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Amplitude tuning of steady-state entanglement in strongly driven coupled qubits
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We report a mechanism to generate dissipative steady-state entanglement in coupled solid-state qubits driven
by strong periodic fields. We demonstrate that steady entanglement can be induced and tuned by changing the
amplitude of the driving field. A rich dynamic behavior with creation, death, and revival of entanglement can be
observed near multiphoton resonances. Coupled superconducting qubits are good candidates for the observation

of these effects.
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I. INTRODUCTION

The generation and stabilization of entanglement is one
of the main challenges in quantum information applications.
In recent years, strategies based on the creation of steady-
state entanglement through engineered dissipation have been
discussed theoretically [1-4] and demonstrated in experi-
ments [5—11]. In this scheme, the system of interest is driven
by external fields and coupled to a reservoir, developing a
nontrivial nonequilibrium dynamics that leads to a highly
entangled steady state. The effective relaxation rates can be
tuned by adequately designing the quantum reservoir, the
system-reservoir couplings, or the driving protocols. Exper-
imental demonstrations include realizations with trapped ions
[5-7], atomic ensembles [8], and superconducting qubits
[9-13]. Another strategy for entanglement stabilization is
measurement-based protocols, which have been implemented,
for example, in coupled superconducting qubits [14—18].

The different proposed mechanisms for driven dissipa-
tive entanglement generation utilize weak resonant drivings
to tailor the relaxation processes [1-3,5—13]. In contrast to
the weak resonant driving protocols, suitable to quantum
optics studies aimed to manipulate atoms with light, for
large-amplitude periodic drivings interesting nonperturbative
effects are known to exist. Among these, coherent destruction
of tunneling [19-21], Landau-Zener-Stiickelberg (LZS) inter-
ferometry [22-31], and bath-mediated population inversion
[32-35] have been studied in two-level systems built from
superconducting devices and quantum dots.

In the case of superconducting devices driven by an exter-
nal (dc+ac) magnetic field, the LZS amplitude spectroscopy
has become a tool to access the multilevel structure of these
artificial atoms, beyond the two lowest-energy levels that
define the qubit [22].

On the theoretical side, the Floquet formalism [36] has
been employed to solve the dynamics of strongly driven single
qubits in terms of quasienergies and Floquet states [37-39].
This nonperturbative formalism goes beyond the rotating-
wave approximation, usually employed for the weak driving
regime, which breaks down for strong driving amplitudes.

Quite exceptional are the studies of entanglement gen-
eration in the framework of Floquet theory. Reference [40]
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focused on the case of two weakly coupled qubits, and
Ref. [41] extended the study for arbitrary couplings and
large ac driving amplitudes. However, these researches were
restricted to the highly coherent regime, i.e., when the
driving is on for timescales shorter than the decoherence
time.

In this work we present a mechanism to induce steady-state
entanglement by means of large-amplitude periodic drivings.
Using as a test system two coupled qubits, we will demon-
strate that the entanglement in the steady state can be induced
and tuned by changing the amplitude of a driving periodic
field. One of our main results is advanced in Fig. 1(a) where
we show how the concurrence (a measure of entanglement)
can be increased or decreased as a function of the amplitude
of the periodic driving.

II. MODEL AND DEFINITIONS

In this work we consider two coupled qubits with Hamilto-
nian H(t) = Hy + V(¢), where

2
A €0 : A; : J
A=Y (-5 - o) - 2ot + o)

i=1

ey
with GZ(I; +.— the Pauli matrices in the Hilbert space of qubit
i [42]. This type of Hamiltonian can be realized, for instance,
in superconducting qubits [43-48], where A, A,, J are fixed
device parameters and €y can be controlled experimentally. In
the case of flux qubits, €y can be controlled by an external
magnetic flux through each qubit device, the A, A, are
determined by the relation among the charging energy and
the Josephson energy of the junctions in the circuit, and the
qubit-qubit coupling can been achieved in different ways in
the laboratory (inductive couplings, capacitive couplings, or
mediated through a cavity) [42-48]. The external ac driving
field is V(1) = —Acos(wt)(c" +0®)/2, of amplitude A
and frequency w [40,41,49-52]. In the case of flux qubits,
V (¢) corresponds to applying a time-periodic magnetic flux
in each qubit, with frequencies that are typically in the mi-
crowave range.

