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1. Introduction

In the Dynamical Casimir Effect (DCE), real quanta of a field 
are created, out of the quantum vacuum, due to the presence 
of external, time-dependent conditions. Such external conditions 
may adopt different guises, the most prominent among them be-
ing perhaps a time-dependence in the geometry of the boundary 
conditions. In this context, the creation of particles in a one-
dimensional cavity containing a moving perfect mirror has been 
extensively studied, since the pioneering works by Moore [1] and, 
subsequently, by Davies and Fulling [2]. In more recent works, 
different yet related aspects of the DCE have been the focus of 
attention, because of their relevance to phenomena like cavity 
quantum electrodynamics, superconducting waveguides subjected 
to time-dependent boundary conditions, quantum friction, etc., (for 
some reviews, see, for example [3]). Interestingly, systems that ex-
hibit DCE may also shed light on the information loss problem, 
entanglement entropy, and its relation to the mirror’s state of mo-
tion [4]. Besides, exact solutions for physical observables in the 
moving mirror models [5] have been applied to understand the 
physics of the related evaporating black-hole system. A moving 
mirror, on the other hand, provides an example of entanglement 
harvesting from the vacuum [6], and its radiation has also been 
studied recently from the point of view of the Equivalence Princi-
ple [7].

A time-dependence in the boundary conditions may be due 
to different causes, and manifest itself in a variety of ways, de-
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pending on the nature of the quantum field and of the model for 
the ‘mirror’ (the boundary conditions it imposes). In principle, one 
could consider a time-dependence in the properties of the mirror, 
keeping its geometry constant. Or the contrary situation, namely, 
changing only the geometry, or even changing both the geome-
try and the properties. On the other hand, the nature (spin, mass, 
number of spacetime dimensions) of the quantum field, does play 
a role in determining which kind of boundary conditions it may 
be subjected to. In this respect, a higher spin field is expected to 
allow for a richer spectrum of boundary conditions in comparison 
with a scalar field, because of its larger number of components.

In this letter, we study dissipative effects in a concrete model 
where the DCE is realized. It consists of a 2 + 1-dimensional sys-
tem, with either one or two semitransparent mirrors, in a non-
trivial state of motion, coupled to a quantum Abelian gauge field. 
Abelian gauge field theories in 2 + 1 dimensions play a special 
role in Quantum Field Theory models which are of relevance to 
Condensed Matter Physics applications [8–10], in effective descrip-
tions. It is our aim to consider the phenomenon of motion in-
duced radiation in that sort of system, because of its potential 
relevance in models, besides its intrinsic, theoretical interest. We 
recall that motion induced radiation with non-perfect mirrors has 
already been considered, as in Ref. [11], for a mirror in nonrela-
tivistic motion in 1 + 1 dimensions. Other models and situations 
have been considered by several authors, like cavities consisting of 
media without internal dissipation [12], imperfect mirrors filling 
half-spaces and moving sideways [13], expanding spherical mir-
rors [14], many interesting configurations in 1 + 1 dimensions [15]
and zero-width mirrors described by couplings to singular poten-
tials, containing Dirac’s δ or its derivatives [16]. Also, rather general 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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formulations have been presented, based on a scattering theory ap-
proach [17].

It is our intention to extend here the idea of [18] to the case 
of an Abelian gauge field, and to more general states of motion. 
In particular, we aim to allow for time-dependent deformations 
of the mirrors. We recall that the approach of [18] consisted of 
considering imperfect semitransparent mirrors undergoing accel-
erated motion, coupled to a real scalar field. The approximation 
involved in treating the mirrors perturbatively allowed for disen-
tangling the purely quantum calculation (due to the field) from 
the treatment of the mirrors’ motion, which can be incorporated 
at the end of the calculation. The fact that the vacuum field is now 
an Abelian gauge field will, as we shall see, be responsible for the 
emergence of qualitatively different results. Indeed, gauge invari-
ance greatly restricts the possible couplings between the field and 
mirrors: now derivatives of the gauge field necessarily appear. This, 
in turn, means that the mass dimensions of the coupling constant 
will be different, and, as a consequence, so will be the momentum 
dependence of the results.

