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Abstract. We look at the limit distributions of sums of deterministic chaotic
variables in unimodal maps and find a remarkable renormalization group (RG)
structure associated to the operation of increment of summands and rescaling. In this
structure - where the only relevant variable is the difference in control parameter from
its value at the transition to chaos - the trivial fixed point is the Gaussian distribution
and a novel nontrivial fixed point is a multifractal distribution that emulates the
Feigenbaum attractor, and is universal in the sense of the latter. The crossover between
the two fixed points is explained and the flow toward the trivial fixed point is seen to
be comparable to the chaotic band merging sequence. We discuss the nature of the
Central Limit Theorem for deterministic variables.
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1. Introduction

As it is well documented [1], increasingly larger sums of iterates of chaotic mappings

give rise to a Gaussian stationary distribution in the same way independent random

variables do according to the ordinary central limit theorem [2, 3]. This deep-

seated property, remarkably shared by deterministic and random systems composed

of essentially uncorrelated variables, naturally raises questions about the existence, and

if so, uniqueness or diversity, of limit distributions for systems made up of deterministic

correlated variables. Related to these issues recent [4]-[7] numerical explorations of time

averages of iterates at the period-doubling transition to chaos [8, 9] have been presented.

Since the trajectories linked to this critical attractor are nonergodic and nonmixing the

question of whether there is such stationary distribution for sums of iterates at the

transition to chaos holds added interest as it may provide new angles to appraise the

statistical mechanical analogy that is found in chaotic dynamics [10].

The dynamics toward and at the Feigenbaum attractor is now known in much detail

[10, 11], therefore, it appears feasible to analyze also the properties of sums of iterate

positions for this classic nonlinear system with the same kind of analytic reasoning

and numerical thoroughness. Here we present the results for sums of chronological

positions of trajectories associated to quadratic unimodal maps. We consider the case

of the sum of positions of trajectories inside the Feigenbaum attractor as well as those

within the chaotic 2K-band attractors obtained when the control parameter is shifted

to values larger than that at the transition to chaos. Time and ensemble averages

differ at the transition to chaos and here we chose to study the time average of a

single trajectory initiated inside the attractor since all such trajectories, as explained

below, are simply related. Clearly, time and ensemble averages are equivalent for chaotic

attractors. From the information obtained we draw conclusions on the properties

of the stationary distributions for these sums of variables. Our results, that reveal

a multifractal stationary distribution that mirrors the features of the Feigenbaum

attractor, can be easily extended to other critical attractor universality classes and

other routes to chaos. About the relevance of our findings to physical systems, it is

interesting to note, as one example, the parallels that have been found to exist between

the dynamics at the noise-perturbed onset of chaos in unimodal maps and the dynamics

of glass formation [12]. In this connection chaotic band merging plays a central role in

the relaxation properties of time correlation functions, while the multifractal attractor

and multiband attractors in its neighborhood display the characteristic aging scaling

property of glass formers [12].

The overall picture we obtain is effectively described within the framework of

the renormalization group (RG) approach for systems with scale invariant states or

attractors. Firstly, the RG transformation for the distribution of a sum of variables is

naturally given by the change due to the increment of summands followed by a suitable

restoring operation. Second, the limit distributions can be identified as fixed points

reached according to whether the acting relevant variables are set to zero or not. Lastly,
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the universality class of the non-trivial fixed-point distribution can be assessed in terms

of the existing set of irrelevant variables.

As it is well known [8, 9] a few decades ago the RG approach was successfully

applied to the period-doubling route to chaos displayed by unimodal maps. In that

case the RG transformation is functional composition and rescaling of the mapping and

its effect re-enacts the growth of the period doubling cascade. In our case the RG

transformation is the increment of terms and adjustment of the sum of positions and

its effect is instead to go over again the merging of bands in the chaotic region.

Specifically, we consider the Feigenbaum map g(x), obtained from the fixed point

equation g(x) = αg(g(x/α)) with g(0) = 1 and g′(0) = 0, and where α = −2.50290...

is one of Feigenbaum’s universal constants [8, 9]. (For expediency we shall from now

on denote the absolute value |α| by α). Numerically, the properties of g(x) can be

conveniently obtained from the logistic map fµ(x) = 1 − µx2, −1 ≤ x ≤ 1, with µ =

µ∞ = 1.401155189092... The dynamics associated to the Feigenbaum map is determined

by its multifractal attractor. For a recent detailed description of these properties see

[10, 11]. For values of µ > µ∞ we employ a well-known scaling relation supported by

numerical results.

