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Abstract
Endophytic fungi live inside vegetal tissues without causing damage to the host plant and may provide lead compounds for drug
discovery. The co-culture of two or more endophytic fungi can trigger silent gene clusters, which could lead to the isolation of
bioactive compounds. In this study, two endophytic strains isolated from Handroanthus impetiginosus leaves, identified as
Talaromyces purpurogenus H4 and Phanerochaete sp. H2, were grown in mixed and axenic cultures. The meroterpenoid austin
was detected only in the extracts from the mixed culture. Once isolated, austin displayed very interesting trypanocidal activity,
with an IC50 value of 36.6 ± 1.2 μg/mL against Trypanosoma cruzi in the epimastigote form. The results obtained highlight the
importance of the co-culturing of endophytic fungi to obtain natural bioactive products. The findings also enhance our under-
standing of the ecological relationships between endophytic fungi.

Introduction

The group designated as neglected tropical diseases (NTDs)
includes, among other parasitic illnesses, Chagas disease,
which is caused by the protozoan parasite Trypanosoma cruzi.
The World Health Organization has reported that 8 million
people are infected by T. cruzi worldwide, mostly in Latin
America, and Chagas disease causes around 10,000 deaths
per year. The main drugs currently used in the treatment of
Chagas disease during the acute phase are nifurtimox and
benznidazole, which have been used for more than three

decades. However, these drugs have low efficacy and cause
serious side effects in patients (WHO 2018).

Secondary metabolites currently play a crucial role in the
search for new lead compounds (Cragg and Newman 2013).
Due to the ubiquitous occurrence of microorganisms, along
with the wide chemodiversity that can occur within a given
species (Bertrand et al. 2014), they are interesting sources of
natural bioactive scaffolds (Demain 2014). In this context, the
endophytic fungi merit attention (de Carvalho et al. 2016;
Silva et al. 2017). Endophytic microorganisms naturally occur
in vegetal tissue, without causing notable damage to the host
plant (Arnold and Lutzoni 2007). Several studies have provid-
ed evidence that the interaction between endophytic commu-
nity members can play a major role in the onset of metabolite
production, such as the biosynthesis of defense metabolites
and quorum-sensing signals (Akone et al. 2016).

The genes encoding these biosynthetic pathways are
usually clustered (Yamanaka et al. 2014). In many cases,
they are not expressed under standard laboratory culture
conditions because their activation relies on environmental
cues and, therefore, only a minority of the potential sec-
ondary metabolites can be investigated in vitro (Scherlach
and Hertweck 2009).

Silenced biosynthesis pathways, mainly those related to
defense compounds, may be activated when the microbes
are grown together in co-cultures or in confrontation
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experiments (Bertrand et al. 2014). Interestingly, these exper-
iments may result either in an enhanced production of known
metabolites or in the discovery of new compounds. Recently,
the co-culturing of the endophytic fungus Fusarium
tricinctum with the bacterium Bacillus subtilis 168 trpC2 re-
sulted in a 78-fold increase in the accumulation of secondary
metabolites and also in the isolation of some compounds
which were present in neither of the pure cultures (fungal
and bacterial) (Ola et al. 2013). In addition, the endophytic
fungus Alternaria tenuissima significantly increased the pro-
duction of some polyketides in response to the presence of the
endophytic fungus Nigrospora sphaerica (Chagas et al.
2013).

The study reported herein was focused on the search for
bioactive metabolites produced by the co-culture of two en-
dophytic fungi isolated from Handroanthus impetiginosus
leaves.

Material and methods

General experimental procedures

One- and two-dimensional NMR spectra were recorded at
500 MHz with a Bruker Avance III spectrometer. Chemical
shifts (δ) were referenced to the residual deuterated chloro-
form (CDCl3) peak at δH 7.27 for 1H and δC 77.0 for 13C.
High-resolution electrospray ionization mass spectroscopy
(HRESIMS) spectra were recorded with a micrOTOF mass
spectrometer operating in the negative ion mode and using
the following conditions: capillary voltage of 4500 V, dry
gas flow of 4 L/min, and nitrogen as the nebulizer gas.
HPLC analysis was performed using a Shimadzu chromato-
graphic system with a Thermo Scientific Acclaim® 120 C18

column (100 × 2.1 mm, 5 μm, 120 Å) and MeOH-H2O gra-
dient. The analysis was carried out at 0.5 mL/min and all of
the chromatograms were recorded at λ 254 nm.