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.042337&domain=pdf&date_stamp=2018-10-30
https://doi.org/10.1103/PhysRevA.98.042337

GRAMAJO, DOMINGUEZ, AND SANCHEZ

PHYSICAL REVIEW A 98, 042337 (2018)

(a) 1
0.8

€g/w=3
fw=4.1 -

—
N2
w A

Eigenenergies (units of fuw) =

0123435
; €g/w

3
Alw

FIG. 1. (a) Plots of the steady-state concurrence C, as function
of the driving amplitude A/w for €y/w = 3 (green triangles) and
€o/w = 4.1 (black circles). (b) Intensity plot of C., versus A/w
and €p/w. (c) Eigenenergies E; of the system Hamiltonian H, as
a function of €y/w. Along this work, we choose A,/A;=1.5,
J/Ay=-25, and w/A; = 10. The bath temperature is taken as
T,/Ay = 0.0467 and for the bath spectral density we consider
y =0.001 with a cutoff frequency w./A; = 333. See text for details.

Dissipation and decoherence are taken into account by con-
sidering the open-system dynamics, with global Hamiltonian

H(t) = H(t) + Hy + Hyp.

Since I-AIs(t) = I-AIS(t + T) with T = 27 /w the driving period,
it is convenient to use the Floquet formalism, that allows
to treat periodic forces of arbitrary strength and frequency
[36-39]. In the Floquet formalism, the solutions of the time-
dependent Schrodinger equation are of the form |W,(¢)) =
e'v'/Mq (1)), where the Floquet states |a(t)) satisfy (1)) =
la(t +T)) =Y le(K))e 'K and are eigenstates of the
equation [H(¢) — i5id/0t]|a(t)) = yu|a(t)), with y, the asso-
ciated quasienergy.

We consider a thermal bath at temperature 7, described by
the usual harmonic oscillators Hamiltonian H,. The bath is
linearly coupled to the two-qubits system in the form Hy, =
g A ® B, with g the coupling strength, 53 an observable of the
bath, and 4 the observable of the system. Here, we consider
A =0V + 02, that corresponds to flux noise in the case of
flux qubits, and to charge noise in the case of charge qubits,
which in both cases is the dominant mechanism of coupling
to the environment.

The bath degrees of freedom are characterized by the
Ohmic spectral density J(Q) = y QeI with w, the cut-
off frequency and y o g2. The Von Neumann equation for
the time evolution of the reduced density matrix p(¢) =
Trp(pwe (1)) is

pu>=—%quﬁuxpmun> 2)

After expanding p(¢) in terms of the time-periodic Floquet
basis {|a(1))} (o, B =0, 1,2,3)

Pap(t) = (a()|p(1)B(1)), 3)

the Born (weak coupling) and Markov (fast relaxation) ap-
proximations for the time evolution are performed. It is further
assumed that at time ¢ = O the bath is in thermal equilibrium
and uncorrelated with the system. We note here that there is
a subtlety concerning different procedures of performing the
Markovian approximation. In general, the Markovian approx-
imation for the eigenenergy spectrum performed on the level
of the undriven Hamiltonian differs from performing it on
the level of the driven Floquet quasienergy spectrum [53,54].
This latter approach, that leads to the Floquet-Markov master
equation, is more appropriate for strongly driven solid-state
qubits since it is valid for arbitrary large driving strengths
[53-55].

Following this procedure, the resulting Floquet-Markov
master equation [37,38,53-57] is

pap (1) = —~i(Va = Vp)Pap = D Laparp OpDarp- (g
o
Considering that the timescale ¢, for full relaxation satisfies

t, > T, the transition rates Lyg 44 (t) can be approximated
by their average over one period T [53,54], obtaining

Eaﬂ,a/ﬁ/ (t) = Laﬁﬂ,ﬂ,
=S5 ) Runwe +aw ) (Rypprp)”
n n

—Ropop — (Rpaprar)’s (5)

where the rates
0 40 0 \*
Raﬂ,a’ﬂ’ = Zgaa/Aaa’(Aﬁﬂ’) (6)
(4]

can be interpreted as sums of Q-photon exchange terms, with
885 = T Yap + K)nin(vap + Ko), and yup = ya — yp and
K € Z. The thermal occupation is given by the Bose-Einstein
function n, (x) = 1/(e/*T — 1),

Each A%, is a transition matrix element in the Floquet
basis, defined as

AR = (a(L)IAIBL + K)), (7)

L

with |« (L)) the L € Z Fourier component of the Floquet state.

