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Alternative characterization of the nematic transition in deposition of rods
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We revisit the problem of excluded volume deposition of rigid rods of length k unit cells over square lattices.
Two new features are introduced: (a) two new short-distance complementary order parameters, called � and �,
are defined, calculated, and discussed to deal with the phases present as coverage increases; (b) the interpretation
is now done beginning at the high-coverage ordered phase which allows us to interpret the low-coverage nematic
phase as an ergodicity breakdown present only when k � 7. In addition the data analysis invokes both mutability
(dynamical information theory method) and Shannon entropy (static distribution analysis) to further characterize
the phases of the system. Moreover, mutability and Shannon entropy are compared, and we report the advantages
and disadvantages they present for their use in this problem.
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I. INTRODUCTION22

The study of systems of hard rod-like particles having23

different geometrical shapes has been of continued interest24

in classical statistical mechanics. A pioneer contribution to25

this subject was made by Onsager [1], who predicted that very26

long and thin rods interacting by means of excluded-volume27

interaction only can lead to long-range orientational (nematic)28

order. This nematic phase, characterized by a big domain of29

parallel molecules, is separated from an isotropic state by a30

phase transition occurring at a finite critical density.31

The phase properties of systems with purely steric inter-32

actions are important from a statistical mechanical perspec-33

tive because temperature plays no role, and all phase transi-34

tions are entropy driven. The problem proposed by Onsager35

is a clear example of an entropy-driven phase transition.36

Other examples, corresponding to phase transitions in systems37

of hard particles of different shapes include triangles [2],38

squares [3–9], dimers [10–13], mixtures of squares and dimers39

[14,15], Y-shaped particles [16–18], tetrominoes [19,20], rods40

[21–36], rectangles [26,37–39], disks [40,41], and hexagons41

[42]. Experimental realizations of such systems include to-42

bacco mosaic virus [43,44], liquid crystals [45], f d virus43

[46–48], silica colloids [49,50], boehmite particles [51,52],44

DNA origami nanoneedles [53], as well as simple models for45

studying adsorption of molecules onto two-dimensional (2D)46

substrates [54–56].47

For the continuum problem, there is general agreement48

that in the case of deposition of infinitely thin rods in three49

dimensions the system undergoes a first-order phase transition50
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[1]. On the other hand, in two dimensions, when the rods may 51

orient in any direction, the continuous rotational symmetry 52

remains unbroken at any density. However, the system under- 53

goes a Kosterlitz-Thouless-type transition from a low-density 54

phase with exponential decay of orientational correlations to 55

a high-density phase with a power-law decay [57–60]. 56

The lattice version of the problem, which is the topic of 57

this paper, has also been studied in the literature. Here, the 58

hard rods are composed of k collinear and consecutive sites 59

of a regular lattice (k-mers). No two k-mers are allowed to 60

intersect, and all allowed configurations have the same energy. 61

Ghosh and Dhar [21] investigated the problem on square 62

lattices. Using Monte Carlo (MC) simulations and analytical 63

arguments based on the classical orientational order parameter 64

(designated as δ below), the authors found that the deposition 65

of straight rods presents no special characteristics until the 66

length of the rod is 7 times the lattice constant. From there up, 67

ordering appears and two transitions were reported as function 68

of the coverage θ (fraction of the occupied sites): first, at θ = 69

θ1, from a low-density disordered to an intermediate-density 70

nematic phase and second, at θ = θ2, from the nematic to a 71

high-density disordered phase. 72

Later, and based on the seminal work of Ghosh and Dhar 73

[21], several papers were devoted to the detailed study of 74

the transition occurring at intermediate density values in a 75

system of long straight rigid rods on 2D lattices with discrete 76

allowed orientations [22–29]. This transition was usually re- 77

ferred to as isotropic to nematic (I-N) but due to the results 78

presented below the high coverage phase is also isotropic but 79

ordered, while the low-density isotropic phase is disordered. 80

We propose referring to these phases as disordered-isotropic 81

(D), nematic (N), and ordered-isotropic (O) in the order they 82

appear when coverage is increased. 83
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In the just cited articles, it was shown that (1) the D-N84