This paper is organized as follows: in Sect. 2, we introduce the 
kind of model that we consider in our study, and we also set 
up our notation and the conventions we have adopted. Then, in 
Sect. 3, we evaluate the effective action and its imaginary part per-
turbatively in the coupling of the mirror to the field. We do that 
for the cases of one and two mirrors, and derive general expres-
sions for the imaginary part of the effective action. In Sect. 4, we 
evaluate the general expressions derived in the previous section for 
some particular kinds of motion, therefore obtaining explicit mea-
sures for the relation between motion and dissipation. In Sect. 5, 
we present our conclusions.

2. The system

The system that we consider throughout this paper has, as its 
quantum dynamical variable, an Abelian gauge field Aμ(x) in 2 + 1
dimensions.1 The dynamics of this field, and its coupling to the 
moving ‘mirrors’, will be encoded into an Euclidean action S(A), 
for which we assume the structure:

S(A) = S0(A) + SI (A) , (1)

where S0 denotes the free gauge-field action:

S0(A) =
∫

d3x

[
1

4
Fμν Fμν + λ

2
(∂ · A)2

]
, (2)

which includes a gauge-fixing term (we shall use λ ≡ 1), while SI

deals with the coupling between the field and the mirror(s). In our 
conventions, the Euclidean space-time metric is tantamount to the 
identity matrix δμν . There will be, therefore, no difference between 
a given expression and another one obtained by raising or lowering 
one (or more) of its space-time indices.

Let us now construct the explicit form of SI , for just a single 
mirror; to consider more than one mirror, we just add analogous 
terms for each one of them. The mirrors are assumed to be local-
ized, i.e., to occupy a spatial curve at any given time, and therefore 
SI (A) is an integral over the worldsheet(s) swept by the mirror(s) 
during time evolution. Thus, the worldsheet M for that mirror 
may be parametrized using two coordinates σα , as follows2:

σ ≡ (σ 0,σ 1) → yμ(σ ) . (3)

1 Indices from the middle of the Greek alphabet (μ, ν, λ, . . .) are assumed to run 
over the values 0, 1 and 2.

2 Indices from the beginning of the Greek alphabet (α, β, γ , . . .) run from 0 to 1.
Note that, for indices corresponding to the two-dimensional (gen-
erally curved) worldsheet of the mirrors, their raising or lowering 
may indeed be relevant, since there is an induced non-trivial met-
ric (see Eq. (7) below).

Assuming locality, a simple gauge and reparametrization-invar-
iant form for the interaction term SI = SM(A, y) is the following:

SM(A, y) = 1

4ξ

∫
M

d2σ
√

g(σ ) gαα′
(σ ) gββ ′

(σ )

×Fαβ(σ )Fα′β ′(σ ) , (4)

where we have introduced:

Fαβ(σ ) ≡ ∂αAβ(σ ) − ∂βAα(σ ) , (5)

with Aα(σ ) denoting the projection of Aμ(x) onto the surface M:

Aα(σ ) ≡ Aμ[y(σ )] eμ
α (σ ) , (6)

eμ
α (σ ) being the tangent vectors eμ

α (σ ) = ∂ yμ(σ )/∂σα . Indices 
corresponding to objects living on M are raised or lowered with 
the induced metric tensor:

gαβ(σ ) = eμ
α (σ )eμ

β (σ ) , (7)

and g(σ ) ≡ det[gαβ(σ )].
On the other hand, the constant ξ (which has the dimen-

sions of a mass) controls the strength of the boundary conditions; 
namely, ξ → 0 corresponds to a perfect conductor, and ξ → ∞ to 
no boundary conditions being imposed on M. Imperfect bound-
ary conditions shall mean a non-vanishing, finite value for ξ . Note 
that, in the ξ → 0 limit, the term SM becomes divergent, unless 
the tangent components of the electromagnetic field tensor vanish 
(the integrand in that term) identically, namely, unless perfect-
conductor conditions are satisfied. If that sort of term were due 
to the integration of microscopic, charged degrees of freedom, the 
constant ξ could be related to the inverse of the corresponding 
coupling constant (the would-be fine structure constant).