We obtain numerically the Floquet components |« (K))
and then we calculate the rates Rugqp and Lggyp. Once
the Lygap terms are obtained, the time-dependent solution
of pug(?) and the steady state pup(t — 00) are computed as
described in Ref. [35]. We calculate numerically the steady
state p(¢+ — 00) and the time dependent p(#) taking as initial
condition the ground state of Hy. We will consider in the
numerical simulations device parameters €y, Ay, Ay, J, dis-
sipation strength y, bath temperature T}, driving frequency
w, and amplitudes A within the ranges available in solid-state
qubits [43-48].

We choose as an entanglement measure the concurrence,
which can be calculated for mixed states as C = max{0, A4 —
A3 — Ay — A1}, where A;’s are real numbers in decreasing
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order and correspond to the eigenvalues of the matrix R =
VPBpwith § =0V @ 0P p*a (V) ® o [58]. The con-
currence can be accessed experimentally in solid-state qubits
through quantum tomography measurements [16].

III. AMPLITUDE TUNING OF STEADY ENTANGLEMENT:
NUMERICAL RESULTS

From the results presented along this work, it follows
that the relevant entanglement dynamics takes place near
the resonance conditions. The manipulation of entanglement
by an ac drive has been already studied in closed systems,
neglecting the effect of the thermal bath. For two isolated
coupled qubits, the generation of entanglement can occur at
and near n-photon resonances [40,41]. We will investigate
here the effect of noise and dissipation in the entanglement
generation by solving numerically the open-system dynamics.

The system Hamiltonian H,, for Ay, A; < €, has two
entangled eigenstates with their corresponding eigenenergies:

L
V2

1
)~ —(l01) = 10)), E._~+J/2
le-) ﬁ(l) 110)) +J/

(in the basis spanned by the eigenstates of azfl) ® az(z)), and
two separable (disentangled) eigenstates

|s0) & 100),
|s1) ~ [11),

leq) = —=(01) +110)), E.y = —J/2,

®)

Ey ~ —eo,

s0 0 ( 9)
E¢ =~ +¢.
The ground state is entangled (| Ey) & |e_)) with concurrence
C ~ 1 for |€y| < |J|/2 and separable (| Ey) = |so)) for |eg| >
|J]/2, with C =~ 0. In Fig. 1(c) we plot the eigenenergies E;
as a function of €y for J = —25A;.

We calculate the resonance conditions considering the
Hamiltonian H,(1) = Hy + V (1), as it was already done in
Ref. [38]. In the Floquet approach, the resonance conditions
correspond to y, — ¥g = mw. The quasienergies, computed
for A;/w — 0 using perturbation theory [39] in the lowest
order, are y, ~ €9 + nw and £J/2 + nw withn € Z, which
correspond to separable and entangled states, respectively. As
for A;/w — 0, the driving V (¢) and the coupling Hamiltonian
commute, the location of the avoided (quasi)crossings in the
spectrum of quasienergies are replicas (in £nw) of the qua-
sicrossings of the static spectrum. The resonance conditions
Yo — Vg = mw, m € Z, in the lowest order in A;/w coincide
with the condition E; — E; ~ mw. We classify the resonances
according to the involved states: the SS resonance (separable-
separable states), SE resonance (separable-entangled states
and vice versa), and EE resonance (entangled-entangled
states). The corresponding resonance conditions are

2€9 ~ mw, SS resonances
€+ J/2 ~mw, SE resonances (10)
J ~mw, EE resonances

with m € Z. In Fig. 1(c) we show the energy spectrum of
Hy as a function of ¢j, and the location of some resonances
are plotted with dashed black lines, allowing to identify each
resonance condition.
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FIG. 2. (a) Intensity plot of C versus €;/w and ¢/ T . The location
of some of the SE (SS) resonances are indicated. (b) Plot of C as a
function of the time /T for €p/w = 3 (green triangles) and €p/w =
4.1 (black circles). The initial condition corresponds to the ground
state for the correspondent €y/w. The results correspond to A/w =
3.8. Other parameters are the same as in Fig. 1.