phase transition belongs to the 2D Ising universality class85

for square lattices and the three-state Potts universality class86

for honeycomb and triangular lattices [22,23]; (2) the critical87

value of k which allows the formation of a nematic phase is88

k = 7 for square and triangular lattices [22,24] and k = 11 for89

honeycomb lattices [23]; (3) the critical density characterizing90

the D-N transition θ1 follows a power law as θ1(k) ∝ k−1
91

[24–26]; and (4) the orientational order survives in a wide92

range of lateral interactions between the adsorbed k-mers93

[27–29].94

The study of the second transition (N-O) using simula-95

tions is more difficult due to the presence of many long-96

lived metastable states. Conventional MC algorithms using97

deposition-evaporation moves involving only addition or re-98

moval of single rods at a time are quite inefficient at large99

densities. For these reasons, there have been few studies100

related to the second transition from the nematic phase to101

the high-density phase [30–32]. However, this transition is the102

most essential issue in the present article as the high coverage103

phase is present for all systems regardless of the k value, as104

will be shown below.105

In Ref. [21], Ghosh and Dhar found that θ2 ≈ 1 − Ck−2
106

for large values of k, where C is some constant. Linares et al.107

[30] provided numerical evidence for the existence of the N-O108

phase transition at high coverage. The case of linear 7-mers109

(k = 7) on square lattices was studied and the corresponding110

critical density was estimated to be between 0.87 and 0.93.111

On the other hand, using an efficient grand-canonical MC112

algorithm, Kundu et al. [31,32] studied the problem of straight113

rigid rods on square and triangular lattices at densities close114

to full packing. However, the nature of the second transition115

from the nematic phase to the high-density phase, that is116

neither nematic or disordered, is still an open problem.117

On square lattices, the second transition is continuous with118

effective critical exponents that are different from the 2D Ising119

exponents [32]. On triangular lattices the critical exponents120

are numerically close to those of the first transition [32].121

This raises the question whether the low-density disordered122

and high-density disordered phases are the same or they123

correspond to different phases. If this is the case, the order124

parameter δ designed to recognize the low coverage phase125

transition does not necessarily properly characterizes this high126

coverage phase transition. This is the reason we search for127

new ways to better characterize this high-coverage phase128

upon defining two different local-order parameters intended129

to recognize local order.130

From a theoretical point of view, rigorous results are still131

very limited. In this line, Heilmann and Lieb [12] showed132

that, for k = 2, the system is disordered at all densities.133

The existence of the intermediate nematic phase, and hence134

the D-N phase transition, has been rigorously proved [33].135

The problem of hard rods was solved exactly on a Bethe-like136

lattice [34,35]. The solution obtained leads to continuous137

or discontinuous isotropic-nematic transitions for sufficiently138

high values of k, depending of the coordination number of139

the lattice. The second transition does not occur on such a140

lattice [34], although two transitions are found on a Bethe-like141

lattice if additional repulsive interactions between the rods are142

included [35].143

The behavior of long rods has also been studied 144

by using approximate methods [61,62]. Based on the 145

configuration-counting procedure of the Guggenheim approx- 146

imation [63], DiMarzio [61] showed the existence of nematic 147

order in a lattice model of straight rigid rods. Identical results 148

were obtained in Ref. [62], by using density functional theory. 149

In a recent paper from our group, an alternative numerical 150

method to treat orientational phase transitions was applied to 151

the hard-rod problem on square lattices [36]. The approach 152

is based on the application of information theory using data 153

compressor WLZIP for the recognition of repetitive data in time 154

series such as those generated in Monte Carlo simulations 155

of magnetic systems [64–66]. The method was then applied 156

to recognize volatility and critical periods in stock markets 157

[67] and pension funds [68]. The time series obtained from 158

ambulatory measurement of blood pressure also can be ana- 159

lyzed by means of this information theory technique, allow- 160

ing one to characterize vascular risk [69]. The information 161

recognition focused next on the time series associated with 162

the intervals between consecutive seisms, finding an indicator 163

that increases several months before a major earthquake [70]. 164

More recently the same technique was applied to wind energy 165

production, finding favorable periods for the use of this tech- 166

nology thus saving fuels [71]. 167

Shannon entropy is a better known data analyzer [72]. It 168

is based on the probability of visiting a state characterized by 169

the value of a given parameter regardless of the time sequence 170

in which the visits took place. Hence it is the only static 171

measure of a given distribution in contrast to mutability that 172

can produce different results depending on the order the visits 173

took place. In any case, Shannon entropy has been used to 174

study a variety of nonlinear dynamical phenomena such as 175

magnetic transitions, the Rayleigh-Bernard convection, the 176

3D magnetohydrodynamics model of plasmas, and turbulence 177

or time series produced by seismic activity [73–78]. 178

Besides applying these two numerical techniques to the 179

problem, we shall discuss their similarities and differences in 180

practical terms. We will end up preferring mutability for the 181

present transitions and we will justify this choice. 182

This paper is organized as follows: the model, simulation 183

scheme, and basic definitions are given in Sec. II; there, the 184

order parameters are defined and the measurement methods, 185

mutability and Shannon entropy, are reviewed. Section III 186

is devoted to the main results of the application of the new 187

technique and the comparison with previous results. Finally, 188

the general conclusions are given in Sec. IV. 189

II. MODEL AND SIMULATION SCHEME 190

A. Deposition dynamics 191

Straight rigid rods containing k identical constituents (k- 192

mers) are deposited on a perfect match on square lattices. 193

Namely, the distance between k-mer units is equal to the 194

lattice constant, so exactly k sites are occupied by a k-mer 195

deposition; the width of the k-mer is one lattice constant. No 196

other interactions than hard-core exclusion are present: no site 197

can be occupied by more than one k-mer unit. The substrate 198

is represented as an array of M = L × L sites; conventional 199

periodic boundary conditions are imposed. 200
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FIG. 1. Example of a saturated deposition (jamming condition)
of liner trimers (k = 3) for a density θ = 0.8125 on a square lattice
with L = 12. Horizontal trimers are painted white, vertical trimers
are painted black, and empty sites are painted gray.

MC simulations were carried out in the grand-canonical201

ensemble where temperature T , system size L, and chemical202

potential μ are held fixed while the number of adsorbed203

particles (linear k-mers or rods) is allowed to fluctuate. To204

overcome the slowdown in the configuration sampling at high205

densities due to jamming effects, we use an efficient algorithm206

introduced by Kundu et al. [31,32]. This algorithm, in contrast207

to the standard Metropolis algorithm [79], makes nonlocal208

changes, i.e., adsorption or desorption of many particles at209

a time, so that it is possible to sample at equilibrium con-210

figurations of density near unity in an effective way. The211

process begins by distinguishing horizontal from vertical k-212

mers, naming them x-mers and y-mers. Then, starting with213

the horizontal direction, all the x-mers in the system are evap-214

orated. Each row now consists of sets of contiguous empty215

sites, separated from each other by sites occupied by y-mers.216

Thus, the system can be seen as a collection of horizontal217

spaces of length l (�L). The lattice is now reoccupied with218

x-mers. This reduces the problem to the 1D problem of filling219

each space of length l with particles of length k (x-mers)220

with equilibrium configurations. Finally, the same process is221

repeated for the vertical direction, completing the elementary222

MC step (1 MCS) of the algorithm.223

The algorithm has been proved to be ergodic [31,32] and224

allowed us to reach equilibrium in reasonable time for the dif-225

ferent conditions present in this study. This is usually achieved226

after discarding n0 = 107 MCS, and then the different ob-227

servables are averaged throughout the next n1 = 107 MCS.228

Additionally, L/k values up to 80 were considered to ensure229

finite size effects are negligible. The results showed that, for230

most of the cases, values around L/k = 10 yielded results231

similar to those of systems with larger ratios; this is important232

since these small L/k systems are less expensive in terms of233

computational cost.234

Figure 1 shows the trimer (k = 3) deposition on a 12×12 235

lattice. To guide the eye the 19 horizontal trimers are painted 236

white while the 20 vertical trimers are painted black, although 237

there is no probabilistic distinction between these two kind of 238

depositions. The 27 empty spaces are painted gray. Thus, the 239

density or coverage for this example is 240

θ = kN

M
= 117

144
= 0.8125, (1)