Initially we present properties of the sum of the absolute values |xt| of positions

xt = fµ∞(xt−1), t = 1, 2, 3, ..., as a function of total time N visited by the trajectory

with initial position x0 = 0, and obtain a patterned linear growth with N . We analyze

this intricate fluctuating pattern, confined within a band of finite width, by eliminating

the overall linear increment and find that the resulting stationary arrangement exhibits

features inherited from the multifractal structure of the attractor. We derive an

analytical expression for the sum that corroborates the numerical results and provide

an understanding of its properties. Next, we consider the straight sum of xt, where the

signs taken by positions lessen the growth of its value as N increases and the results are

consistently similar to those for the sum of |xt|, i.e. linear growth of a fixed-width band

within which the sum displays a fluctuating arrangement. Numerical and analytical

details for the sum of xt are presented. Then, we show numerical results for the sum

of iterated positions obtained when the control parameter is shifted into the region

of chaotic bands. In all of these cases the distributions evolve after a characteristic

crossover towards a Gaussian form. Finally, we rationalize our findings in terms of an

RG framework in which the action of the Central Limit Theorem plays a fundamental

role and provide details of the crossover from multiband distributions to the gaussian

distribution. We discuss our results.



Renormalization group structure for sums generated by incipiently chaotic maps 4

2. Sums of positions at the chaos threshold

2.1. Sum of absolute values |xt|

The starting point of our study is the evaluation of

yµ(N) ≡
N∑
t=1

|xt| , (1)

with µ = µ∞ and with x0 = 0. Fig. 1A shows the result, where it can be observed

that the values recorded, besides a repeating fluctuating pattern within a narrow band,

increase linearly on the whole. The measured slope of the linear growth is c = 0.56245...

Fig. 1B shows an enlargement of the band, where some detail of the complex pattern

of values of yµ∞(N) is observed. A stationary view of the mentioned pattern is shown

in Fig. 1C, where we plot

y′µ∞(N) ≡
N∑
t=1

(|xt| − c) , (2)

in logarithmic scales. There, we observe that the values of y′µ∞(N) fall within horizontal

bands interspersed by gaps, revealing a fractal or multifractal set layout. The top

(zeroth) band contains y′µ∞ for all the odd values of N , the 1st band next to the top band

contains y′µ∞ for the even values of N of the form N = 2 + 4m, m = 0, 1, 2, ... The 2nd

band next to the top band contains y′µ∞(N) for N = 22 +23m, m = 0, 1, 2, ..., and so on.

In general, the k-th band next to the top band contains y′µ∞(2k + 2k+1m), m = 0, 1, 2, ...

Another important feature in this figure is that the y′µ∞(N) for subsequences of N each

of the form N = (2l + 1)2k, k = 0, 1, 2, ..., with l fixed at a given value of l = 0, 1, 2, ...,

appear aligned with a uniform slope s = −1.323... The parallel lines formed by these

subsequences imply the power law y′µ∞(N) ∼ N s for N belonging to such a subsequence.

It is known [10, 13] that these two characteristics of y′µ∞(N) are also present in

the layout of the absolute value of the individual positions |xt|, t = 1, 2, 3, ... of the

trajectory initiated at x0 = 0; and this layout corresponds to the multifractal geometric

configuration of the points of the Feigenbaum’s attractor, see Fig. 2. In this case, the

horizontal bands of positions separated by equally-sized gaps are related to the set of

period-doubling ‘diameters’ [8, 9] employed for the construction of the multifractal [11].

The identical slope shown in the logarithmic scales by all the position subsequences |xt|,
t = (2l + 1)2k, k = 0, 1, 2, ..., each formed by a fixed value of l = 0, 1, 2, ..., implies

the power law |xt| ∼ ts, s = − lnα/ ln 2 = −1.3236..., as the |xt| can be expressed

as |xt| ' |x2l+1| α−k, t = (2l + 1)2k, k = 0, 1, 2, ..., or, equivalently, |xt| ∼ ts. Notice

that the index k also labels the order of the bands from top to bottom. The power

law behavior involving the universal constant α of the subsequence positions reflect the

approach of points in the attractor toward its most sparse region at x = 0 from its most

compact region, as the positions at odd times |x2l+1| = x2l+1, those in the top band,

correspond to the densest region of the set.