Let us analyze what happens for the open-system situation
considered in this work. From now on, we will focus on the
possibility of entanglement generation when the ground state
is separable, |€y| > |J|/2. Figure 1(b) shows the concurrence
C in the stationary regime, as a function of A and ¢, for
J/A = —25. When the driving is on, A # 0, we find that
entanglement generation takes place for certain values of ¢,
which are close to the SE resonances at €y & |J|/2 4+ nw. As
it is shown in detail in Fig. 1(a), in these cases the concurrence
is modulated by the driving amplitude and, by adequately
tuning A, C can reach values close to 1, corresponding to a
maximally entangled Bell’s state, even when the ground state
is separable.

To understand why there is generation of steady entan-
glement near SE resonances, it is necessary to analyze in
detail the time evolution of the system. Figure 2(a) shows
C(¢) as a function of €p/w and the normalized time t/T for
a fixed value of amplitude A/w = 3.8, with T =27 /w. It
is straightforward to observe that the concurrence displays a
rich dynamics near the multiphoton resonances. At short times
there is a driving-induced generation of entanglement at and
near the values of € corresponding to SS or to SE resonances.
This short-time dynamic entanglement creation is carried
out by the coherent superposition of states induced by the
driving, and corresponds to the usual Rabi-type oscillations
at multiphoton resonances [27,59]. Similar results have been
obtained for the isolated system, as we already mentioned
[41]. In that case, the concurrence in the parameter space
[e0, A] presents a pattern that can be understood in terms
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of Landau-Zener-Stiickelberg (LZS) interference, extensively
studied and observed in single superconducting qubits [27].
However, for times above the decoherence time ¢ > f. (with
t. ~ 10°T in Fig. 2), we find that the driven induced entan-
glement fades away in the case of the SS resonances. In this
situation, the entanglement is fragile against the noise of the
external environment and it is easily destroyed beyond the
decoherence time.

A strikingly different behavior takes place in the case
of SE resonances. At large timescales, above the relaxation
time ¢, > t., we find the generation of steady entanglement
at one side of the SE resonances. As an example, we show
in Fig. 2(b) the time evolution of the concurrence for two
off-resonant cases that are close to an SE resonance. For
€9/w = 4.1 (shown in black circles), that is below the SE
resonance at €y/w = 4.25, we see that at initial times the
entanglement is negligible (the concurrence is very small) and
only after driving the system for large times, above £, ~ 10T,
steady entanglement is created. The entanglement induced in
this latter case is robust and stable at long times, opposite
to the SS resonance situation previously described. Another
interesting and nontrivial behavior takes place for ¢yp/w = 3,
which corresponds to an SS resonance that is very close
to the SE resonance at €p/w = 3.25 [this C(¢) is plotted
with a green triangles in Fig. 2(b)]. At t =0, the ground
state is disentangled and C ~ 0. After the driving is turned
on, there is a dynamic generation of entanglement due to
a Rabi-type resonance among two separable states, giving
place to an oscillating C(¢) that can reach values close to
1. At the decoherence time, this entanglement dies off and
the concurrence drops to zero for ¢t > t. ~ 10°T, and stays
at this value for times up to 10°T. Above this latter time,
steady-state entanglement sets in, which is induced due to
the nearness to the SE resonance at €y/w = 3.25. Thus, those
cases where SS and SE resonances are close exhibit a rich be-
havior as a function of time with creation, death, and revival of
entanglement.

The dynamics of the two paradigmatic examples discussed
above can be better described in terms of quantum tomogra-
phy by evaluating the time evolution of individual components
of the density matrix. In Fig. 3 we present the plot of the den-
sity matrix elements py; as function of /7T using the eigen-
state basis {|Ex)}, with k,1 =0, ..., 3. [See Fig. 1(c), where
the corresponding eigenenergies are plotted versus €p/w.] As
the off-diagonal py; (not shown in the plot) become negligibly
small above the decoherence time, the interesting behavior is
obtained for the populations, given by the diagonal terms p;;.
Figure 3(a) shows the case for €p/w = 4.1, where the ground
state (black triangles) is separable, and is close to a resonance
with the first excited state (red circles), which is entangled.
The population of the two other eigenstates is negligible along
all the time evolution, and the dynamics can be reduced to
the subspace of the two states that are near resonance. Since
the system is off resonance, the population remains mostly in
the ground state, which corresponds to the initial condition.
At large times, above ., the population of the first excited
state rapidly increases and the ground state is depopulated.
This explains the sudden creation of entanglement shown in
Fig. 2(b) for this case since the first excited state is entangled.
The case of creation, death, and revival of entanglement is
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FIG. 3. Plots corresponding to the quantum tomography of two-
qubits density matrix o as function of normalized time ¢/7 for
A/w = 3.8, and for €p/w = 4.1 (a) and €y/w =3 (b). Matrix el-
ements oy are in the eigenstate basis. The colors of the symbols
correspond to the colors representing eigenstates in Fig. 1(c): [so),
ground state (black triangles); |e_), first excited state (red circles);
le1), second excited state (blue squares); and |s; ), third excited state
(green diamonds).