where N is the total number of k-mers adsorbed on the lattice. 241

In the MC simulations, the chemical potential is varied while 242

the density is monitored. 243

B. Order parameters 244

The standard order parameter to deal with this problem for 245

square lattices is defined as [21,22,80] 246

δ = |n1 − n2|
(n1 + n2)

, (2)

where n1 (n2) is the number of k-mers aligned along the 247

horizontal (vertical) direction. 248

For the example given in Fig. 1 this order parameter can be 249

readily calculated, 250

δ = |19 − 20|
(19 + 20)

= 0.026, (3)

indicating that essentially there is no preferred deposition 251

direction. 252

However this parameter does not consider other forms of 253

possible ordering, for instance local arrangements of k-mers 254

forming patches like intercalated paths or chessboard-like 255

patterns (see Fig. 2) which can lead to a very small δ value 256

but indicating a local correlation. To cope with this possibility 257

we will construct here a simple algebra which will allow us to 258

define two new order parameters. 259

First, let us assign labels to each position (i, j) in the 260

lattice of Fig. 1: i runs over the columns from left to right, 261

while j runs over the rows from top to bottom. Now we 262

assign numerical values to the lattice sites thus defining a 263

matrix m(i, j) with the occupied and empty sites: empty 264

(gray) site is zero, any site belonging to a horizontal rod 265

(white) is +1, any site belonging to a vertical rod (black) is 266

−1. Thus, the second row in the example, m(i, 2), would be 267

−1, 0,−1,+1,+1,+1,−1,−1,+1,+1,+1, 0, where we 268

have used commas to separate the positions from m(1, 2) to 269

m(12, 2). 270

The quantity m(i, j) was previously defined and used by 271

Kundu et al. [32] to calculate the order parameter correlation 272

function, CSS , as a function of the distance between two lattice 273

sites r. In Ref. [32], the authors showed that CSS (r) has an 274

oscillatory dependence on distance with period k, and for r � 275

k appears to decrease as a power law r−η, with η > 2. 276

In the present contribution, m(i, j) will be used in a differ- 277

ent and complementary way, namely, to build two new order 278

parameters destined to characterize the critical behavior of the 279

system. For this purpose, we start by defining the directional 280

products between two neighboring sites. The horizontal prod- 281

uct associated to site (i, j) is defined as 282

h(i, j) = +1 (4)
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FIG. 2. Optimized path-like deposition of rods of length k on
an L × L square lattice under commensurate conditions. Proportions
here are for L = 12 and k = 3.

if both m(i, j) and m(i + 1, j) take the value −1, while283

h(i, j) = 0 (5)

otherwise.284

On the other hand the vertical product associated to the285

position (i, j) is defined as286

v(i, j) = +1 (6)

if both m(i, j) and m(i, j + 1) take the value +1, while287

v(i, j) = 0 (7)

otherwise.288

Periodic boundary conditions are imposed to previous al-289

gebra. We now add the products along columns and rows to290

define directional indicators in the following way:291

σh = 1

M

L∑
j=1

L∑
i=1

h(i, j) (8)

and292

σv = 1

M

L∑
i=1

L∑
j=1

v(i, j). (9)

For the example given in Fig. 1 we readily obtain σh =293

32/144 and σv = 34/144.294

With these indicators we can now define two parameters,295

� and �:296

� = σh + σv

RS (L, k)
, (10)

� = σh ∗ σv

RP(L, k)
. (11)

The divisors RS (L, k) and RP(L, k) represent the normal- 297

ization factors for � and � respectively. They are obtained 298

from previous equations for an arbitrary saturation configura- 299

tion; we choose the one presented in Fig. 2 for the particular 300

case of L = 12, k = 3. For perfectly commensurate lattices 301

(L = f × k, with f an integer number) the optimized stripes 302

distribution leads to 303

RS (L, k) = 1 − 1

2k
(12)

and 304

RP(L, k) = 1

4

(
1 − 1

k

)
. (13)

It is very interesting that for this particular configuration 305

the normalization factors are independent of L, which is an 306

advantage for comparison purposes among different lattice 307

sizes. For the example given in Fig. 2 we get RS (12, 3) = 308

0.8333 and RP(12, 3) = 0.1667. 309

C. Information content and Shannon entropy 310

A useful measure of the information content of any se- 311

quence is the mutability ζ , whose definition we review next. 312

Let w(Q, ν, t ) be the weight in bytes of the vector file Q(ν, t ) 313

storing the sequence of parameter Q along ν episodes labeled 314

by symbol t (it could be any kind of ordered information). 315

Then, this file is processed by data compressor WLZIP [65–67] 316

yielding a new file whose weight in bytes is w∗(Q, ν), where 317

the original order is hidden within the map created by WLZIP. 318

It should be noticed that no information has been lost since 319

the inverse algorithm can be invoked to restore the original 320

file Q(ν, t ), although this process will not be necessary here. 321

Then, the mutability associated with the sequence of parame- 322

ter Q(ν, t ) is given by the ratio 323

ζ (Q, ν) = w∗(Q, ν)

w(Q, ν, t )
. (14)

