Ny = 4000
Ny = 2000
Ny = 638
Ny = 238

V /c

K
I
I
I

√
2µ

E 0

10.90.80.70.6

2

1

Ny=640
Ny=320
Ny=160

V /c

K
I
I
I

√
2µ

E 0

10.90.80.7

2

1

(a)

(b)

Fig. 4 Stress intensity factor KIII obtained from simulations of a
crack propagating in a a square lattice; and b a triangular lattice.
In inset in b we plot KIII versus δ/δG . Whereas KIII decreases
with V and tends to a constant value for V → c for the square
lattice, in a triangular lattice KIII increases with V and appears
to have a weak divergence in the limit of infinite system size

square lattice, in a triangular lattice KIII increases with
V and appears to have a weak divergence in the limit
of infinite system size.

We now move to the analysis of the regime of δ close
to δC . In this case we observe that the crack velocity

can be larger than the wave velocity, and in particular
it diverges as δ → δC .

An analytical calculation allows us to obtain the
form of the divergence of V for δ → δC . As δ is very
close to δC , all springs are very close to the rupture
point, and a leading order calculation that considers
the effect of the spring that is breaking on the next
spring to be broken is enough to predict the velocity in
this limit (see Fig. 5). Let us consider first the case of a
triangular lattice. If a spring breaks at some time t0, it
produces a change � f = kδ in the force on the points
to which the spring was connected. This force increases
progressively the length of the next spring to be broken
as δ + � f

2m (t − t0)2 = δ
(
1 + k

2m (t − t0)2
)
. When the

length of this spring reaches the value δC it breaks, and
this occurs at time t1 = t0 + 2√

k/m

√
δC/δ − 1. Thus we

obtain the velocity as V = a/2
(t1−t0)

= a
√

k/m
2
√

2
1√

δC /δ−1
.

The calculation for the square lattice proceeds along the
same lines; the main difference is that now the break-
ing of a spring does not produce an immediate effect
on the next spring to be broken. Instead, the effect is
mediated by the deformation of the connecting spring
lying in the crack direction. This produces the result
that the net force acting on the spring to be broken is
not constant, but is proportional to (t − t0)2. A detailed
calculation yields V = a

√
k/m[12 (δC/δ − 1)]−1/4).

Numerical results of the divergence are compared with
these analytic predictions in Fig. 6. Note that there are
no free parameters in this fit. We see that the agreement
is very good.

Fig. 5 Side view of a mode
III crack propagating in the
supersonic regime through a
triangular lattice (a) and a
square lattice (b)
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1
2
√

2
x−1/2

(12x)−1/4
triangular latt.

square latt.

V

a
√ k

/m

δC /δ − 1
1010.10.010.0010.00011e-05

100

10

1

0.1

Fig. 6 Divergence of the velocity as the strain approaches the
limit of uniform breakdown δC for square and triangular lattices
(mode III). The system size is L y = 80

4 Mode I (opening mode)

We now present results for lattices under mode I con-
ditions. Some additional details about the implemen-
tation are needed in this case. We work again with
both triangular and square lattices, in the infinitesimal
approximation. In particular, displacements perpendic-
ular to the spring direction do not produce forces on
the particles. Remember that in this case, for square
lattices we also have springs connecting second near-
est neighbors, as shown explicitly in Eq. (5). In this
case the crack breaks two different type of springs as it
advances. Different models can be defined by propos-
ing different breaking prescriptions of the two springs,
as we will see later.

We first present results for the triangular lattice in
Fig. 7, where we plot the velocity of the crack versus
δ/δC . In this figure, different behaviors of the crack can
be seen:

• if we increase the strain slowly enough, velocity
remains bounded by cR , even if δ → δC .

• if we suddenly change the strain from a small value to
δ/δC � 0.95, we observe that propagation becomes
supersonic.