Isolation and preservation of endophytic fungi

The botanical material of Handroanthus impetiginosus (Mart.
ex DC.) Mattos was collected in Alfenas, Minas Gerais (S 21°
18′ 49.15″, W 45° 57′ 28.53″), Brazil. It was identified by Dr.
Lúcia G. Lohmann from the Botanical Department of the
Bioscience Institute of the University of São Paulo. Avoucher
specimen was deposited in the herbarium of the Federal
University of Alfenas, under voucher code 2535. Seventy-
two endophytic fungal isolates were recovered as described
in the literature (Gallo et al. 2009). Briefly, the collected leaves
were washed with running water and surface-sterilized by
immersion in 70% (v/v) ethanol for 1 min, 2.5% (v/v) sodium
hypochlorite solution for 3 min, and 70% (v/v) ethanol again
for 1 min. Finally, the leaves were rinsed with sterilized water

and cut aseptically into fragments (0.5 × 0.5 cm). The frag-
ments were inoculated in Petri dishes containing potato dex-
trose agar (PDA) supplemented with 0.5 g/L chloramphenicol
to inhibit the bacterial growth. In order to evaluate the effi-
ciency of the epiphytic microorganism elimination process,
50 μL of the final washing water was also inoculated on
PDA. The plates were incubated at 28 °C in a BOD (biochem-
ical oxygen demand) chamber with daily monitoring of fungal
growth. Each fungus grown from the plant tissue was trans-
ferred to new plates containing PDA medium until pure cul-
tures were obtained. The pure cultures were stored in sterilized
water at room temperature (Rodrigues et al. 1992).

Identification of endophytic fungi

The two selected endophytic strains were identified by classi-
cal phenotypic and phylogenetic analysis. Extractions of fun-
gal genomic DNA were carried out by standard procedures
and the ITS1–5.8S–ITS2 region was amplified using the prim-
er pair ITS1–ITS4 (White et al. 1990). Amplification of the
D1/D2 domain of the LSU rRNA gene was performed using
the primers ITS1-F (TCCGTAGGTGAACCTGCGG) and
NL-4 (5′-TCCTCCGCTTATTGATATGC-3′). The resulting
PCR products were sequenced with an Applied Biosystems
automatic sequencer ABI 3730XL (Macrogen Corp.).
Sequences were compared with those already present in the
GenBank database using the BLAST program (National
Center for Biotechnology Information) (Altschul et al.
1990). The sequences were then deposited in GenBank data-
base under the accession numbers MK737061 and
MK749843 for Phanerochaete sp. H2 and Talaromyces
purpurogenus H4, respectively. Phylogenetic relationships
were calculated using the version 4.0 of the software MEGA
(Tamura et al. 2007).

Endophytic fungi cultures

The endophytic fungi were cultivated in mixed (co-culture)
and single (axenic) cultures, in solid and liquid media.
Single cultures were established by adding plugs (6 mm di-
ameter) from the same fungus, while for the mixed cultures,
plugs from two different fungi were placed simultaneously in
the culture medium.

The cultivation in solid media was carried out on Petri
dishes containing 20 mL of PDA using a plug from each
fungus as the inoculum. All cultures were carried out in trip-
licate and incubated in a BOD chamber for 7 days, at 28 °C.
After this period, the mycelia were removed from the whole
plate. The secondary metabolites were extracted using 40 mL
of ethyl acetate (EtOAc), followed by sonication for 20 min.
Additionally, liquid cultivation was carried out in 125-mL
Erlenmeyer flasks containing 50 mL of PDB using the same
inoculation method. The cultures were incubated in a BOD
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chamber for 7 days, at 28 °C. The mycelia were then removed
by filtration and the culture broth was extracted with EtOAc.

All extracts were dried over anhydrous sodium sulfate and
concentrated under vacuum to yield the liquid and solid crude
extracts. Each extract was then dissolved inMeOH (1mg/mL)
and 20 μL of this solution was analyzed by HPLC-DAD.