This procedure was already applied to order parameter δ [36], 324

where more details about the procedure can be found. In the 325

present article we shall apply WLZIP to parameters � and 326

� for k in the range (3 � k � 11) and L/k = 10 (in some 327

selected cases, higher values of L/k were considered to test 328

the stability). 329

A better known similar parameter is the Shannon entropy 330

associated with Q(ν, t ), which is defined as 331

H (ν, t ) = −
ν∑
j=

p j ln(p j ), (15)

where pj is the probability distribution function of finding 332

the value Q(ν, t j ) in the ν instants previous to time t ; if such 333

value is found g j times in the sequence of ν measurements the 334

probability p j is simply given by 335

p j = g j/ν. (16)

We shall use the same dynamic time window ν for the 336

evaluation of both mutability and Shannon entropy to allow 337

for comparison. It turns out that it is the former that produces 338

sharper curves, pointing to better resolved maximum values, 339
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FIG. 3. Classical parameter δ (filled symbols) and new parameter
� (hollow symbols) as functions of the deposition density θ for
selected k values 3, 6, 7, 11, using lattices with L = 10k.

so we will show mutability values most of the time, illustrat-340

ing Shannon entropy in just one case.341

III. RESULTS AND DISCUSSION342

To avoid overcrowding in the following figures, we present343

curves for selected k values, varying them through the dif-344

ferent figures in the range (3 � k � 11). The reason to stop at345

k = 11 is exclusively due to the huge computer times involved346

for larger k values, as will be discussed towards the end of the347

present section. Symbol shapes (and color when available) are348

kept the same for each k value through the pertinent figures.349

Parameter �(θ ) will turn out to better describe all the350

stages or phases of the system for different values of k as351

the deposition density θ increases. So we begin by comparing352

the behavior of this parameter with the classical parameter353

δ, which is done in Fig. 3. As can be seen, δ is low for354

k = 3 and 6, while it rises to unity for k = 7 and 11, thus355

evidencing the nematic transition for k � 7. Actually, a closer356

observation reveals that, for k = 6, δ tends to depart from357

very low values, while for k = 7 unity is not quite reached.358

Then the limiting behavior for the nematic transition is clearly359

between these two values of k. This is the expected behavior360

of this parameter used here for comparison purposes [36].361

On the other hand, parameter �(θ ) shows a monotonic and362

almost coincidental behavior for k = 3 and 6, but it presents363

a clear structure for the higher values of k, which we discuss364

separately.365

For k = 7 parameter �(θ ) maximizes just under θ = 0.7,366

coinciding with the inflection point of δ(θ ) precisely at this367

point; so the onset of the nematic transition is recognized368

by both parameters. Then �(θ ) begins to rise precisely at369

the concentration where δ begins its descent, evidencing that370

the nematic ordering is lost but without pointing to any char-371

acteristic of the emerging phase. However, �(θ ) continues372

to increase, evidencing that the order that was built into373

its definition is establishing. This is the short-order nematic374

FIG. 4. Parameter �(θ ) for k = 8 deposited on lattices of two
very different sizes: L = 10k and L = 80k.

phase in the form of paths of width nearly or just over k. 375

Surprisingly �(θ ) recognizes both transitions, although the 376

low coverage transition was not intended. 377

For k = 11 the situation is the same as that for k = 7 378

except that transitions are more abruptly obtained. Thus �(θ ) 379

presents a maximum just over θ = 0.4 at the inflection point 380

of δ(θ ). Although this maximum is barely visible in this 381

scale it is very well defined when a more appropriate scale is 382

used. Then, when θ approaches the limit of high coverage, δ 383

and � cross each other with the former descending and the 384

latter ascending, thus marking the appearance of the phase 385

present at high coverage: the path-like near-distance ordering. 386

Curves for other values of k � 7 present this same structure, 387

whch will be presented in some of the following figures when 388

discussing other properties. 389

Previous results were obtained for L/k = 10. Is it enough 390

to use values of L of this sort to validate the phenomenon 391

and to legitimate the new parameter �? We did a systematic 392

study, varying L/k from 10 to 80, finding only small changes 393

in the value of the coverage for the maxima of �(θ ) but 394

preserving the phenomenon and the tendencies. We illustrate 395

this response in Fig. 4 for k = 8 using the extreme values of 396

the range of L/k values explored, namely 10 and 80. As can be 397

seen, the only changes are the slight shifts to higher coverage 398

values when larger lattices are employed. Since large values 399

of L mean huge computer times, we shall stick to L/k = 10 400

in the present paper, intending to analyze the behavior of the 401

new parameters rather than reporting exact values for them. 402

Parameter �(θ ) is plotted in Fig. 5 for different values 403

of k. The main body covers values of k = 3, 4, 5, 6, and 7 404

up to θ = 0.8; all curves grow monotonically, not showing 405

the expected low coverage nematic transition for k = 7 near 406

θ = 0.7. The inset displays curves for k = 6, 7, 8, 9, and 10, 407

over θ = 0.85, where broad indications for the high coverage 408

transitions are obtained near the expected concentrations for 409

the different k values; the general tendency of increasing the 410

critical coverage as k grows is also established. Evidently 411
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FIG. 5. Order parameter � as function of θ for several k values
with L/k = 10.

parameter �(θ ) does not provide significant information re-412

lated to the possible phases present in the system.413

We go back now to parameter �(θ ) to establish the dif-414

ferent responses for low and high values of k. This is done in415

Fig. 6 for k = 4, 5, 8, and 9, complementary to those of Fig. 3.416

Curves for low-k values are almost coincidental, ascending417

monotonically to their maximum values close to unity; no418

indication for any ordering appears. However, the curves for419

the high-k values present clear maxima at low coverage, which420

represents the onset of the transition to the nematic phase.421

The value of the maximum shifts to lower coverage, as can be422

expected from the results of the δ(θ ) order parameter [36]. As423

θ increases �(θ ) tends to vanish and remains near zero until424

at θ slightly over 0.9 it very abruptly rises, with the curve for425

FIG. 6. Parameter � as function of θ for k = 4, 5, 8, 9 and
L/k = 10. The inset shows the minimum at lower coverage for k = 9
better resolved in an appropriate scale.