Having uncovered the through manifestation of the multifractal structure of the

attractor into the sum y′µ∞(N) we proceed to derive this property and corroborate the
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Figure 1. A) Sum yµ∞(N) of absolute values of visited points xt, t = 0, ..., N , of the
Feigenbaum’s attractor with initial condition x0 = 0. B) A closer look of the path
of the sum (see dotted circle in A), for values of N around 67410. C) Centered sum
y′µ∞(N) in logarithmic scales. See text.
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Figure 2. Absolute value of trajectory positions xt, t = 0, ..., for the logistic map
fµ(x) at µ∞, with initial condition x0 = 0, in logarithmic scale as a function of the
logarithm of the time t, also shown by the numbers close to the points.

numerical evidence. Consider Eq. (1) with N = 2k, k = 0, 1, 2, ..., the special case l = 0

in the discussion above. Then the numbers of terms |xt| per band in yµ∞(2k) are: 2k−1

in the top band (j = 0), 2k−2 in the next band (j = 1),..., 20 in the (k−1)-th band, plus

an additional position in the k-th band. If we introduce the average of the positions on
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the top band

〈a〉 ≡ 2−(k−1)
2k−1∑
j=0

x2j+1, (3)

the sum yµ∞(2k) can be written as

yµ∞(2k) = 〈a〉 2k−1
k−2∑
j=0

(2α)−j + α−(k−1) + α−k. (4)

Doing the geometric sum above and expressing the result as yµ∞(2k) = c2k + dα−k, we

have

c =
〈a〉 α
2α− 1

, d =

(
1− 〈a〉 2α

2α− 1

)
α + 1 . (5)

Evaluation of Eq. (3) yields to 〈a〉 = 0.8999..., and from this we obtain c = 0.56227...

and d = 0.68826... We therefore find that the value of the slope c in Fig. 1A is

properly reproduced by our calculation. Also, since ln
[
yµ∞(2k)− c2k

]
= ln d − k lnα,

or, equivalently, ln y′µ∞(N) = ln d − N lnα/ ln 2, N = 2k, k = 0, 1, 2, ..., we corroborate

that the value of the slope s in the inset of Fig. 1C is indeed given by s = − lnα/ ln 2 =

1.3236... (We have made use of the identity α−k = N− lnα/ ln 2, N = 2k, k = 0, 1, 2, ...).

2.2. Sum of values of xt

When considering the signs taken by positions xt we note that their sum,

zµ(N) ≡
N∑
t=0

xt, (6)

when N = 2k, µ = µ∞ and x0 = 0, can be immediately obtained from the above

derivation for yµ∞(2k) simply by replacing α−j by (−1)jα−j, as the xt of different signs

of the trajectory starting at x0 = 0 fall into separate alternating bands (described above

and shown in Fig. 2). In short, xt ' (−1)jx2l+1 α
−j, t = (2l + 1)2k, k = 0, 1, 2, ...

Writing zµ∞(2k) as zµ∞(2k) = e2k + f(−1)kα−k, we have

e =
〈a〉α

2α + 1
, f =

(
1− 〈a〉 2α

2α + 1

)
(−α) + 1. (7)

Use of 〈a〉 = 0.8999..., leads to e = 0.37503... and f = 0.37443... Since

ln
(
zµ∞(2k)− e2k

)
= ln f − k lnα, or ln z′µ∞(N) = ln f − N lnα/ ln 2, N = 2k, k =

0, 1, 2, ..., where z′µ∞(2k) ≡ zµ∞(2k) − e2k, we obtain for the value of the slope s′

associated to the plot of z′µ∞(N) ∼ N s′ in logarithmic scales the number s′ =

− ln(α2 − 1) lnα/ ln 2 = −2.1984...(where the factor ln(α2 − 1) takes into account the

fact that consecutive values of the same sign in z′µ∞(2k) have k = 2m or 2m + 1,

m = 0, 1, 2, ...) Our numerical evaluations for zµ∞(N) and z′µ∞(N), shown in Fig. 3,

reproduce the values given above for the slopes e and s′. Therefore, our numerical and

analytical results are in agreement also in this case.