A relationship that becomes useful in the forthcoming deriva-
tions, is that SM may be shown to be equivalent to:

SM(A, y) = 1

2ξ

∫
M

d2σ
√

g(σ )
(
n̂μ(σ ) F̃μ[y(σ )])2

, (8)

where F̃μ(x) = εμνλ∂ν Aλ(x), and n̂μ(σ ) is the unit normal to the 
surface:

n̂μ(σ ) = Nμ(σ )√
N2(σ )

, Nμ(σ ) = 1

2
εαβ εμνλeν

α(σ )eλ
β(σ ) , (9)

(it is straightforward to verify that 
√

N2(σ ) = √
g(σ )).

In the case of two mirrors, denoted by L and R , rather than 
SI = SM as before, we shall have:

SI (A) = SL(A, yL) + SR(A, yR) , (10)

where we have introduced two parametrizations, denoted respec-
tively by yμ

L (σL) and yμ
R (σR) for the respective mirrors. Besides 

having not necessarily equal coupling constants ξL , ξR , the actions 
are assumed to have exactly the same structure as SM(A, y).

The observable we shall be concerned with here is the pair-
creation probability P , which in turn may be obtained from �, the 
effective action obtained by integrating out the vacuum fluctua-
tions of A in the presence of the mirror(s):

e−� = Z =
∫

DA e−S(A) . (11)
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By its very definition, � is a functional of the geometry of the 
mirror(s), and a function of the constants that control the strength 
of the coupling between them and the field.

From Eq. (11), we see that the effective action may be written 
as follows:

e−� = e−�0 e−�I , (12)

where

e−�0 ≡ Z0 =
∫

DA e−S0(A) , (13)

is the effective action in the absence of the mirror(s), and:

e−�I ≡ 〈e−SI 〉 , (14)

where we have introduced the 〈·〉 symbol to denote functional av-
eraging, with a Gaussian weight determined by the free action, 
namely:

〈. . .〉 ≡
∫
DA . . . e−S0(A)∫
DA e−S0(A)

. (15)

Therefore, since only the interaction term may produce a non-
vanishing imaginary part, the probability P may be written as 
follows:

P = 2 Im[�I ] , (16)

where �I denotes the continuation to real time of the equally de-
noted functional.

Let us consider, in the next Section, the perturbative calculation 
of �I and of its imaginary part, without specifying the state of 
motion of the mirror(s).

3. Perturbation theory

When �I is expanded in powers of SI , �I = �
(1)
I + �

(2)
I + . . ., 

the first and second-order terms are given by:

�
(1)
I = 〈SI 〉 , (17)

and

�
(2)
I = 1

2
〈SI 〉2 − 1

2
〈S2

I 〉 = −1

2
〈(SI − 〈SI 〉)2〉 . (18)

For a single mirror, �I → �M is obtained by making the substitu-
tion: SI → SM (with SM as defined in Eq. (4)) in the expressions 
above, while for two mirrors the substitution SI → SL + SR leads 
to:

�
(1)
I ≡ �

(1)
L + �

(1)
R , �

(2)
I ≡ �

(2)
L + �

(2)
R + �

(2)
LR , (19)

where, in a self-explaining notation:

�
(1)
L
R

≡ �
(1)
M

∣∣∣
M→L,R

, �
(2)
L
R

≡ �
(2)
M

∣∣∣
M→L,R

,

�
(2)
LR = −〈(SL − 〈SL〉)(SR − 〈SR〉)〉 . (20)

In other words, to this order, we have terms that involve just one 
of the mirrors, plus one which mixes both of them. Therefore, we 
just need the effective action �(1,2)

M , corresponding to an interac-

tion term SM , plus �(2)
LR ; the remaining ones may be obtained by 

performing the appropriate substitutions in a set of ‘independent’ 
functionals.

The explicit form of the independent terms we need in order to 
determine all the rest (up to the second order) is:
�
(1)
M = 1

2ξ

∫
M

d2σ
√

g(σ ) n̂μ(σ )n̂ν(σ )〈 F̃μ[y(σ )] F̃ν [y(σ )]〉 ,

(21)

�
(2)
M = − 1

2(2ξ)2

∫
M

d2σ
√

g(σ ) n̂μ(σ )n̂ν(σ )

×
∫
M

d2σ ′√g(σ ′) n̂μ′(σ ′)n̂ν ′(σ ′)