larger k value displaced to the right (higher coverage). This 426

parameter is intended to recognize the path-like ordering, so 427

the high value of this parameter indicates that this is the kind 428

of configuration that dominates in the high coverage regime. 429

However, the most striking fact shown by Fig. 6 is that 430

all curves have a common origin and a coincidental response 431

under the low coverage maximum, and they also have a similar 432

tendency and final values towards deposition saturation. The 433

interpretation is clear: deposition for all k values tend to the 434

same high coverage phase in the form of mixed horizontal and 435

vertical paths; this tendency is interrupted for k � 7 where an 436

ergodic breakdown arises favoring depositions along one of 437

the two possible directions only. In the slow high coverage 438

dynamics, group shifts dominate over individual rod shifts and 439

the path-like structures are generated. 440

It is interesting to notice that for 3 � k � 6 parameter 441

�(θ ) reaches its maximum value softly. So the high coverage 442

phase is reached by means of an evolutionary process without 443

drastic changes in the properties of the system. But for k � 7 444

this evolutionary process is abruptly changed due to the surge 445

of an ordered phase, a nematic ordering, at the concentration 446

θ = θ1 for the corresponding k value. This means an immedi- 447

ate decrease of parameter �(θ ) near θ1 (not necessarily at the 448

θ1 value obtained by a different order parameter). Then, �(θ ) 449

stays at values near 0.0 until the nematic order disappears 450

and parameter �(θ ) recovers abruptly to the values of the 451

interrupted monotonic increasing tendency shown by lower 452

values of k. 453

The inset of Fig. 6 is intended to show that the low- 454

coverage transition is well recognized by parameter �(θ ), 455

although it can be somewhat hidden in a large scale used in the 456

plot. The value at which �(θ ) maximizes is not necessarily 457

the same as the θ1 value found by other methods since it is 458

measuring a different property. However, this value should 459

follow tendencies similar to any other similar values for θ1 460

as k varies. 461

To investigate what kind of phases and transitions are 462

present, we prepared a succession of snapshots for k = 5 (D-N 463

phase transition is not present) and for k = 8 (with phase 464

transitions at θ1 and θ2), increasing coverage at the same 465

steps. Results are reported in Fig. 7, where different evolution 466

processes are observed for these two k values. In the case 467

of k = 5 we find a continuous evolution towards a path-like 468

configuration somewhat similar to the optimal one shown in 469

Fig. 2. On the other hand, for the case of k = 8 we observe 470

a clear nematic ordering over a characteristic concentration 471

(θ1 ≈ 0.58). Then, as the depositions continue, the nematic 472

phase prevails until the concentration reaches a second charac- 473

teristic concentration (θ2 ≈ 0.92) when the systems abruptly 474

tend to the short order path-like configuration present for all k 475

values. Values for the concentration θ , order parameter �(θ ), 476

and mutability ζ for parameter �(θ ) are given to the right of 477

each row. 478

From previous discussion, we propose here that the second 479

phase transition is nothing but the disappearance of the ne- 480

matic order, followed by the recovery of the evolution towards 481

the high-coverage configuration. To appreciate that this high 482

concentration phase is basically independent of k, a gallery 483

of snapshots obtained for different k is presented in Fig. 8. 484

In all cases, the concentration is θ ≈ 0.98, namely, over θ2. 485
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FIG. 7. For k = 5 (left column) and for k = 8 (right column)
we present snapshots showing the different orderings reached as the
concentration is increased from top to bottom. The corresponding
values of the concentration θ and parameters �k (θ ) and ζ (�k (θ ))
are given to the right of the pictures.

Values of parameter � and for the corresponding mutability ζ486

(reported below) are given underneath along with the k value.487

The nematic transition can be viewed as an ergodicity488

breakdown where the systems with rods over a minimum489

length and over a characteristic concentration prefer one spe-490

cific dominant direction, making easier further depositions if491

they are parallel to the already existing majority. Other con-492

figurations including depositions with different orientations493

are no longer possible or extremely unlikely. This is not far494

from the ergodicity breakdown shown by magnetic systems495

FIG. 8. Snapshots at concentration θ = 0.98 for k values com-
plementary to those reported in Fig. 7.

over a minimum number of elements [81]. However, as the 496

coverage continues to increase, individual behavior is lost in 497

favor of group reorientations; then paths are obtained reach- 498

ing a labyrinth-like configuration whose optimal organized 499

goal would be something like the depositions presented in 500

Fig. 2. As can be noticed from Fig. 8, the aspects of these 501

high-coverage configurations are very similar to each other, 502

independently of k. Moreover, parameter � is near 0.9 for 503

all these cases, thus pointing to the just mentioned optimal 504

configuration depicted in Fig. 2. 505

Most of the previous figures reporting the concentration 506

dependence of the parameters did not include error bars. The 507

only exception was Fig. 4 due to its simplicity. This was due 508

to two different reasons. First, error bars would overcrowd 509

the most complex plots. Second, we will report now the 510

002100-7



E. E. VOGEL et al. PHYSICAL REVIEW E 00, 002100 (2020)

FIG. 9. Mutability for order parameter �, namely ζ (�(θ )), for
L/k = 10 and different values of k.