With the system in the supersonic regime, and dimin-
ishing the strain, another change occurs: a rupture of
symmetry along the line described by the crack prop-
agation. We can see this asymmetry in the inset of
Fig. 7. This asymmetry makes springs in front of the
former crack tip also exceed the breaking threshold. We
emphasize that the symmetry-breaking takes place at
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Fig. 7 Plot of the velocity V of a crack versus δ/δC , propagat-
ing on a triangular lattice with 21 rows of springs. The arrows
show different behaviors: if we increase the strain slowly enough
(squares), the velocity is bounded by cR , but if the strain is sud-
denly changed to δ/δC >∼ 0.95 the system explores the super-
sonic regime. Decelerating from this state (circles), the system
goes through an intersonic regime in which a symmetry-breaking
rupture occurs as shown in the inset. We also show results (line)
obtained by forcing the crack to propagate at a predefined veloc-
ity, cutting springs at the appropriate rate. The shaded region is
physically not accessible as here energy is flowing from the crack
tip to the system. The relevant sound velocities in the system are
indicated.

a microscopic level, but so far as continuum mechan-
ics is concerned, one is observing an intersonic Mode
I crack. Similar results are also plotted versus δ/δG and
for different system sizes in Fig. 8.

In Fig. 7 we also show results (continuous line)
obtained by forcing the crack to propagate at a pre-
defined velocity, cutting springs at the appropriate rate.
We measure the springs length at the moment we cut
them, and rescale the value to obtain δ/δC . We see that
the length of the spring goes to zero (δ/δC very large)
when the velocity is set to cR, cS or cP . The region
where δ/δC > 1 is shaded because it is not physically
accessible, as energy flows from the tip to the system.
This results are very similar to the ones obtained by the
Wiener Hopf method (Marder and Gross 1995; Noble
1958), which supposes a crack running at a constant
speed. We see a comparison between the methods in
Fig. 9. The slight discrepancy above cR corresponds
to small differences between the length of consecutive
springs at the moment of cutting in the numerical sys-
tem. This difference is not allowed in the exact solution
obtained by the Wiener Hopf method, and this explains
the discrepancy.
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Fig. 8 Velocity of a crack propagating in triangular lattices, plot-
ted against δ/δC and δ/δG for different system sizes. The top panel
shows crack velocity as a function of δ/δG , which produces scal-
ing results for subsonic cracks. The lower panel shows crack
velocity as a function of δ/δC , which produces scaling results for
supersonic cracks. We show results from direct integration for
systems of size 20 and 80 compared with results of Wiener–Hopf
integration Dissipation is negligible, and the breaking distance
ubk for the direct integration is 1.015

In Fig. 10 we present results of a crack propagat-
ing in a square lattice. As in the previous simulations
only springs in the middle row break. The main dif-
ference here is that we have springs linking second
neighbors, which we will call diagonal springs. Verti-
cal springs (linking first neighbors) are cut if they are
stretched above ubk, and diagonal springs (linking sec-
ond neighbors) break if their length is above ubk/

√
2.

The behavior is similar to that found in Fig. 7, except
that the velocity does not remain bounded by cR while
increasing the strain in the subsonic regime. A sym-
metric rupture occurs and propagation accelerates.

To see the dependence upon the breaking rule in
square lattices, we study a different breaking sequence.
Measuring the length of only the vertical spring at the
crack tip, when this spring stretches above ubk, we
cut it together with the two next diagonal springs. We
have seen that in this case asymmetric ruptures do not
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Fig. 9 Comparison between the forced propagating method and
the Wiener Hopf method. The results agree except for a slight
discrepancy above cR . In the forced method we find small dif-
ferences between the length of consecutive cut springs, although
this does not occur in the exact solution found by the Wiener
Hopf method. The difference is insignificant. We show in the
insets the regions near δ/δG → 1 and δ/δC → 1
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Fig. 10 Crack propagating in a square lattice. The behavior
is similar to that in Fig. 7. The difference is that when slowly
increasing the strain, the velocity is not bounded by cR : asym-
metric rupture occurs along the line defined by the crack, for the
intersonic states as shown in the inset. Again, some springs in
front of the crack tip may overpass the breaking threshold

occur. This was checked by re-running the simulations
in symmetrically forced systems and obtaining the same
results. We can compare spontaneous cracks with points
obtained by forced propagation (Fig. 10). The behavior
is the same as in the triangular case: when increasing
slowly the applied strain, the velocity remains bounded
by cR . To enter the supersonic regimes, an initial condi-
tion with δ/δC > 0.9 needs to be established (Fig. 11).