× 〈 : F̃μ[y(σ )] F̃ν [y(σ )] : : F̃μ′ [y(σ ′)] F̃ν ′ [y(σ ′)] :〉 , (22)

and

�
(2)
LR = − 1

2ξL 2ξR

∫
ML

d2σ
√

gL(σ ) n̂L
μ(σ )n̂L

ν(σ )

×
∫

MR

d2σ ′√gR(σ ′) n̂R
μ′(σ ′)n̂R

ν ′(σ ′)

× 〈 : F̃μ[yL(σ )] F̃ν [yL(σ )] : : F̃μ′ [yR(σ ′)] F̃ν ′ [yR(σ ′)] :〉 ,

(23)

where we have used the notation : G :≡ G − 〈G〉.
Let us now evaluate each one of the previous terms in turn. 

All of them involve the 〈 F̃μ(x) F̃ν(x′)〉 correlator, which may be ob-
tained from the gauge-field propagator. The outcome is

〈 F̃μ(x) F̃ν(x′)〉 =
∫

d3k

(2π)3
eik·(x−x′) δ⊥

μν(k) , (24)

where we have introduced the object: δ⊥
μν(k) = δμν − kμkν

k2 .
Therefore, the first-order term becomes

�
(1)
I = 1

2ξ

∫
M

d2σ
√

g(σ ) n̂μ(σ )n̂ν(σ )

∫
d3k

(2π)3
δ⊥
μν(k) , (25)

which is UV-divergent; indeed, using an Euclidean cutoff �, we see 
that∫
|k|≤�

d3k

(2π)3
δ⊥
μν(k) = �3

9π2
δμν . (26)

Finally,

�
(1)
M = �3

9π2ξ

∫
M

d2σ
√

g(σ ) = �3

9π2ξ
area(M) . (27)

As indicated, it is a divergent term proportional to the area of the 
worldsheet. This may be absorbed into a renormalization of the 
tension associated to the curve, and therefore, does not contribute 
to dissipative effects associated to the motion of the boundary.

Let us now consider the second-order term �
(2)
I : applying 

Wick’s theorem and taking into account the form of the interac-
tion term,

�
(2)
M = − 1

(2ξ)2

∫
M

d2σ
√

g(σ ) n̂μ(σ )n̂ν(σ )

×
∫
M

d2σ ′√g(σ ′) n̂μ′(σ ′)n̂ν ′(σ ′)

× 〈 F̃μ[y(σ )] F̃μ′ [y(σ ′)]〉〈 F̃ν [y(σ )] F̃ν ′ [y(σ ′)]〉 , (28)



4 C.D. Fosco et al. / Physics Letters B 797 (2019) 134838
which, recalling Eq. (24), can be rendered as follows:

�
(2)
M = 1

2ξ2

∫
d3k

(2π)3
fμν(−k) �̃μν;μ′ν ′(k) fμ′ν ′(k) (29)

where

fμν(k) ≡
∫

d2σ
√

g(σ ) n̂μ(σ )n̂ν(σ )e−ik·y(σ ) , (30)

and

�̃μν;μ′ν ′(k) = −1

2

∫
d3 p

(2π)3
δ⊥
μμ′(p)δ⊥

νν ′(k − p) . (31)

An entirely analogous analysis for �(2)
LR leads to:

�
(2)
LR = 1

ξLξR

∫
d3k

(2π)3
f L
μν(−k) �̃μν,μ′ν ′(k) f R

μ′ν ′(k) (32)

where f L
μν and f R

μν are defined as in Eq. (30), for the respective 
mirror, and the same kernel �̃μν,μ′ν ′ as in �(2)

M . Let us then consider 
the calculation of this kernel, which determines all the second-
order terms. After some algebra, we see that the structure of that 
object is:

�̃μν,μ′ν ′(k) = A δμμ′δνν ′ + Bμν,μ′ν ′(k) , (33)

where

A ≡ −1

6

∫
d3 p

(2π)3
, (34)

and

Bμν,μ′ν ′(k) ≡ −1

2

∫
d3 p

(2π)3

pμpμ′

p2

(k − p)ν(k − p)ν ′

(k − p)2
. (35)

The term proportional to A in the previous expression may also be 
absorbed into a renormalization of the tension, as it was the case 
for the first order calculation. Since we are interested in dissipative 
effects, we neglect this kind of contribution (which dimensional 
regularization renormalizes away) from now on.