The relationship between the sum yµ∞(N) with initial condition x0 = 0 and all other

sums Yµ∞(M) of consecutive positions with any initial condition x0 inside the attractor
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Figure 3. A) Sum zµ∞(N) of values of visited points xt, t = 0, ..., N , of the
Feigenbaum’s attractor with initial condition x0 = 0. B) A closer look of the path
of the sum (see dotted circle in A), for values of N around 59000. C and D) Centered
sum z′µ∞(N) in logarithmic scales. See text.

can be obtained by inspection of Fig. 2. The sum Yµ∞(M) differs only from yµ∞(N) in

the initial and final consecutive terms,
∑t=t0
t=1 |xt| and

∑t=M
t=N |xt|, respectively, where t0 is

the time (shown in Fig. 2) at which the position x0 is visited by the trajectory initiated

at the origin x = 0. When t0, N , and M are all powers of 2 the differences between the

sums become simpler and expressable in terms of yµ∞(N). When N →∞ and M →∞
the difference between them is only a finite term yµ∞(t0). Similar properties hold for

the equivalent sums zµ∞(N) and Zµ∞(M) that take into account the signs of positions

xt.

3. Sums of positions for chaotic bands

We turn now to study the sum of positions of trajectories when ∆µ ≡ µ− µ∞ > 0.

We recall that in this case the attractors are made up of 2K , K = 1, 2, 3, ..., bands

and that their trajectories consist of an interband periodic motion of period 2K and

an intraband chaotic motion. We evaluated numerically the sums zµ(N) for a single

trajectory with initial condition x0 = 0 for different values of ∆µ. The sum z′µ(N) was

then obtained similarly to Eq. (2) by substracting the average 〈zµ(N)〉x0
and rescaling

with a factor N−1/2. The panels in Fig. 4 show the evolution of the distributions for

increasing number of summands N for a value of ∆µ (chosen for visual clarity) when the
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Figure 4. Distributions for the sums of positions xt, t = 0, ..., N , of a single trajectory
with initial condition x0 = 0 within the 23-band attractor at ∆µ = 0.0028448109. The
number of summands N are indicated in each panel. See text.

attractor consists of 23 chaotic bands. Initially the distributions are multimodal with

disconnected domains, but as N increases we observe merging of bands and development

of a single-domain bell-shaped distribution that as N −→∞ converges in all cases to a

Gaussian distribution. As a check of the ergodic property of chaotic band attractors we

have also evaluated the distributions of sums of positions starting with an ensemble of

uniformly-distributed initial positions x0 and obtained results equivalent in all respects

to those shown in Fig. 4. Faster convergence to the Gaussian distribution is achieved

in this latter case.

These numerical results can be understood as follows. We recollect [8, 9] that

the relationship between the number of bands, 2K , K � 1, of a chaotic attractor

and the control parameter distance ∆µ at which it is located is given by 2K ∼ ∆µ−κ,

κ = ln 2/ ln δF , where δF = 0.46692... is the universal constant that measures both the

rate of convergence of the values of µ at period doublings or at band splittings to µ∞.

For ∆µ small and fixed, the sum of sequential positions of the trajectory initiated at

x0 = 0, Eq. (1), exhibits two different growth regimes as the total time N increases.

To specify them we introduce the difference in value δxt ≡ xt(µ) − xt(µ) between the

position at time t and the average position within the band xt(µ) occupied at time

t. Clearly, when K � 1 the average positions xt(µ) approximate the multifractal

positions xt(µ∞) for t ≤ 2K . In the first regime, when N � 2K , the properties of
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the sum zµ(N) do not differ qualitatively from those of zµ∞(N). This is because the

fine structure of the Feigenbaum attractor is not suppressed by the fluctuations δxt, as

these contribute to the sum individually during the first cycle of the interband periodic

motion. The discrete multi-scale nature of the distribution for µ∞ is preserved when the

interband motion governs the sum zµ(N). The distributions for z′µ(N) and z′µ∞(N) are

indistinguishable. In the second regime, when N � 2K , the situation is opposite, after

many interband cycles the fluctuations δxt add up in the sum and progressively wipe up

the fine structure of the Feigenbaum attractor, leading to merging of bands and to the

dominance of the fluctuating intraband motion. Ultimately, as N −→ ∞ the evolution

of the distribution is similar to the action of the Central Limit Theorem and leads to a

Gaussian stationary end result. It is also evident that as ∆µ increases the first regime

is shortened at the expense of the second, whereas when ∆µ −→ 0 the converse is the

case. Therefore there exists an unambiguous ∆µ-dependent crossover behavior between

the two radically different types of stationary distributions. This crossover is set out

when the δxt fluctuations begin removing the band structure in z′µ(N) and ends when

these fluctuations have broadened and merged all the chaotic bands and z′µ(N) forms a

single continuous interval. When µ = µ∞ this process never takes place.