plotted in Fig. 3(b), for €y/w = 3. Here, the ground state
(black triangles) is at resonance with the third excited state
(green diamonds), and both are separable states. For times
t < t., their populations display Rabi-type oscillations while
the populations of the other two states are negligible. Close to
the decoherence time the oscillations are damped, and both
populations tend to be equal to % Above ¢, the coherence
between these two states is lost, and the concurrence vanishes.
At larger timescales, above #,, a rapid transfer of population to
the first excited state (red circles) sets in, with almost all of the

population being transferred to the entangled state.

IV. AMPLITUDE TUNING OF STEADY
ENTANGLEMENT: MECHANISM

The behavior seen in Fig. 3(a) is reminiscent of the dy-
namic transition found in driven dissipative two-level systems
near a multiphoton resonance [34,35], where population in-
version can be induced in the steady state. The relaxation rate
is strongly dependent on the amplitude A and, in the case
of two-level systems, it has been written as a sum of terms
I'h(A) = Zn I‘ﬁ")(A) [28,35,38]. The terms in the sum corre-
spond to driving induced photon-exchange processes with the
bath, where I"*) describes the conventional relaxation process
(without exchange of virtual photon) and I'®*") corresponds
to the ac contribution due to the exchange of n virtual photon
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with energy +nfiw. In this section, we estimate the rates ['")
near a multiphoton resonance showing that their dependence
with the driving amplitude A is the underlying mechanism for
the generation of entanglement in the steady state presented in
the previous section.

The Floquet-Markov equation (4) is obtained after per-
forming the Born and Markov approximations. A further
simplification can be performed by the secular approxima-
tion where, after transforming the equation to the interaction
picture, all the oscillating contributions with e*!(*«=7s)" and
eF(@=)l are neglected for a # B and w # o' [53,55,60-62].
The resulting master equation can be written as

dp . A At
= —ilH(0). ]+ ;jraﬂ{caﬂ P Cop
lAT A 1 At A
— Ecaﬁcaﬂ P — Ep Caﬂcaﬂ (11)

with the jump operators C‘aﬁ = |a(2))(B(¢)| and the rates
2
Top = 2Ruapp =2 ) gis|A|". (12)
K

Equation (11) is of Lindblad type since it preserves the
positivity of the density operator [62]. In the Floquet basis
it splits in two separate equations:

dpo

-, = Ly, — I'gaPaas

T Xﬁ: 5085 = Ual

dpo :

L= i = V)~ hapl P @ E B (13)

with Agg = 3, %(Fan + I',g). For timesscales satisfying ¢ >>
t. (with f, x )\;ﬁl the decoherence time) the density matrix
becomes diagonal in the Floquet basis [55,56,60]. The secular
approximation that leads to Eq. (11) is not completely correct
at the resonances [55,56], but works well off resonance and
even arbitrarily close to a resonance for sufficiently small
coupling to the environment [35,56].

A phenomenological explanation of the mechanism lead-
ing to an entangled steady state near the SE resonances is
as follows. Near a resonance the population is concentrated
in the two states intervening in the resonance. Therefore, we
reduce the dynamics to the subspace of the two Floquet states
{la(?)), |b(2))} that satisfy the resonance condition y, — y &
nw. We then write, for ¢ > 1., a Pauli-type equation for the
populations of the two states near a SE resonance:

dP,
dt =T Py — TpaPa,
(14)
dp,
., = 1—‘baPa - 1—‘abe'
dt

For the two Floquet states |a), |b), the relaxation rate that
follows from the above equation is I', = I'yp + ['p,. Using
Eq. (6), we can decompose the relaxation rate as a sum
of terms that describe virtual n-photon transitions (see the
Appendix and Ref. [38]):

r,=r24+>"r® (15)
n#0

~
g
~
L]
?
r
1

1
—
4

’
1]
’
’
y

........ = d

1
N
.

¥

Eigenenergies (units of /w)
.