Yet another breaking rule could be considered. In
this case we sum up the energy of vertical and
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Fig. 11 Spontaneous and forced propagation in a square lattice,
using a breaking rule involving only vertical springs. The system
is always symmetrical in this case: we obtained the same solu-
tions by rerunning the simulations in symmetrical systems with
respect to the crack propagation line. When increasing slowly
the applied strain, the velocity remains bounded by cR . To enter
the supersonic regimes, we made a sudden change in strain into
δ/δC > 0.9. The crack remains in the supersonic regime while the
applied strain decreases, switching first to the intersonic branch
at δ/δC ∼ 0.9, and finally to a subsonic branch at δ/δC ∼ 0.8

diagonals springs. When this total elastic energy goes
above a prescribed threshold we cut the three springs
together, as in the previous method. The main differ-
ence is that the strain in the direction of propagation is
now part of the rule. This component is relevant, as we
see that when the velocity approaches cR there is an
expansion in the crack propagation direction, together
with a compression in the perpendicular direction. In
Fig. 12 we show results obtained with this rule and also
the ones obtained by forced propagation. Once again
we see hysteretic behavior, with non-symmetric rup-
ture. Note that the velocity is not bounded by cR in this
case.

4.1 Dissipation

To address the effect of dissipation, we have used
Kelvin and Stokes dissipation terms, as described in
Eqs. (12), (13), (14) and (15). It should be noticed that
when studying the effect of the system size on crack
propagation, the coefficient β must be rescaled care-
fully to get sensible results in the limit of large sys-
tem sizes. For a given value of δ/δG , the Stokes dis-
sipation parameter should be scaled as β(S) ∼ 1/L y

(Fig. 13), whereas Kelvin dissipation parameter β(K )

should remain constant (Fig. 14).
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Fig. 12 Results in a square lattice, with a breaking rule that
measures the energy of together vertical and diagonal springs.
We show also the results of forced propagation, where we plot
the energy of together the vertical and diagonal springs and their
separate lengths
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Fig. 13 Mode I velocity of crack propagation as a function of
δ/δG in presence of Stokes dissipation. If we increase the size of
the system we have to proportionally reduce the dissipation to
obtain the same results for the same fracture energy δ/δG . See that
for same size L y the velocity is always reduced in the harmonic
case, with the exception of softening nonlinearities as shown in
Fig. 26

The effects of finite dissipation on crack velocity
are not totally intuitive. Stokes dissipation always de-
creases the speed of the crack, with the exception of the
softening nonlinearities case as seen in Fig. 25. Stokes
dissipation never produces supersonic propagation. In
contrast, Kelvin dissipation may increase the velocity
over cR in some cases. This raises the possibility that
dissipation by itself can expand the range of supersonic
crack solutions. As shown in Fig. 14, this does not hap-
pen in the macroscopic limit. For any fixed dissipation
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Fig. 14 Crack velocity
versus loading for four
different system heights L y ,
and plotted both as a
function of δ/δG and δ/δC to
bring out subsonic and
supersonic states
respectively for dissipation
β = 1. The curves are
produced with the
Wiener–Hopf method
except for the system of
height L y = 20, where the
filled circles represent direct
numerical integration of the
equations of motion for
comparison. For different
L y and same β the results
scale for the same fracture
energy δ/δG

parameter β, as the system size increases, the lowest
branch of crack solutions descends below the Rayleigh
wave speed cR. In classical fracture mechanics, Kelvin
viscosity produces singular terms near the crack tip that
are more divergent than the standard near-tip singular-
ities, and therefore must be interpreted as part of the
process zone. Essentially, Kelvin viscosity increases
the fracture energy, and introduces a new length scale
into the fracture problem that for β = 1 has grown
comparable in size to the lattice spacing, and for larger
β becomes larger. Thus increasing β has an effect sim-
ilar to the effect of increasing ubk and increasing the
lattice spacing, but does not fundamentally change the
nature of fracture solutions.