4. An RG approach for sums of positions

We are in a position now to put together the numerical and analytical information

presented above into the general framework of the RG approach. As known, this

method was designed to characterize families of systems containing amongst their many

individual states (or in this case attractors) a few exceptional ones with scale invariant

properties and common to all systems in the family. We recall [14] that in the language

of a minimal RG scheme there are two fixed points, each of which can be reached by the

repeated application of a suitable transformation of the system’s main defining property.

One of the fixed points, is termed trivial and is reached via the RG transformation for

almost all initial settings. i.e. for all systems in the family when at least one of a small

set of variables, named relevant variables, is nonzero. To reach the other fixed point,

termed nontrivial, it is necessary that the relevant variables are all set to zero, and this

implies a severely restricted set of initial settings that ensure such critical RG paths.

The nontrivial fixed point embodies the scale invariant properties of the exceptional

state that occurs in each system in the family and defines a universality class, while

the differences amongst the individual systems are distinguished through a large set of

so-called irrelevant variables. The variables in the latter set gradually vanish as the RG

transformation is applied to a system that evolves toward the nontrivial fixed point.

Further, when any system in the family is given a nonzero but sufficiently small value

to (one or more of) the relevant variables, the RG transformation converts behavior

similar to that of the nontrivial fixed point into that resembling the trivial fixed point

through a well-defined crossover phenomenon.
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4.1. RG transformation and fixed points

The recognition of the RG framework in the properties of the sums of positions of

trajectories in unimodal maps and their associated distributions is straightforward.

It can be concluded right away that in this problem (as defined here) there is only

one relevant variable, the control parameter difference ∆µ. There is an infinite

number of irrelevant variables, those that specify the differences between all possible

unimodal maps (with quadratic maximum) and the Feigenbaum map g(x). The RG

transformation consists of the increment of one or more summands in the sum (1)

followed by centering like in Eq. (2). The effect of the transformation in the distribution

of the sum is then recorded . For sums of independent variables the transformation

is equivalent to the convolution of distributions [15]. Notice that the transformation

involves no scaling for the sums of positions at µ∞. Examination of either Fig. 1 or

Fig. 3 indicates that the values of the sums y′µ∞(N) and z′µ∞(N) are contained within

a band of fixed width for all N and therefore there should not be any scaling for such

sums. The Feigenbaum attractor is not chaotic and its positions xt are not random

variables. On the contrary the values of the sums y′µ(N) and z′µ∞(N) with µ > µ∞
spread as N increases and scaling with a factor N−1/2 maintains their values contained

for N � 1. In this case the xt behave as independent random variables. There are

two fixed-point distributions, the trivial continuum-space Gaussian distribution and the

nontrivial discrete-space multifractal distribution (as observed in Figs. 1C, 3C and

3D). As explained above, there is a distinct crossover link between the two fixed-point

distributions. Our results correspond to the dynamics inside the attractors, however,

if the interest lies in considering only the stationary distribution of sums that do not

contain the transient behavior of trajectories in their way to the attractor [4]-[6] our

results are expected to give the correct answers for this case (see the Summary and

discussion).

4.2. Crossover via band merging

In Fig. 5 we show a sector of the chaotic bands for the logistic map fµ(x) where we

indicate the widths of these bands at the control parameter values µ̂K when they split

each into two new bands. Interestingly, if we assume that for a given value of K the

widths of comparable lengths have equal lengths then these widths can be obtained

from the widths of shortest and longest lengths via a simple scale factor consisting of

an inverse power of α. See Fig. 5. This introduces some degeneracy in the widths that

propagates across the band splitting structure. Specifically, the widths scale now with

increasing K according to a binomial combination of the scaling of those that converge

to the most crowded and most sparse regions of the multifractal attractor at µ∞. As

seen in Fig. 5 the widths form a Pascal triangle across the band splitting cascade. The

total length LK of such chaotic 2K-band attractor can be immediately evaluated to yield

LK =
(
α−1 + α−2

)K
. (8)
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Figure 5. Sector of the band splitting cascade for the logistic map fµ(x) that shows
the formation of a Pascal triangle of band widths (blue lines) at splitting according
to the scaling approximation explained in the text, where α ' 2.5091 is the absolute
value of Feigenbaum’s universal constant.