variability of the parameters using two alternative measures of511

this property: one is the Shannon entropy based on the static512

distribution of the data, the other is the mutability based on a513

dynamic measure of the information content of the data chain.514

As we report below, it turns out that the latter gives the better515

response to the variability of the data under analysis. Thus,516

mutability is a far better measure of variability than standard517

deviation or its related error bar analysis. However, Fig. 4518

already indicates that error bars are larger precisely near the519

transition concentrations θ1 and θ2. This is also true for all the520

other figures where error bars were omitted.521

We begin the information content analysis by presenting522

Fig. 9, where the mutability of the � function, namely523

ζ (�(θ )), is presented for selected values of k. The curve for524

k = 6 does not present any maximum and it is included as a525

reference, but curves for higher values of k present a structure526

that is progressively better defined as k increases.527

It might be surprising that, in spite the parameter �(θ )528

itself not showing any indication of the transition at θ1 and529

showing only a general response around θ2, its mutability does530

maximize at these concentrations according to the k value.531

The maxima are broad but the mutability of the parameter532

indicates that a change of dynamics is present near the cor-533

responding concentrations and follows the expected tendency534

as k increases.535

Curves for k � 7 maximize around or over 0.92 corre-536

sponding to θ2, in correspondence with the deviation from the537

linear behavior shown by the parameter itself, as \can be seen538

in the inset of Fig. 5. However, the characterization of this539

transition afforded by ζ (�(θ )) allows a clearer determination540

of θ2 as compared with the information provided by the541

parameter itself.542

In Fig. 10 we present the mutability of parameter �(θ )543

for selected values of k. The curve for k = 5 is included as544

a reference although it does not show a sharp maximizing545

structure. Similar curves are obtained for k � 6. Plots for546

k � 7 clearly recognize both θ1 and θ2 on the same footing.547

The critical concentrations are better defined than in any of548

FIG. 10. Mutability of parameter �, namely ζ (�(θ )), for L/k =
10 and different values of k.

the preceding determinations, with the parameter pointing to 549

a clear interpretation of the phases present. The tendencies 550

are also clear: θ1 shifts to low concentration values while 551

simultaneously θ2 tends to high concentration values as k 552

increases. 553

We have chosen mutability to do most of previous analysis, 554

which is now justified by means of Fig. 11 for the case 555

k = 9. Here parameter δ(θ ) is included as a reference. Three 556

other curves are plotted: parameter �(θ ) itself, its mutability 557

ζ (�(θ )), and its Shannon entropy H (�(θ )). The transition at 558

θ1 is recognized by these three curves, with a clear advantage 559

for ζ (�(θ )) which shows the best defined maximum and 560

sharper resolution. Then, for the second transition, δ(θ ) and 561

�(θ ) move in different manners, crossing each other at θ2. 562

Near this value both ζ (�(θ )) and H (�(θ )) maximize, with 563

FIG. 11. Comparison of mutability and Shannon entropy of pa-
rameter �(θ ) for k = 9. In addition parameters � and δ are also
plotted to help in the discussion.
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FIG. 12. Critical coverage values θi (i = 1, 2) obtained by the
different methods introduced in the present paper and L/k = 10. A
linear fit for θ1 obtained from the better defined parameter �(θ ) is
also included.

the maximum being sharper the former one. Curves for other564

cases with k � 7 are similar to this one.565

As can be observed, ζ (�(θ )) and H (�(θ )) are somewhat566

related, a phenomenon that could deserve special attention but567

which is beyond the scope and goals of the present paper.568

The advantage shown by mutability over Shannon entropy has569

been also detected in other applications of these information570

recognizers [82].571

Let us continue the analysis by considering the critical572

coverage values obtained from the use of the new parameters.573

From Fig. 5 we realize that the parameter � cannot produce574

any numerical indication of the critical coverage values at575

which the transitions take place. However, Fig. 6 shows that576

we can use the low-coverage maximum to define θ1(�). The577

definition of θ2(�) is somewhat trickier since this function578

was built to maximize at θ = 1 regardless of the k value.579

So we define θ2(�) at the concentration where �(θ ) ≈ 0.5.580

Critical coverage values associated at the mutability values581

are directly obtained from the two maxima of each of the582

functions ζ (�(θ )) (see Fig. 9) and ζ (�(θ )) (see Fig. 10).583

These critical coverage values are plotted in Fig. 12. As can584

be seen, the tendencies are basically the same in spite of some585

minor differences among the methods. Generally speaking θ1586

tends to low values, eventually to zero. This is reinforced by587

the linear fit included for θ1(�) in Fig. 12, which is given by588

θ1(k) = A + B
1

k
(k � 9), (17)

where A = −0.067(19) and B = 4.97(20). Equation (17) is589

consistent with previous results obtained by Kundu and Ra-590

jesh [26], who reported that the critical density θ1 follows591

a power law as θ1(k) = Bk−1, with B = 4.80(5). This ex-592

pression was derived for large values of the k-mer size and593

lattice sizes in the thermodynamic limit (L → ∞). The small594

deviation from 0 observed in A can be attributed to size effects595

(note that the calculations in Fig. 12 were done for L/k = 10).596

On the other extreme θ2 grows to eventually reach the597

value 1.0. However the high-coverage slow dynamics and598

FIG. 13. A portion of the sequence for parameter � at a concen-
tration θ well over the second maximum θ2 showing the oscillations
present for high values of the chemical potential. Time is measured
in MC steps (MCS) after equilibration.