Alw

FIG. 4. (a) Intensity plot of C(¢) as a function of A/w and ¢/T.
(b) Terms Fi”) that contribute to the relaxation rate are plotted as
a function of the driving amplitude A/w. Both cases correspond to
€o/w = 4.1. (c) Schematic representation of the involved transition
processes between the states | Ey) = |so) (black line) and |E) = |e_)
[red (light gray) line]. The dashed lines represent the eigenenergies
plus the addition of integer multiples of Zw.

with
T = 2(gl | A% + g Af ) (16)

The T corresponds to the direct relaxation from the excited
state to the ground state, and it is the dominant relaxation
mechanism for low A. For large amplitudes A = w, the rates
I'"(A) oscillate as a function of A/w. Within a perturbative
approach for A; < w, it can be shown that their main depen-
dence with the amplitude A is

'™ o J2(A/w),

with J,(x) the Bessel function of order n. (See the Appendix
for the calculation.) This Bessel function dependence with
A allows that for certain ranges of A the direct term I'("
vanishes, while '™ becomes large for some 7.

The dynamic transition leading to population inversion at
the side of a m-photon resonance happens for the ranges of
amplitude satisfying T (A) > I'O(A) [35]. In this case,
the ™™ term corresponding to the absorption of m photons
from the ground state followed by a relaxation to the first
excited state prevails instead of the standard relaxation from
the excited state to the ground state. Thus, whenever there
is population inversion, the dc relaxation terms I'®) vanish
while it is expected that one of the '™ terms becomes
dominant.

In Fig. 4(a) we plot the time dependence of the concurrence
as a function of A/w for ¢y = 4.1 below a (m = 3)-photon
SE resonance. Here, we see that for certain values of A there
is generation of entanglement in the steady state. Figure 4(b)
shows the calculated T'”(A) and T'(-(A) rates as a function
of A/w while Fig. 4(c) shows schematically the relaxation
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processes that correspond to each case. Comparing Figs. 4(a)
and 4(b) we see that steady-state entanglement corresponds
to the range of A where I'")(A) > 'O (A). This shows
that by tuning the value of A near an SE resonance, one can
attain the conditions for populating the first excited state at
long times, leading to the generation of stable steady-state
entanglement.

V. CONCLUSIONS

The generation of driven-dissipative steady entanglement
is based on specifically engineering the reservoir, the system-
reservoir coupling, and the driving protocol such that the
quantum jump operators and the dissipation rates of the
corresponding Linblad equation lead to the desired entan-
gled steady state [1]. In the mechanism discussed in this
work, the quantum jump operators Caﬁ and the rates Iyg
strongly depend on the driving amplitude A. We show that
by adequately sweeping A, one can tune the terms of the
quantum master equation such that the steady state is en-
tangled. The regime of large amplitudes needed for this
type of tuning is accessible in the solid-state qubits where
Landau-Zener-Stuckelberg interferometry has been observed
[22-31].

The particular two-qubit system studied here is an example
of how this amplitude-tuned steady entanglement can be gen-
erated. From the analysis of our results, we conclude that the
relevant general conditions needed for generation of steady
entanglement near a SE resonance are as follows: (i) a range
of the control parameter (€y in our case) where there is a
separable ground state and an entangled excited state; (ii) an
avoided crossing among these two states with gap A within
the available range of the control parameter; (iii) to be able to
access experimentally to the driving frequency and amplitude
regime of A < w < A; and (iv) a dissipative coupling to a
thermal bath.

To summarize, we have found three different dynamical
regimes for entanglement evolution in driven coupled qubits:
(i) Below the decoherence time ¢ < t., there is a dynamic
generation of entanglement at multiphoton resonances, as
described in [40,41]. (ii) For times t, < t < t,, there is a long-
time interval of entanglement blackout, where entanglement
is destroyed due to decoherence with the environment. (iii)
Above the relaxation time ¢ > ,, entanglement is created and
preserved for long times near the SE resonances. This latter
effect enables the generation of steady-state entanglement,
which can be tuned as a function of the driving amplitude
A. Quantum state tomography measurements [12,16] in solid-
state devices where Landau-Zener-Stiickelberg interferometry
has been studied in single qubits [22-31] are good candidates
to test this mechanism for entanglement generation.