4.2 Energy and stress intensity factor

The plot of velocity as a function of δ/δG can be ana-
lyzed in the same manner we did for Mode III, for
the subsonic branches in the triangular lattice and the
square lattice (with the breaking rule for the vertical
spring only). In particular, assuming a crack propagat-
ing in stationary conditions in a continuum system at a
velocity V < cR , an expression for the energy E flow-
ing toward the crack tip is obtained from LEFM in the
form (Broberg 1999; Nilsson 1972)

E = K 2
I YI (V )

4(1 − (cS/cP )2)µ
(21)

where YI (V ) is called a Yoffe function. It has a diver-
gence at V = cR and becomes negative for cR < V < cS .
As in mode III, for all V < cR , the energy transferred
to the crack tip equals the elastic energy available in
the system. Proceeding as in mode III (Eq. 19) we can
thus write

K I = δ/δG

√
4(1 − (cS/cP )2)µE0

YI (V )
(22)

Inserting in this expression the results from the simu-
lations we obtain the dependence of K I on δ/δG . The
results are shown in Figs. 15 and 16 and point again to
the existence of notable differences depending on the
precise lattice geometry. While K I is almost constant
for the triangular lattice, it goes to zero as V → cR for
the square lattice. It must be mentioned however that
this result changes if other breaking rules are used.

5 Additional elastic nonlinearities

In the preceding sections we have discussed the way
in which a crack propagates when springs are perfectly
linear up to the rupture point. We have found in par-
ticular that so long as crack branching is inhibited, the
crack velocity increases as a function of the applied
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Fig. 15 Dependence of K I (in units of [
√

µE0]) on V/cR , for a
triangular lattice. Note that K I changes <10% in all the velocity
range plotted

Fig. 16 Dependence of K I (in units of [
√

µE0]) on V/cR for a
square lattice. In contrast with the result in the triangular lattice,
we find that K I seems to go to zero as V → cR

displacement δ and that both subsonic and supersonic
branches of crack motion exist in all cases.

This picture is modified when the springs are not
perfectly harmonic. Experiments (Rosakis et al. 1999;
Sharon and Fineberg 1999; Petersan et al. 2004; Marder
2005) show that crack velocity can exceed the limit pre-
dicted by standard fracture mechanics. Broberg (1999),
Freund (1990), Buehler et al. (2003), and Buehler and
Gao (2006) showed when the spring constant becomes
stiffer or softer at large extensions, the relationship
between loading and crack velocity changes. The most
spectacular results concerns the case of stiffening
springs, in which case the extent of supersonic branches
is greatly enlarged. We have made a detailed analysis of
this problem in a mode III configuration in a previous
publication (Guozden and Jagla 2005).

Here we make a systematic study of the velocity of
cracks propagating in mode I configurations in the pres-
ence of non-linearities. The most remarkable results we

obtain are the following. For stiffening of the springs at
large stretching we find an extensive supersonic branch
similar to one previously found for mode III configura-
tions (Guozden and Jagla 2005). We also show that in
the absence of dissipation, the size of the anharmonic
zone scales as the width of the system, i.e., it occupies
always a finite fraction of the system width. However,
if some dissipation is included in the model, the size of
the anharmonic region saturates for large width values,
whereas the effect on the velocity is small. In this way, a
situation can be obtained in which we have supersonic
crack propagation driven by a spatial region which can
be made arbitrarily small compared to the total sys-
tem size. Finally, whether springs are softening or stiff-
ening, there is always a supersonic crack branch as a
function of δ/δC . In the macroscopic limit, this branch
extends down to δ/δC = 0 for stiffening springs, but
exists only for δ/δC � .5 for softening springs.

For softening of springs at large stretching and in
the subsonic regime, we find a systematic decrease of
velocity, and in a narrow but robust region of parame-
ters we find a propagation velocity that is a decreasing
function of δ.

To account for spring non-linearities the definition
in Eq. (4) is changed to (see Fig. 17).

φi j (ui j )

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kui j if i and j near neighbors and
ui j < unl

kunl + γ

k(ui j − unl) if i and j near neighbors and
ui j > unl

0 if i and j not near neighbors
kunl + γ

k(ui j − unl) if i and j near neighbors
not across center line and
unl < ui j < ubk

0 if i and j near neighbors
across center line and
ui j > ubk

(23)

The parameter unl is the length at which the spring con-
stant γ k kicks in. For stiffening systems, γ > 1 while
for softening systems, γ < 1. In the runs we describe
here, we have taken unl/ubk = 1/2.
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Fig. 17 Interaction between neighbors mass points as a func-
tion of displacement from equilibrium. At low deformations the
behavior is harmonic, until the value unl is reached. Then it goes
to a softer or stiffer regime depending on the parameter γ , until
the spring breaks at ubk (breaking is implemented only in the
springs lying in the central row of the system)

5.1 Hyperelastic stiffening

Figure 18 shows a characteristic plot of crack velocity
v versus extension δ/δC for nonlinearity γ = 4, com-
pared to the harmonic case, where nonlinearity sets in at
unl/ubk = 1/2. The presence of nonlinearity takes the
branch that always lay below the Rayleigh wave speed
for γ = 1 and moves it up so that it lies above. Thus
hyperelastic stiffening promotes supersonic crack
motion and makes supersonic motion possible for a
wide range of conditions.