Using dimensional regularization and introducing a Feynman 
parameter representation, the D dimensional version of the re-
maining term is:

Bμν,μ′ν ′(k) = −1

2

1∫
0

dα

∫
dD p

(2π)D

pμpμ′(p + k)ν(p + k)ν ′

[(1 − α)p2 + α(p + k)2]2
.

(36)

For D = 3, the result is:

�̃μν,μ′ν ′(k) = − 1

2048

(
2

5
δμμ′δνν ′ |k|3 + 3 kμkμ′kνkν ′

1

|k|
)

,

(37)

which, we recall, allows us to determine all the second-order 
terms, both for one or two mirrors.

Therefore, performing the rotation back to real time, and taking 
imaginary parts afterwards, we see that:

Im
[
�

(2)
M

]
= 1

4096 ξ2

∫
d3k

(2π)3
fμν(−k) fμ′ν ′(k)

×
[

2

5
gμμ′

gνν ′
Im(|k|3) + 3 kμkμ′

kνkν ′
Im(|k|−1)

]
,

(38)
while for Im
[
�

(2)
LR

]
we see that:

Im
[
�

(2)
LR

]
= 1

2048 ξLξR

∫
d3k

(2π)3
f L
μν(−k) f R

μ′ν ′(k)

×
[

2

5
gμμ′

gνν ′
Im(|k|3) + 3 kμkμ′

kνkν ′
Im(|k|−1)

]
.

(39)

The relevant imaginary parts are:

Im(|k|3) = θ(|k0| − |k|) (k2
0 − |k|2)3/2 , (40)

and

Im
(|k|−1) = θ(|k0| − |k|) (k2

0 − |k|2)−1/2 , (41)

where θ denotes Heaviside’s step function and k ≡ (k1, k2).
Expressions (38) and (39) may be regarded as general results, 

where the motion is encoded in fμν and quantum effect belong to 
the kernel, depending on k.

It is worth mentioning here that there is a qualitative difference 
in the momentum dependence of the integrals in the results above, 
in comparison with the scalar field model [18]. Indeed, because of 
the different nature of the field, one now has constraints of the 
allowed coupling to the mirrors, and that determines the possible 
form of the momentum dependence, because the effective action 
should be dimensionless (in natural units).

4. Examples

Let us consider here the form adopted by the second-order 
contributions to the imaginary part, in situations where one can 
obtain more explicit expressions.

4.1. Small departures with respect to a planar world-sheet, single mirror

As a first concrete example, we consider small, time-dependent 
departures about a static spatial straight line. In other words, small 
deformations of a planar world-sheet, which we assume to coin-
cide with the y2 = 0 plane:

y0 = x0 , y1 = x1 , y2 = q(x�) (42)

where x� = (x0, x1), and q(x�) represents smalls departures from 
the static straight line configuration. We thus expand fμν(k) in 
powers of q(x�) = 0, obtaining:

fμν(k) = f (0)
μν (k) + f (1)

μν (k) + . . . , (43)

where

f (0)
μν (k) = δ2

μδ2
νδ(k0)δ(k1) , (44)

and

f (1)
μν (k) = −i (δ2

μδ2
ν k2 + δ2

μδα
ν kα + δα

μδ2
ν kα) q̃(k�) , (45)

where we have introduced the Fourier transform of the departure:

q̃(k�) =
∫

d2x� q(x�) e−ik�·x� . (46)

It may be verified that, up to the second order in the depar-
ture, the only non-vanishing contribution to the imaginary part 
comes from using (twice) the first-order term for fμν in the gen-
eral expression. We then find the pair-creation probability P =
2 Im[�M(2)] to be:
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P = 1

211 ξ2

∫
d3k

(2π)3
θ(|k0| − |k|)

×
[

2

5
((k2)2 + 2k2‖) ((k0)2 − |k|2)3/2

+ 3 (k2)2 ((k2)2 + 2k2‖)2 ((k0)2 − |k|2)−1/2
]
|q̃(k‖)|2 . (47)

Performing the k2 integral, we obtain a more compact expression, 
depending only on the momenta which are parallel to the space-
time plane:

P = 941

216 5 ξ2

∫
d2k‖
(2π)2

θ(|k0| − |k1|) |k‖|6
∣∣q̃(k‖)

∣∣2
, (48)

which exhibits a power-like spectrum.
To get an even more concrete expression, we consider a case in 

which the deformation of the linear boundary amounts to a stand-
ing wave. Therefore, we chose q(k�) as follows:

q(k�) = ε cos(�x0) cos(px1) , (49)

where ε , � and p are positive constants. Thus,

q̃(k�) = 4π2ε [δ(k0 − �)δ(k1 − p) + δ(k0 − �)δ(k1 + p)

+δ(k0 + �)δ(k1 − p) + δ(k0 + �)δ(k1 + p)] .