ACKNOWLEDGMENTS

We acknowledge financial support from CNEA, CONICET
(Grant No. PIP11220150100756), UNCuyo (Grant No. P
06/C455), and ANPCyT (Grants No. PICT2014-1382 and No.
PICT2016-0791).

APPENDIX: VAN VLECK NEARLY DEGENERATE
APPROXIMATION: ANALYTICAL CALCULATION
OF THE RELAXATION RATES

In this appendix we calculate an analytical expression
for the relaxation rate I', near a resonance condition. We
solve the dynamic of the system using the Floquet formalism
under the Van Vleck near-degenerate approach [38].

We start considering the case A; — 0, i = 1,2 (and no
interaction with the thermal bath), thus the Hamiltonian of
work corresponds to

A = 22: <_ €+ Acos(a)t)az(i))

. 2
i=1
T (0@ @) Al
_E(cr+ o +o0Va 7). (A1)
Performing a  basis change to the basis

{1s0), le+), le—), |s1)}, the Hamiltonian in Eq. (A1) becomes
diagonal, allowing us to obtain the Floquet states as

_ +iwkt é —ifwt 0
|s?(t)>_ Xk:e Jk(a))e |sl>,

. (A2)
les(1)) = ™" |ex),

with its corresponding quasienergies y = Fe€o — fiw and
v = FJ/2 — o, with i, m € Z. Jy(x) corresponds to the
kth-order Bessel function.

In order to obtain the relaxation rate presented in Eq. (16),
it will be useful to work in the Fourier extended basis. Making
the corresponding expansion |a(7)) = >, |ee(k))e ™™ ", with
k € Z and o the state index, the corresponding expansion

terms are
A
s} =32 Jﬂﬁ‘“(Z) 53 ).
k

lex(m)) = |ex, m).

(A3)

As long as A; is small, the locations of the quasicrossings
in the spectrum of quasienergies are replicas (in +mw) of
the quasicrossings of the static spectrum. The resonance
conditions y, — yg = n'w (n’ € Z) are thus satisfied, respec-
tively, €9 &+ J /2 ~ m’w (SE resonances), 2¢y ~ m’w (SS reso-
nances), and J ~ m’w (EE resonances) with m’ € Z. Consid-
ering this picture, we can work with an effective Hamiltonian
2 x 2 corresponding to a local system description when we
are near a resonance condition. In this framework, A; is
treated as a perturbation, opening dynamical gaps between the
two local states.

To be consistent with the results presented along this
work, we are going to consider the effective Hamiltonian in
the subspace S = {|so(7i)), |e; (7i7))} for the system dynamics
near a SE resonance. In this case, the corresponding effective
Hamiltonian (at first order) is

Aflfrh
Aals= 07 7727, (Ad)
——5 Y+,

with ¥, = —€) +fiw, yim=—J/2+ Mo, and As_; =
V2(A +A2)Jm_ﬁ(£). Since we are close to the SE-
resonance condition, the constraint yy — y; = m'w must
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be fulfilled, thus, o5 — V4 =0 — Y+ — (i —)w = yp —
yy —m'w =0 with m’ =m — 71, which brings us to the

expression
y Ay
. i —
[Herls = | X", 2 )
) Y+.itm

(A5)

Applying the second order of perturbation, we obtain

[H) errls

o1 A1 _Ay
- (Vov" 3 2w o0 2
= = ,

-’ . 1 1A
2 Y+, ii+m’ + 4 Zl;ﬁm’ Yo+ +Ho

(AO6)

The solutions of Eq. (A6) are the expressions [38]

®m/ ~
la(7i)) = —sin (T)'SO(n»
. ~ ®m’ ~
—sign(A_,) cos <7> e (it +m")),
|b(7i +m")) = cos (%)BO(ﬁ))

— sign(A_,,)sin (97’") e (i +m"), (A7)

where

[A ]
1A, 2

_ Ty — L EAY]
Yo+ Tmow— 3 Zl;é—m’ Yot

®,, = arctan

(A8)

Using the above solutions, we proceed to calculate Al,
the transition element matrix in the Floquet basis, for A =
g0V + o). The corresponding expression is

> {a(L)|Alb(L + n))