In a previous publication (Guozden and Jagla 2005)
we studied in detail the velocity of cracks propagating
in systems with hyperelastic stiffening under mode III
conditions. On purely dimensional grounds the velocity
of a crack in our model is in general a function of the
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Fig. 18 Plot of crack velocity v versus extension δ/δC for non-
linearity γ = 4, compared to the harmonic case (including both
branches) for a system of L y = 22 rows. The presence of hyper-
elastic stiffening clearly enhances the velocity above cR

Fig. 19 Results for the velocity as a function of unl/δ for dif-
ferent values of γ, ubk/δ and system width. L y . The results for
different parameters coincide within our numerical precision.
Note that the values that drop below the V = cR line correspond
to a small system with large unl, and in that case there is no spring
exploring the non-linear regime)

ratios δ/unl, δ/ubk, the system width w, and the anhar-
monicity parameter γ . We showed that when the crack
propagates supersonically in mode III, it is natural to
expect independence of velocity from the lateral size
of the system, since no elastic disturbance can travel
from the crack tip to the border and return to the crack
tip. Thus the existence of the border cannot have any
effect on the propagation velocity. From this type of
analysis we concluded that once cracks go supersonic
the velocity is independent of L y . Moreover, additional
considerations (see Guozden and Jagla 2005) suggested
that the velocity is also largely independent of γ and
δ/ubk; i.e., it is determined by the value of δ/unl alone.

We find the same behavior in the present simulations
in Mode I: for large enough system sizes and large
enough nonlinearity γ the crack velocity rises above
cR and results under many conditions can be collapsed
when plotted against unl/δ (Fig. 19), independent of the
precise values of ubk/δ,w, and γ . This is a bit surpris-
ing because in mode I compression waves exist in the
system that propagate faster than the crack, and they can
in principle travel to the border and return back to the
crack tip, providing information to the crack tip about
the width L y of the system. However, within our numer-
ical precision we do not observe an effect of the strip
width on the propagation velocity, although we clearly
observe the modification of the strain field ahead of
the crack tip due to its advance, indicating that there
are elastic disturbances that travel faster than the crack
itself.
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Fig. 20 Snapshots of
systems of different sizes
(we plot the full size in the
y direction, and half the
simulated system in the x
direction), where only
springs that are stretched
beyond unl are shown. We
see that in the absence of
dissipation (first row) the
size of the hyperelastic
regions scale with the
system size, whereas a fixed
degree of Stokes dissipation
(second row) makes the size
of the hyperelastic region
saturate when system size is
increased (see also next
figure). The unit used to
measure dissipation is
β0 = 10−3√k/m

The similarity of these results with those we had
obtained for Mode III makes plausible that a simple
explanation (such as the one found for Mode III) exists
for the law that velocity depends only on δ/unl also in
the present case. However, we have not yet found it.

An interesting quantity to measure in the simula-
tions with γ > 1 is the size of the hyperelastic re-
gion that drives supersonic propagation. In the super
Rayleigh regime in the absence of dissipation we find
(Figs. 20, 21) that the size of the hyperelastic region is
proportional to the width of the strip. This result can
be readily justified by a simple scaling argument in the
continuum limit if independence of velocity from L y

is assumed.
In fact, suppose we have a system of width L y in

which a crack of velocity V is propagating, and sup-
pose uw(x, y) is a solution for the macroscopic dis-
placement field in a reference system moving with the
crack. Then one can immediately verify that the scaled
solution UW (x, y) ≡ λuw

( x
λ
,

y
λ

)
is the solution to the

problem in a system of width L ′
y = λL y , with the same

velocity, since the boundary conditions are satisfied. In
addition, from the identity ∇UL ′

y
|(x,y) = ∇uL y |( x

λ
,

y
λ )

,
it can be seen that the size of the hyperelastic region
for U also scales with the same factor λ that governs
u. This means that the size of the hyperelastic region
scales linearly with system size, and that there is not a
typical size of the hyperelastic region independent of
the location of the boundary in the system. This is ver-
ified in our simulations, as it can be seen in the results
for β = 0 in Figs. 20 and 21.