its associated unstable behavior make difficult any further 599

numerical treatment. So we can imagine that as the depositing 600

k-mer tends to infinite length the nematic phase will be the 601

only one present. 602

A careful look at the very high coverage values of the pa- 603

rameter �(θ ) in Figs. 4 and 6 may suggest that this parameter 604

tends to unity as θ → 1.0. With the idea of elucidating this 605

point we analyzed the time series for this parameter at these 606

extreme coverage values after equilibration. In Fig. 13 we 607

present a segment of the evolution of the parameter �(θ ) after 608

equilibration; it is observed that �(θ ) oscillates strongly at 609

high coverages. This is due to the dominant dynamics present 610

at high coverages (large chemical potentials), which implies 611

the shift of several rods at a time. It can also be noticed that 612

the range of the oscillations for �(θ ) is larger for the higher 613

values of k. 614

This behavior contrasts with the constant value close to 615

0.0 for �(θ ) present during the nematic phase. Moreover, the 616

jump to recover high values shown in Figs. 4 and 6 is not 617

reproducible in the sense that it occurs erratically depending 618

on the trajectory of the attempts to change configurations 619

established by the unstable dynamics present at high coverage. 620

We have set a step counter to monitor the number of steps to 621

obtain the first jump from the minimum value of �(θ ) to any 622

value towards the monotonic tendency established in Fig. 6, 623

thus initiating the “unfreezing” process of the nematic phase. 624

For values of k ranging from 7 to 11, we explored the 625

minimum number of MCS to initiate the unfreezing process 626

(this is a extremely time consuming task for the larger values 627

of k). Results are presented in Fig. 14 as a function of k. It 628

is quite clear that computer times necessary to handle this 629

dynamics grow exponentially with the size of the deposit- 630

ing k-mer. This is the only reason we stopped at k = 11, 631

whose results were extremely difficult to obtain and had large 632

fluctuations. Actually, we were not able to unfreeze the 633

nematic phase for k = 12 with the computer facilities at our 634

disposal. 635
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FIG. 14. Minimum number of MCS necessary to unfreeze the
nematic phase at high θ values, versus the length of the depositing
rod; L/k = 10.

IV. CONCLUSIONS636

In the present paper the problem of excluded volume depo-637

sition of rigid rods of length k unit cells over square lattices638

is revisited. The following is a quick list of the main aspects639

considered here, which complement previous treatments of640

this very rich problem touching different aspects of statistical641

physics. (a) Differently than what three of us did in Ref. [36],642

we now use the improved algorithm defined in Ref. [32]643

which is now combined with information theory techniques.644

(b) Two new parameters (� and �) are defined to better645

characterize the phases. (c) Mutability measurements done646

on these new parameters yield better precision on the critical647

coverage and more insight into the nature of the transitions.648

(d) Shannon entropy is used in this problem, which allows us649

to confirm previous critical behavior by an independent route.650

(e) The combination of the values of the new parameters,651

their mutability values, their Shannon entropy values, and652

snapshot analysis as coverage increases gives a more general653

and homogeneous picture valid for all k values. (f) This de-654

scription allows us to propose that the triggering mechanism655

producing the nematic transition is an ergodic breakdown656

governed mainly by the value of k. We now review some of657

these aspects in more detail.658

Two new short-distance complementary order parameters,659

� and �, are introduced and discussed in relation to the660

ordered phases appearing in the system, particularly the high-661

coverage one characterized by path or labyrinth patterns. This662

is the phase at which the system arrives, regardless of the size663

k, which allows us to interpret the low-coverage nematic phase664

as an ergodicity breakdown present only when k � 7.665

We found that parameter � is not able to evidence the666

nematic transition at θ1. On the other hand, parameter �667

evidences both the one at θ1 and the high-coverage transition668

at θ2. In contrast, the conventional order parameter δ does669

not indicate which phase is reached after the nematic phase 670

disappears. 671

The size of the lattice L influences slightly the values of θ1 672

and θ2: they both move to higher concentrations as L grows 673

for any given k. However, the tendencies are preserved, which 674

allowed us to establish the numerical study based on systems 675

sizes with L/k = 10. 676

In addition, the variabilities of the parameters were mea- 677

sured by two methods: mutability (dynamical information 678

theory method) and Shannon entropy (static distribution anal- 679

ysis). The study showed that, although � showed no evidence 680

of the nematic phase at θ1, its mutability ζ (�(θ )) presents a 681

maximum at these concentrations according to the k value. 682

Regarding parameter � both Shannon entropy and mutability 683

are able to recognize transitions at θ1 and θ2, although the 684

second is somewhat better defined. 685

Considering the critical coverage values θ1 and θ2 obtained 686

from the new parameters and their mutabilities, we found a 687

good agreement with previous results found in the literature. 688

Generally speaking θ1 tends to low values, eventually to 689

zero, whereas θ2 grows to eventually reach the value 1.0. 690

However, the high-coverage slow dynamics and its associated 691

unstable behavior make difficult any further numerical treat- 692

ment. So we can imagine that the nematic phase will be the 693

only one present when the depositing k-mer tends to infinite 694

length. 695

Simulation dynamics at high coverage, is still very slow 696

when we deal with large k-mers (k > 10). Changes involving 697

groups of rows are progressively more difficult as coverage 698

increases, leading to slower dynamics. This puts a limitation 699

on the size k we can reach for these simulations (kmax = 11). 700

Now the possibility is open to characterize k-mer deposi- 701

tions on other lattices using �(θ ) and ζ (�(θ )) as the most 702

appropriate parameters to detect the transitions associated 703

with well defined phases. The limiting cases k = 6 and k = 7 704

could be also studied thoroughly by these parameters over 705

a range of L values to better detect the borderline for the 706

nematic phase. This is pointing towards a phase diagram for 707

each lattice. 708
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Tobe, and S. De Feyter, RSC Adv. 3, 25159 (2013).
[17] D. Ruth, R. Toral, D. Holz, J. Rickman, and J. Gunton, Thin

Solid Films 597, 188 (2015).
[18] D. Mandal, T. Nath, and R. Rajesh, Phys. Rev. E 97, 032131

(2018).
[19] L. Mao, H. H. Harris, and K. J. Stine, J. Chem. Inf. Comput.

Sci. 42, 1179 (2002).
[20] B. C. Barnes, D. W. Siderius, and L. D. Gelb, Langmuir 25,

6702 (2009).
[21] A. Ghosh and D. Dhar, Eur. Phys. Lett. 78, 20003 (2007).
[22] D. A. Matoz-Fernandez, D. H. Linares, and A. J. Ramirez-

Pastor, Eur. Phys. Lett. 82, 50007 (2008).
[23] D. A. Matoz-Fernandez, D. H. Linares, and A. J. Ramirez-

Pastor, Physica A 387, 6513 (2008).
[24] D. A. Matoz-Fernandez, D. H. Linares, and A. J. Ramirez-

Pastor, J. Chem. Phys. 128, 214902 (2008).
[25] T. Fischer and R. L. C. Vink, Eur. Phys. Lett. 85, 56003 (2009).
[26] J. Kundu and R. Rajesh, Phys. Rev. E 91, 012105 (2015).
[27] P. Longone, D. H. Linares, and A. J. Ramirez-Pastor, J. Chem.