L
. ®Yl ®n
— SIn (7) COoS (7) ;(So, L|A|SO, L)

g .
- _S o,
sin(®,,)

n
Aab

g tan (®,)
= Fo—, (A9)
2 /1 + tan?(®,)
replacing the expression of ®, [see Eq. (A8)], we obtain
. g 1A
Aab = :Fz > .
2 ~
\/(_y“b o =33, ylfillw) AL
(A10)
In this way, the n-photon exchange terms R, p, =
> 8ab |Azb|2, from Eq. (6), can be computed as

2 nA (2
_ 8 Z 8up| A—n]
Raa,bb - Z ]a A |2 2 - )
T (v = 3 T S) HALE

Rbb,aa ~ Ov

(A11)
where we have considered the approximation g =
e*V:b/khT”ga — 0 when 7, — 0.

Finally, the relaxation rate I',, presented in Eq. (16), can be
expressed as

2 n oA 2
8 Z Sup| A—nl
1ﬂ}" — ? . ‘A[|2 2 - 2
! (_V“b e =32 m+lw) Al

Y
n#0

ga|A_n|2
. .
2 ~
(V“” —no+ 3, ylfﬂlw) +AP
(A12)

2
rem — &
" 2

As it is discussed in the main body of the paper, we are
interested in the relaxation rates I'® and '™, with n =
m’ corresponding to the chosen example, which satisfy the
constraint Yy — y; = —€o + J/2 = m'w. Using Eq. (A12),
we obtain

ro _ g_z ngIAolz
T2 | AN LR o2
(yab—i_EZ[#O m) + |A0|
e — g S 18wl
r - 2 ) 2 N ’
(y“b REUCE DI VLbA-;-lla)) AP
(A13)
(a) 10°
5 ) =
10 r
. r® .
Z_10%
£ T, —
10
SRAVVY:
10% .
1
M Re(p) +
(b) 08 % ‘Re(py)) =
3 i Re(py) =
0.6} I
F ; Lok on B Relw
041
{
0.2 3
O ‘§
1
©
0.8
0.6
8
O a4
02
0
0 5 10 15 20

Alw

FIG. 5. Plotof I'") terms that contribute to the relaxation rate (a),
population of the Floquet states pZ;, (b), and concurrence Cq (c), as a
function of A/w. All the cases correspond to the fixed value €p/w =
4.1. The other parameters are the same as presented in Fig. 1. The
black lines in (a) correspond to the approximation I‘f”) o' an(A /).
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replacing with the corresponding expression for A,

2
8%/285,2(A1 + A2)*Jo(2)

ro -

Yab+l

r& =

2 2
(yab DL ) +2(A1 + A2)2Jo(2)

)

(Al4)

—m’ 2
82/Zgabm 2(Al + AZ)ZJ—m’(g)

(J/ab —mw + % Dt

From Eq. (A14) it follows that the dominant dependence
with A/w of the relaxation rates is I'” o J§(4) and

Fﬁ”"/) x JEm,(%). This Bessel function dependence can be
better observed if we extend the numerical calculation of
the '™ for values of A/w larger than the case shown in
the main body of the paper. As an example, we choose
the off-resonant case €p/w = 4.1, that is close to the
(m = 3)-photon resonance at €p/w = 4.25. We plot in Fig. 5
as a function of A the relaxation rates '), the population of
the states in the steady state pJo, and the concurrence Co. As
it is shown in Fig. 5(a) the approximation FS”) x J,%(A /W)
agrees very well with the values of '™ obtained numerically
from the direct evaluation of Eq. (16). Furthermore, in
Fig. 5(b) we see that while the amplitude satisfies A < |eg],
the population transfer only takes place between the states

2 2'
) 2081+ AP (2)

(

|Ep) (black triangles) and |E;) (red circles) [see Fig. 1(d)].
But, when the amplitude increases, more avoided crossings
are reached in the range [€9—A, €p+A] spanned by the
driving, allowing to populate the states |E,) and | E3). In this
latter situation, the two-level approximation loses validity
for A > |¢g|. For amplitudes A within the two-level regime,
we see that there is population inversion whenever the
'™ term is the largest one and C # 0. It is interesting
to point out that for large A, where the calculation of the
plotted T'™ is no longer valid, there is a finite value of
concurrence whenever the population of the first excited
state is the largest. Thus, even when the dynamics is more
complex, involving all the four states, the qualitative picture
of entanglement generation due to population inversion is still
correct.
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