Fig. 21 Number of diagonal springs (Nd ) and horizontal springs
(Nh) in the nonlinear regime as a function of strip width, and
crack velocities for different values of Stokes dissipation para-
meter β. In the absence of dissipation the linear size of the nonlin-
ear region scales with L y whereas for β and L y large enough Nd
collapses and Nh reaches a maximum, showing that this region
remains finite. The velocity, however, does not depend strongly
on β nor on L y

The linear increase in size of the hyperelastic
region with system size can however be limited by
the inclusion of a finite dissipation. In Figs. 20 and
21 we see the effect of Stokes dissipation in the size
of the hyperelastic region and on the velocity of the
crack. The snapshots in the second row of Fig. 20 show
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qualitatively that the size of the hyperelastic region does
not scale with the system size in the presence of dis-
sipation. In the more quantitative Fig. 21, we count
all diagonal (Nd ) and horizontal (Nh) springs that are
stretched over the threshold unl. Basically, the diagonal
hyperelastic springs form the ‘wings’ of the ‘butterfly’
in Fig. 20, whereas horizontal hyperelastic springs form
the small elliptical notch at the ‘head’ of the butterfly.
The inclusion of a finite Stokes dissipation produces the
disappearance of diagonal nonlinear springs when sys-
tem size is increased sufficiently, and limits the size of
the notch region of horizontal nonlinear springs ahead
of the crack to a well defined value, independent of
the system size, but dependent on the strength of the
dissipation.

We see in Fig. 21 that the effect of the dissipation
on the velocity is rather small, and in particular, super-
sonic propagation is preserved. This means that includ-
ing finite dissipation, the size of the hyperelastic region
can be made an arbitrarily small fraction of the total sys-
tem. However, this region still drives the crack propa-
gation supersonic. As in the mode III case, we observe
that for mode I propagation, the springs that are respon-
sible for the supersonic propagation are those lying in
the crack direction, and particularly those ahead of the
crack. This is clear by analyzing the situation in which
dissipation is present, since in this case these are the
only springs that remain in the hyperelastic regime,
and propagation is still supersonic.

The results just discussed contradict the suggestion
in Buehler et al. (2003), that there is a well defined
relation between the size of the hyperelastic region and
the crack velocity. We find in fact that this size can
be set to essentially any value (by adjusting the Stokes
dissipation parameter β) and yet have the crack run-
ning supersonically at the same well defined velocity.
Furthermore, as we have previously shown, hyperelas-
ticity is not necessary for the existence of supersonic
motion; the size of the hyperelastic region can be zero.
We conclude that neither hyperelasticity nor dissipation
is critical for supersonic fracture. What is critical is that
cracks remain able to propagate stably at strains that
correspond to a nonzero fraction of the critical strain δC .

5.2 Hyperelastic softening

Although not directly related to the main theme of our
paper, namely supersonic propagation, we would like

to present here an interesting effect that we observe
when we have hyperelastic softening (γ < 1).

Hyperelastic softening is by far the most common
situation that can be expected when analyzing real
materials. In fact, the simplest cohesive potential
between atomic constituents of a material will gener-
ate a force that first increases linearly upon stretch-
ing, and then goes down smoothly to zero at breaking.
This smooth behavior is a form of hyperelastic soften-
ing. Previous results obtained in a special model under
Mode III conditions (Guozden and Jagla 2006) have
shown unambiguously that softening of the springs at
large deformations produces systematic reductions of
the crack velocities.

The results we obtain for γ slightly below 1 are
similar to those without nonlinearity (γ = 0): There
is a branch where the velocity is always below the
Rayleigh wave speed, and where different system sizes
can be scaled by plotting them as a function of δ/δG (see
Fig. 22), as predicted by linear elastic fracture mechan-
ics. In addition, there are supersonic branches that are
independent of system size when plotted as a function
of δ/δC . They come into existence when δ/δC � .5, as
shown in Fig. 23.