Isolation of natural product

To isolate the secondary metabolites, 40 plates of solid medi-
um cultures were extracted with EtOAc to afford 104.0 mg of
crude extract. This was then subjected to column chromatog-
raphy (CC) using silica gel 60H (Sigma-Aldrich®, particle size
0.040–0.063 mm) and mixtures of n-hexane-EtOAc followed
by EtOAc-MeOH as the eluting solvent. Ten fractions were
collected and the seventh fraction contained austin (1).

Austin (1): 17.0 mg (16.3% yield) white powder; 1H NMR
(500MHz, CD3Cl) δ 6.63 (1H, d, J = 10.0 Hz, H-1), 6.10 (1H,
d, J = 10.0 Hz, H-2), 5.72 (1H, d, J = 1.0 Hz, H-1′), 5.49 (1H,
d, J = 1.0 Hz, H-1′), 4.42 (1H, q, J = 6.2 Hz, H-5′), 3.55 (1H,
m, H-7), 2.03 (3H, s, H-12′), 1.87 (3H, s, H-13), 1.67 (1H, m,
H-7), 1.62 (3H, s, H-9′), 1.60 (1H, m, H-6), 1.54 (3H, s,
H-12), 1.53 (1H, m, H-6), 1.38 (3H, s, H-15), 1.29 (3H, d,
J = 6.2 Hz, H-10′), 1.19 (3H, s, H-14); 13C NMR (125 MHz,
CD3Cl) δ 171.1 (C-4′), 170.5 (C-8′), 168.7 (C-11′), 163.9
(C-3), 146.7 (C-1), 144.1 (C-10), 137.8 (C-2′), 132.8 (C-9),
120.5 (C-2), 118.3 (C-1′), 85.8 (C-4), 84.5 (C-3′), 80.9 (C-6′),
79.0 (C-5′), 74.9 (C-11), 63.1 (C-7′), 46.9 (C-5), 42.4 (C-8),
27.3 (C-6), 26.8 (C-7), 26.2 (C-15), 23.8 (C-12), 22.7 (C-14),
20.9 (C-12′), 20.5 (C-9′), 15.7 (C-13), 11.6 (C-10′);
HRESIMS m/z 499.1972 [M -H]- (calcd for [M -H]-

499.1968).

Fungal antagonism assays with austin and extract
from co-culture

One plug from the 7-day-old fungal colony grown in PDAwas
transferred to another PDA plate. Austin (1) and the crude
extract from the solid co-culture were dissolved in 1:1
methanol:water (0.05 mg/μL), and 20 μL of each solution
was separately placed in wells placed 4 cm apart of the fungal
colony. A mixture of 1:1 methanol:water was used as the
negative control. Plates were incubated at 28 °C for 7 days.
All assays were performed in duplicate.

In vitro trypanocidal and cytotoxicity assays

The trypanocidal assay was carried out using the
Trypanosoma cruziY strain (DTU II). The epimastigotes were
maintained in liver infusion tryptose (LIT) medium supple-
mented with 10% fetal bovine serum (FBS) at 28 °C. The
cytotoxicity assay was performed with uninfected H9c2
ATCC CRL 1446, which was obtained from neonatal rat

cardiomyoblasts and cultured in Dulbecco’s modified
Eagle’s medium (DMEM) in an incubator with 5% CO2.
Austin (1) and benznidazole were tested at the same concen-
trations, in triplicate, for both the trypanocidal and cytotoxic-
ity assays, as described in the literature (Brancaglion et al.
2018). The concentrations required to inhibit 50% of the
epimastigotes (IC50) and 50% of H9c2 uninfected cells
(CC50), along with the selectivity index (SI, CC50/IC50)
values, were calculated with the GraphPad Prism (version
5.0) software.

Results

The 72 isolates obtained from the leaves of H. impetiginosus
were named H1–H72, and those that presented distinct mor-
phological characteristics were selected. These were used to
conduct tests of dual confrontation on PDA plates and deter-
mine the growth inhibition areas (data not shown). From these
experiments, the strains H2 and H4 were selected because
they showed a notable inhibition area in the solid medium
assay (Fig. 1). Both strains were identified by molecular
methods up to genus and species levels as Phanerochaete
sp. H2 and Talaromyces purpurogenusH4, by analyzing their
ITS sequences. The corresponding phylogenetic trees are
shown in the Supplementary data (Figs. 1 and 2).