(See Ref. [11] for a similar evaluation relating to the supercycle diameters occurring

across the bifurcation tree for µ < µ∞).

Now, the sum zµ(N) can be split into two terms, zµ(N) = zµ(N) + δzµ(N),

zµ(N) =
N∑
t=0

xt , δzµ(N) =
N∑
t=0

δxt. (9)

Similarly to what we have seen for the sums yµ∞(N) and zµ∞(N), the first term zµ(N)

is made of a narrow band of fixed width that shifts altogether linearly with N to larger

values while the band consists of a pattern of period 2K . Clearly zµ(N) does not

participate in the band merging process, it is the second term δzµ(N) that fluctuates

and accomplishes band merging. Considering that all the correlated motion of xt has

been taken over by zµ(N) the fluctuations of δzµ(N) correspond to those of independent

variables and band enlargement is measured by the mean square root displacement〈
[δzµ(N)]2

〉1/2
∼ N1/2. (10)

We can estimate the number of summands NK necessary to achieve the merging of 2K

bands into a single one by matching the two lengths
〈
[δzµ(NK)]2

〉1/2
and 1−LK . From

Eqs. (8) and (10) we obtain

NK ∼
(
α−1 + α−2

)K [
1−

(
α−1 + α−2

)]
, (11)
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and considering NK to be of the form NK = 2nK with K � 1 we obtain

nK ∼ 2K ln
[(
α−1 + α−2

)
/2
]
. (12)

The crossover estimate in Eq. (12) for multiband into single-band distributions coincides

in order of magnitude with the number of summands found necessary in Refs. [5] and

[6] for numerical observations of long-tailed distributions resembling the so-called q-

Gaussians [5].

5. Summary and discussion

In summary, we have found that the stationary distribution of the sum of iterate

positions within the Feigenbaum attractor has a multifractal structure stamped by

that of the initial multifractal set, while that involving sums of positions within the

attractors composed of 2K chaotic bands is the Gaussian distribution. We considered

only the properties of a single sequence. At this transition the dynamics is nonergodic

and nonmixing, therefore the two natural options, (i) time average with fixed initial

condition and (ii) ensemble average of initial conditions at a large fixed time, are non-

equivalent. A third option is to perform both ensemble and time averages. We chose

option (i) because all sums with fixed initial positions within the attractor are simply

related to each other via a deterministic term (as explained in Section II). Also, option

(i) allowed us to obtain analytical results in closed form. For the ergodic chaotic band

attractors the choice of a single initial condition leads to the same result as the use of

an ensemble.

In Refs. [4]-[6] sums of subsequent values of trajectories with uniformly distributed

initial values across −1 ≤ x ≤ 1 were computed, and their properties were studied after

discarding long transients. In Ref. [6] transients were discarded of lengths ranging from

2048 to 65536 and their results are reported to be insensitive to the transient length. A

cursory inspection of Ref. [11] (with regards to Figs. 14 to 18 and the text associated

to them) makes it evident that after iteration times smaller than the smaller transient

discarded in Ref. [6] the trajectories considered have for all purposes fallen into the

attractor. Thus, these sums are exceptionally well reproduced by sums of subsequent

values xt with initial values inside the attractor. Next, when it is taken into account

that sums belonging to every such initial value are simply related to that with x0 = 0,

it follows that the choice of sums we considered here capture the limiting properties of

the sums studied in [4]-[6]. The numerical results that approximate q-Gaussians and/or

Lévy distributions in [4]-[7] may be understood by observing that the power laws in

the ∆µ = 0 multifractal distribution (see Fig. 3) are preserved at the tails of the

distributions throughout the band-merging crossover. Only in the limit N → ∞ the

distribution tails become truly exponential.