(50)

Replacing the previous expression into Eq. 48 and integrating out 
k‖ , we see that the time and space periodicities imply a result pro-
portional to the total time T and length L of the mirror, such that 
the probability per unit length and time becomes:

P
LT

= 941 ε2

216 5 ξ2
θ(� − p) (�2 − p2)3 . (51)

Thus, this exhibits a threshold for the frequency of the standing 
wave, related to its wave number. Since the maximum velocity v
of each point in the mirror is v ∼ �ε , this threshold implies that v
should be larger (in units where the speed of light c = 1) than the 
ratio ε/λ, where λ is the wavelength. Therefore, to overcome the 
threshold with non-relativistic speeds, the amplitude of the wave 
needs to be smaller than its wavelength. Namely, εp < v < 1.

We may pinpoint the reason for the emergence of a non-trivial 
threshold for this kind of motion: Indeed, a standing wave pro-
vides us with both momentum and frequency scales, which, when 
combined with the (always present) threshold for the existence of 
an imaginary part (namely, a time-like momentum), leads to phe-
nomena like the one we have just described.

It is perhaps worth noting the possible values of the momen-
tum and frequency of the standing waves will depend on mechan-
ical properties of the mirror, which do not appear explicitly in the 
model we are considering.

4.2. Standing waves with small amplitude, two mirrors

This example corresponds to two mirrors, and the contribution 
we consider is �(2)

LR . We assume for the L mirror the parametriza-
tion:

y0
L = x0 , y1

L = x1 , y2
L = qL(x�) (52)

while for the R one we include an average distance a:

y0
R = x0 , y1

R = x1 , y2
R = a + qR(x�) . (53)
To the second order (first order in each of the departures), we get:

P = 1

211 ξLξR

∫
d3k

(2π)3
θ(|k0| − |k|) cos(k2a) q̃L(−k‖)q̃R(k‖)

×
[

2

5
((k2)2 + 2k2‖)((k0)2 − |k|2)3/2

+ 3(k2)2 ((k2)2 + 2k2‖)2((k0)2 − |k|2)−1/2
]

. (54)

Note the presence of the average distance a, inside the integrand. 
We also see that, due to the presence of the Fourier transforms of 
both departures, in order to have a non-vanishing result we need 
them to have a non-vanishing overlap between those Fourier trans-
forms. In the special case of motions which involve a single mode 
this term will only be non-vanishing only if their frequency and 
wave-number coincide.

For the special case of two standing waves in counterphase:

qL(k�) = 4εL cos(�x0) cos(px1)

qR(k�) = −4εR cos(�x0) cos(px1) . (55)

The probability in this case may be written as follows:

P
LT

= εLεR

210 πξLξR
θ(� − p) (�2 − p2)3 ϕ(

√
�2 − p2a) , (56)

with

ϕ(x) =
1∫

−1

ds cos(sx)

×
[

2

5
(s2 + 2)(1 − s2)3/2 + 3s2 (s2 + 2)2(1 − s2)−1/2

]
.

(57)

Performing the s integration, we finally obtain

ϕ(x) = 3π

5x5

[
x (340 − 111x2 + 45x4) J0(x)

+ (−680 + 307x2 − 75x4) J1(x)
]
. (58)

It is worth commenting on some qualitative features of this re-
sult, corresponding to two mirrors: firstly, the fact that there is 
non-trivial constraint between the respective motions, in order to 
have a non-vanishing imaginary part, is valid only to the order 

1
ξLξR

, since, as seen from Eq. (32), the functions corresponding to 
the motions of each mirror appear evaluated at k and −k. One 
should expect different constraints at higher orders, since more 
momenta will appear. Regarding the form of the result, we note 
that the p dependence is analogous to the one for a single mirror, 
but the result is modulated by a smooth dimensionless function 
of �a. The imaginary part tends to zero when the mirrors are at an 
infinite distance, as it should be. That decrease is not monotonous, 
however, but slightly modulated (via the Bessel functions), because 
of interference phenomena when two mirrors are present.