Phanerochaete sp. H2 and T. purpurogenus H4 were used
to perform axenic and dual cultures in both solid (PDA) and
liquid (PDB) media. From these cultures, crude extracts were
obtained with ethyl acetate and their chemical profiles were
analyzed by HPLC-DAD (Fig. 2). Notably, in the organic
extracts obtained from the mixed cultures, a metabolite (1)

Fig. 1 Antagonist activity of 7-day-old cultures of Phanerochaete sp. H2
(A) against Talaromyces purpurogenusH4 (B) cultured in PDAmedium.
There is a visible inhibition zone (red arrow)

Folia Microbiol

CYN
Highlight

CYN
Highlight



appeared at a retention time of 18.0 min, and this was not
present in any of the axenic cultures.

Due to the accumulation of compound 1, measured as a
percentage of the chromatogram total area, the amount in the
dual cultures grown in solid media was almost twice that of
the cultures grown in liquid media, with values of 20.46% and
12.49%, respectively (see Figs. 3 and 4 in the Supplementary
data). Thus, the solid medium cultures were chosen to resize
the assay aimed at the isolation of 1. A pooled sample of the
organic solid medium extract samples was subjected to CC
and product 1 was isolated in 16.3% yield. Its molecular for-
mula was determined as C27H32O9 by HRESIMS (m/z
499.1972 [M - H]-, Fig. 5 in the Supplementary data). The
1H NMR spectrum analysis showed typical terpenoid hydro-
gen signals and the 13C NMR spectrum evidenced 27 carbons,
consistent with a meroterpenoid. The chemical structure of 1
was then identified with the aid of 2D-NMR analysis (see

spectra in Figs. 6–9 in the Supplementary data) as an unusual
meroterpenoid named austin (1; Fig. 3). All of the spectral
data are in agreement with those reported in the literature
(Hayashi et al. 1994).

Subsequently, growth inhibition tests were carried out with
both axenic fungal strains, exposing them alternatively to the
solid medium extract and dilution of pure austin (1). It was
evident that the solid medium extract inhibited the develop-
ment of T. purpurogenusH4, while the austin (1) solution had
no effect on the growth of the two strains (see Fig. 10 in the
Supplementary data).

On the other hand, when the bioactivity of austin (1) to-
ward T. cruzi epimastigotes was assessed, inhibition rates of
100% and 96.39%were observed at concentrations of 200 μg/
mL and 100 μg/mL, respectively. The IC50 value for austin (1)
against the epimastigote form was 36.60 ± 1.20 μg/mL, while
the reference drug benznidazole showed an IC50 value of 8.01
± 1.31 μg/mL. In the cytotoxicity assay against uninfected
H9c2 cells, austin (1) showed a CC50 value of 175.65 ±
1.20 μg/mL, while in comparison the CC50 value for
benznidazole was 187.85 ± 2.15 μg/mL. The selectivity in-
dexes for austin (1) and for benznidazole were calculated as
4.79 and 23.45, respectively.

Discussion

In order to identify the potential of the endophytic fungi iso-
lated from H. impetiginosus leaves for the biosynthesis of
chemical compounds with antibiotic activity, dual cultures
were performed in order to assess the effects of the microbial
interaction on the metabolomic profiles. The stress caused by
the presence of the two species in the same Petri dish seems to
be efficient in triggering biosynthetic pathways. Although
fungal cultures in agar plates are not ideal substrates in

0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0 22,5 25,0 27,5 min

-50

0

50

100

150

200

250
mAU

Fig. 2 Metabolic profiles of the solid crude extracts obtained from the 7-
day-old mixed and single cultures of two selected endophytic fungi from
Handroanthus impetiginosus. The chromatograms corresponding to the
mixed culture extract (green) and the Phanerochaete sp. H2 and the

Talaromyces purpurogenus H4 pure cultures (brown and blue chromato-
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Folia Microbiol



ecological terms, this culture method allows the sampling of
different regions of the mycelia as well as the observation of
inhibition zones (Hiscox et al. 2010). Therefore, in the study
reported herein, interspecies interactions between
Phanerochaete sp. H2 and T. purpurogenus H4 were evaluat-
ed on PDA plates.