For γ only slightly below 1, the velocity curve main-
tains a similar form to the one it had in the perfectly
harmonic case, but approaching an asymptotic value
for large δ/δG that is clearly below the Rayleigh wave
speed. The saturation value of the velocity is plotted as
a function of γ in Fig. 24. It can be seen that for γ close
to 1, it is approximately V � cR

√
γ , which is precisely

the Rayleigh velocity in a system of springs in which
the spring constant has been reduced by a factor γ .

Fig. 22 Results for the velocity of a crack propagating in mode
I in a system with softening nonlinearities. Filled points corre-
spond to simulations with L y = 160 rows, and empty points to
L y = 80 rows
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Fig. 23 Crack velocity with softening nonlinearities, scaling
boundary displacement by δC to highlight supersonic branches.
The curves are obtained from molecular dynamics. The soften-
ing parameter γ is 0.5, nonlinearity sets in at unl = (u − ubk)/2,
and bonds break at unl = 1.015

Fig. 24 Velocity at large values of δ/δG >> 1 as a function of
the softening parameter γ . When γ is close to 1, the velocity
follows approximately the law V ∼ cR

√
γ

If γ is sufficiently small (γ < 0.6) a qualitative
change in the dependence of V on δ/δG is observed in
Fig. 22: there is a range of applied deformation in which
velocity decreases with δ. The effect is perfectly repro-
ducible in simulations with strips of different sizes.

We emphasize that this behavior does not contradict
any basic assumption of the fracture process; in particu-
lar we note that the energy consumed by crack advance
continues to be an increasing function of δ. Cracks with
increased driving force have been observed to slow be-
cause of side-branching (Marder and Liu 1993), but the
effect here is larger, and does not involve creation of
any extra surface.

Dependence of velocity on dissipation parameter in
this particular regime is shown in Fig. 25. The anom-
alous regime in which velocity decreases with δ is

Fig. 25 Crack velocity as a function of the applied driving force,
for a system with an hyperelastic constant γ = 0.5. Stokes dis-
sipation on the system reduces the effect of decreasing velocity.
Simulations pointed to with arrows are sketched in Fig. 26

Fig. 26 Snapshots of the system from simulations correspond-
ing to the points indicated in Fig. 25 (γ = 0.5). Only springs in
the nonlinear regime are shown

destroyed by large dissipation. In addition, we see that
dissipation can increase the velocity in some range of
parameters.

An analysis of the hyperelastic regions in the sys-
tem (Fig. 26) with and without dissipation, shows that
as in the stiffening case, dissipation reduces the extent
of hyperelastic regions.

A decreasing dependence of velocity on driving
force may have some interesting consequences for
experiments. For instance, propagation of parallel
cracks with all crack tips moving exactly at the same
velocity is normally impossible: even if an initial situ-
ation could be generated satisfying this configuration,
any tiny acceleration of one crack with respect to the
rest would produce an increase in the strain on its tip
that would induce a further increase of its velocity with
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respect to the others. However, in a regime of decreas-
ing velocity with increasing driving force, an assembly
of parallel cracks is stable, since a crack that travels
ahead of the others receives more energy and therefore
slows down. We will report in a separate publication
on numerical simulations of this remarkable phenom-
enon.

6 Conclusions

In this work we have studied Mode I and Mode III
cracks that move along weak interfaces in lattices, and
have shown that they very generally admit intersonic
and supersonic solutions. The range of the supersonic
solution branches depends on details of the potential,
the lattice geometry, and the presence of dissipation,
but the supersonic states exist in all cases. The speed
of the supersonic states depends upon the local stress
ahead of the crack rather than energy stored per length
ahead of the crack, and is not dependent upon system
size.

Spring stiffening at large deformations produces the
largest set of crack solutions traveling above the Ray-
leigh wave speed. The size of the non-linear region
was studied, and we found that in the absence of dis-
sipation this size scales as the strip width. However,
in the presence of a small Stokes dissipative term, the
size of the non-linear region saturates when the system
size is increased sufficiently, and then for macroscopic
samples the size of the non-linear region can be an arbi-
trarily tiny fraction of the total system size. We find no
sign of a general dependence of crack velocity on the
size of the non-linear region.

Spring softening at large stretching produces a de-
crease of the crack velocity. When the softening of
the spring is large enough we found a novel regime
in which crack velocity is a decreasing function of
applied strain. This behavior could give rise to inter-
esting observable consequences such as stable prop-
agation of several cracks running parallel to one
another.
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