4.3. Stationary waves with arbitrary amplitude

Let us consider here a qualitative difference that appears when 
one considers stationary waves, or, more generally, a q(x�) function 
which is periodic in time and space. We assume those periods to 
be τ = 2π

�
and λ = 2π

p , respectively. This implies that Cμν(k2; x�), 
an object which appears in the integrand which defines the func-
tion fμν , is also periodic:
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Cμν(k2; x0, x1) ≡ √
g(x�) n̂μ(x�)n̂

ν(x�)e−ik2q(x�)

= Cμν(k2; x0 + τ , x1 + λ) , (59)

with the same periodicity as q.
Then Cμν(k2; x�) can be expanded in a double Fourier series:

Cμν(k2; x�) =
∑

l‖
C̃μν(k2; l�) e−il�·x� , (60)

where l� = 2π(n0

τ , n
1

λ
), with n0 and n1 integer numbers. Thus,

C̃μν(k2; l�) = 1

τλ

τ∫
0

dx0

λ∫
0

dx1 Cμν(k2; x�) eil�·x� . (61)

Hence,

f μν(k) = (2π)2
∑

n0,n1

C̃μν(k2; l�) δ(k� − l�) . (62)

Even without knowing the exact form of the C̃μν functions, we 
see that imaginary part of the effective action will be proportional 
to the total time and the length of the mirror. Besides, another 
qualitatively different feature has to do with the threshold for the 
existence of an imaginary part. Indeed, the existence of a series in 
f μν implies that, in order to have an imaginary part, we need to 
have:

|l0| > |l1| , (63)

or:∣∣∣∣n0

n1

∣∣∣∣ >
τ

λ
= p

�
. (64)

In other words, there always be non-vanishing contribution to the 
imaginary part, regardless of the ratio between the wave frequency 
and wavelength.

Another analysis that can be done to study a configuration of 
standing waves result of defining two different waves, with oppo-
site direction. Each wave has the form

q(x�) = A cos(p‖ x‖), (65)

and p‖ = (p0, p1). In this case, if we assume that the derivative of 
q is small, it can be shown that the only contribution comes from 
f22. In order to evaluate this function, we use the Jacobi-Anger 
expansion and we obtain that the imaginary part of the effective 
action is given by

Im [�I
(2)] = 1

212 ξ2

∞∑
n=∞

∞∫
−∞

d k2

2π
�[n2 ((p0)2 − (p1)2) − (k2)2]

(66)

×
[

2

5
J 2
n(k2 A) [n2 ((p0)2 − (p1)2) − (k2)2]3/2 (67)

+ 3
(k2)4√

n2 ((p0)2 − (p1)2) − (k2)2

]
. (68)
A similar phenomenon appears, of course, in the two-mirror 
case.
5. Conclusions

We have evaluated the probability of vacuum decay, via the 
imaginary part of the effective action �, for semitransparent mir-
rors in 2 + 1 dimensions, coupled to an Abelian gauge field. We 
have therefore extended previous analysis to a different kind of 
field, and to non-rigid motions of the mirror(s). The fact that the 
vacuum field is not a scalar does lead, as we have shown, to quali-
tatively different results. The origin of that difference can be traced 
back to the fact that gauge invariance changes the nature of the 
allowed coupling between field and mirror, and this affects the re-
sults. In particular, that coupling now contains derivatives; that is 
reflected in the momenta appearing in the numerator of Eq. (35), 
absent in the scalar field case.

We obtained general expressions for the leading contribution 
to the imaginary part of �, and more explicit ones for the case of 
small amplitudes, and for standing waves. We believe that standing 
waves are a natural configuration to consider, since they appear, 
for example, when one deals with a string-like mirror with fixed 
ends.

We have shown that, when the motion is periodic both in time 
and space, the imaginary part is always non-vanishing, with the 
threshold arising for small amplitudes corresponding to just one of 
the possible processes leading to pair creation.
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