Moreover, since the endophytic strains belong originally to
the same habitat, the co-culture assay could mimic the natural
interaction between these microorganisms and visual analysis
allowed us to select the strains with the potential to produce
bioactive compounds.

To the best of our knowledge, this is the first time the
isolation of the meroterpenoid austin (1) from fungi in a co-
culture has been reported. This approach efficiently enhanced
the yield of this important meroterpenoid.

The meroterpenoids are natural products that are wide-
spread in fungi. Austin (1) was isolated for the first time in
1976 from Aspergillus ustus cultures (Chexal et al. 1976).
Later, a mixed polyketide-terpenoid biosynthetic pathway in
A. ustus was elucidated by the incorporation of 13C-labeled
acetate and methionine groups into the chemical structure of 1
(Ahmed et al. 1989). Other authors have reported the isolation
of 1 from fungal cultures, for instance, a Penicillium sp. MG-
11 soil culture (6.0% yield) (Hayashi et al. 1994), the endo-
phytic fungusPenicillium sp. T2-8 (0.065% yield) (Duan et al.
2016), and the plant pathogen Verticillium albo-atrum
(0.027% yield) (Wu et al. 2018).

We postulate that the biosynthesis of the meroterpenoid 1
occurred as a fungal defense mechanism or as a signaling
molecule triggered by stress caused by the co-culture. It has
been reported that microorganisms interact with each other via
metabolic exchange mechanisms (Phelan et al. 2012). The
biosynthesis of some secondary metabolites is important for
the endophyte survival when it is in competition with other
microorganisms (Ola et al. 2013).

Austin (1) has been previously identified as a potential nat-
ural insecticide (Wu et al. 2018; Kataoka et al. 2011) and also
as mycotoxin (Chexal et al. 1976). Our results corroborate the
hypothesis of the important role of the endophytic microbiota
in the plant defense strategy against pathogens. In the antago-
nism assays, we tested the action of austin (1) and the extracts
of the co-culture against the endophytic fungi investigated in
this study. The results obtained show that 1may act in synergy
with other compounds as an antifungal agent.

The inhibition zone observed on the plate containing the
two endophytic strains was probably due to the secretion of
the natural products exclusively detected in the mixed cul-
tures. Since these secondary metabolites demonstrated anti-
fungal activity in the assays, it is presumed that these chemical
compounds may display other types of interesting antibiotic
activities as well.

The antiparasitic activity of the natural meroterpenoids is
well documented (Gray et al. 2006; Agostinho et al. 2013).

Prompted by the interesting biological potential displayed by
austin (1), its trypanocidal activity was investigated. Although
the selectivity index of austin (SI = 4.79) was less favorable
than that observed for benznidazole (SI = 23.45), the
meroterpenoid was about fivefold less toxic to the host cell
than to the epimastigote. The results demonstrate that 1 shows
good potential for use in further studies on the development of
trypanocidal drugs.

Considering that endophytic fungi can influence the me-
tabolism of other microorganisms or the host plant in a sophis-
ticated crosstalk (Kusari et al. 2013), we hypothesize that both
endophytic fungi contributed to the biosynthesis of austin (1).
Two different organisms in the same environment may con-
tribute to the biosynthesis of the same secondary metabolite
when each organism contains part of the enzymes necessary to
complete the biosynthetic pathway. In this case, the biosyn-
thetic pathways of the two organisms are combined and each
is induced by the other (Ludwig-Müller 2015).

In summary, in this study, the interactions between endo-
phytic fungi from the same host plant were found to stimulate
the biosynthesis of the meroterpenoid austin (1) in good yield.

Additionally, austin (1) can act as a chemical signal included
in the network established between the endophytes. The poten-
tial antiparasitic activity of 1 reinforces the pharmacological
importance of natural products for which their biosynthesis is
activated by microbial interactions. It is clear that future studies
on mixed cultures of endophytic microorganisms will open up
possibilities for the identification of new lead compounds and
will provide a better understanding of themechanisms involved
in the interactions between endophytic fungi.
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