We have also shown that the entire problem can be couched in the language of the

RG formalism [15] in a way that makes clear the identification of the existing stationary

distributions and the manner in which they are reached. These basic features suggest a
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degree of universality, and therefore limited to the critical attractor under consideration,

in the properties of sums of deterministic variables at the transitions to chaos. Namely,

the sums of positions of memory-retaining trajectories evolving under a vanishing

Lyapunov exponent appear to preserve the particular features of the multifractal critical

attractor under examination. Thus we expect that varying the degree of nonlinearity of a

unimodal map would affect the scaling properties of time averages of trajectory positions

at the period doubling transition to chaos, or alternatively, that the consideration of a

different route to chaos, such as the quasiperiodic route, would lead to different scaling

properties of comparable time averages. For instance, the known dependence of the

universal constant α on the degree of nonlinearity ς of a unimodal map would show as

a ς-dependent exponents s and s′ that control the scale invariant property of the sums

of trajectory positions with x0 = 0 (shown in Figs. 1C, 3C and 3D).

It is worthwhile expanding here our previous comment about the applicability of

our method to other maps. For instance, the stationary distributions associated to the

prototypical circle map [8, 9] could be determined similarly, thus extending our study

to the route to chaos via quasi-periodicity. The dynamics at the classic golden mean

critical attractor of the circle map exhibits counterparts with the Feigenbaum attractor

concerning all the basic features that we have made use of here [16]. This can be

corroborated via comparison of Fig. 2 with Fig. 3 of [16] and related text therein.

We have contributed to clarify the nature and the circumstances under which a

stationary distribution with universal properties (in the RG sense) may arise from sums

of deterministic variables at the transition between regular and chaotic behavior, such as

those studied here for variables evolving at zero Lyapunov exponent. In the absence of

the fluctuating element present in chaotic attractors the distribution of the sums of these

variables remains defined on a discrete multifractal set and is kept away from becoming a

known (Gaussian or otherwise) continuum-space limit distribution for random variables.

Acknowledgements. We appreciate partial financial support by DGAPA-UNAM

and CONACYT (Mexican agencies). AR is grateful for hospitality received at the SFI.

[1] Mackey M C and Tyran-Kaminska M 2006 Phys. Rep. 422 167.
[2] van Kampen N G 1981 Stochastic Processes in Physics and Chemistry (North-Holland,

Amsterdam).
[3] Khinchin A Y 1949 Mathematical Foundations of Statistical Mechanics (Dover, New York).
[4] Tirnakli U, Beck C and Tsallis C 2007 Phys. Rev. E 75 040106(R).
[5] Tirnakli U, Tsallis C and Beck C 2009 Phys. Rev. E 79 056209.
[6] Tirnakli U, Tsallis C and Beck C (arXiv:0906.1262) [cond-mat.stat-mech].
[7] Grassberger P 2009 Phys. Rev. E 79 057201.
[8] Schuster H G 1988 Deterministic Chaos. An Introduction (2nd Revised Edition, VCH Publishers,

Weinheim).
[9] Hu B 1982 Phys. Rep. 91 233.

[10] Mayoral E and Robledo A 2005 Phys. Rev. E 72 026209.
[11] Robledo A and Moyano L G 2008 Phys. Rev. E 77 036213 1-14.

http://arxiv.org/abs/0906.1262


Renormalization group structure for sums generated by incipiently chaotic maps 14

[12] Baldovin F and Robledo A 2005 Phys. Rev. E 72 066213.
[13] Robledo A 2006 Physica A 370 449.
[14] Fisher M E 1998 Rev. Mod. Phys. 70 653.
[15] A helpful note about the differences between the original RG transformation for unimodal maps

[8, 9] and that presented here may be useful for the casual reader. (i) Feigenbaum’s RG
transformation consists of functional composition (and fixed scaling with the universal constant
α), while ours is summation of variables (with no scaling at the transition and scaling with the
inverse square root of total number of terms beyond the transition). (ii) The fixed points in
Feigenbaum’s RG are maps, while the fixed points in ours are distributions. (iii) Feigenbaum’s
RG generates the period doubling cascade, while ours produces band merging. (iv) The purpose
of Feigenbaum’s RG is to characterize the critical attractor, while ours is to characterize
stationary distributions.

[16] Hernández-Saldaña H and Robledo A 2006 Physica A 370 286.


	Introduction
	Sums of positions at the chaos threshold
	Sum of absolute values "026A30C xt"026A30C 
	Sum of values of xt

	Sums of positions for chaotic bands
	An RG approach for sums of positions
	RG transformation and fixed points
	 Crossover via band merging

	Summary and discussion