Phys. 132, 184701 (2010).
[28] P. Longone, M. Dávila, and A. J. Ramirez-Pastor, Phys. Rev. E

85, 011136 (2012).
[29] P. Quiring, M. Klopotek, and M. Oettel, Phys. Rev. E 100,

012707 (2019).
[30] D. H. Linares, F. Romá, and A. J. Ramirez-Pastor, J. Stat. Mech.

(2008) P03013.
[31] J. Kundu, R. Rajesh, D. Dhar, and J. F. Stilck, in Solid State

Physics: Proceedings of the 56th DAE Solid State Physics
Symposium 2011, 19–23 December 2011, SRM University,
Kattankulathur, Tamilnadu, India, edited by R. Mittal, A. K.
Chauhan, and R. Mukhopadhyay, AIP Conf. Proc. No. 1447
(AIP, New York, 2012), p. 113.

[32] J. Kundu, R. Rajesh, D. Dhar, and J. F. Stilck, Phys. Rev. E 87,
032103 (2013).

[33] M. Disertori and A. Giuliani, Commun. Math. Phys. 323, 143
(2013).

[34] D. Dhar, R. Rajesh, and J. F. Stilck, Phys. Rev. E 84, 011140
(2011).

[35] J. Kundu and R. Rajesh, Phys. Rev. E 88, 012134 (2013).
[36] E. E. Vogel, G. Saravia, and A. J. Ramirez-Pastor, Phys. Rev. E

96, 062133 (2017).
[37] J. Kundu and R. Rajesh, Phys. Rev. E 89, 052124 (2014).
[38] T. Nath, J. Kundu, and R. Rajesh, J. Stat. Phys. 160, 1173

(2015).
[39] P. Gurin, S. Varga, M. González-Pinto, Y. Martínez-Ratón, and

E. Velasco, J. Chem. Phys. 146, 134503 (2017).
[40] H. C. M. Fernandes, J. J. Arenzon, and Y. Levin, J. Chem. Phys.

126, 114508 (2007).
[41] T. Nath and R. Rajesh, Phys. Rev. E 90, 012120 (2014).
[42] R. J. Baxter, J. Phys. A 13, L61 (1980).
[43] X. Wen, R. B. Meyer, and D. L. D. Caspar, Phys. Rev. Lett. 63,

2760 (1989).
[44] S. Fraden, G. Maret, D. L. D. Caspar, and R. B. Meyer, Phys.

Rev. Lett. 63, 2068 (1989).
[45] P. G. De Gennes and J. Prost, The Physics of Liquid Crystals

(Oxford University Press, Oxford, 1995).
[46] E. Grelet, Phys. Rev. Lett. 100, 168301 (2008).
[47] Z. Dogic and S. Fraden, Phys. Rev. Lett. 78, 2417 (1997).
[48] Z. Dogic and S. Fraden, Langmuir 16, 7820 (2000).
[49] A. Kuijk, A. V. Blaaderen, and A. Imhof, J. Am. Chem. Soc.

133, 2346 (2011).
[50] A. Kuijk, D. V. Byelov, A. V. Petukhov, A. V. Blaaderen, and

A. Imhof, Faraday Discuss. 159, 181 (2012).
[51] P. A. Buining and H. N. W. Lekkerkerker, J. Phys. Chem. 97,

11510 (1993).
[52] M. P. B. van Bruggen, F. M. van der Kooij, and H. N. W.

Lekkerkerker, J. Phys.: Condens. Matter 8, 9451 (1996).
[53] A. Czogalla, D. J. Kauert, R. Seidel, P. Schwille, and E. P.

Petrov, Nano Lett. 15, 649 (2015).
[54] B. Dünweg, A. Milchev, and P. A. Rikvold, J. Chem. Phys. 94,

3958 (1991).
[55] A. Patrykiejew, S. Sokołowski, and K. Binder, Surf. Sci. Rep.

37, 207 (2000).
[56] S. J. Mitchell, G. Brown, and P. A. Rikvold, Surf. Sci. 471, 125

(2001).
[57] J. P. Straley, Phys. Rev. A 4, 675 (1971).
[58] D. Frenkel and R. Eppenga, Phys. Rev. A 31, 1776 (1985).
[59] M. D. Khandkar and M. Barma, Phys. Rev. E 72, 051717

(2005).
[60] R. L. C. Vink, Phys. Rev. Lett. 98, 217801 (2007).
[61] E. A. DiMarzio, J. Chem. Phys. 35, 658 (1961).
[62] M. Oettel, M. Klopotek, M. Dixit, E. Empting, T. Schilling, and

H. Hansen-Goos, J. Chem. Phys. 145, 074902 (2016).
[63] E. A. Guggenheim, Proc. R. Soc. London, Ser. A 183, 203

(1944).
[64] E. E. Vogel, G. Saravia, F. Bachmann, B. Fierro, and J. Fischer,

Physica A 388, 4075 (2009).
[65] E. E. Vogel, G. Saravia, and L. V. Cortez, Physica A 391, 1591

(2012).
[66] V. Cortez, G. Saravia, and E. E. Vogel, J. Magn. Magn. Mater.

372, 173 (2014).
[67] E. E. Vogel and G. Saravia, Eur. Phys. J. B 87, 177 (2014).
[68] E. E. Vogel, G. Saravia, J. Astete, J. Díaz, and F. Riadi, Physica

A 424, 372 (2015).
[69] D. J. Contreras, E. E. Vogel, G. Saravia, and B. Stockins, J. Am.

Soc. Hypertens. 10, 217 (2016).

002100-11

https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
https://doi.org/10.1103/PhysRevLett.83.3986
https://doi.org/10.1103/PhysRevLett.83.3986
https://doi.org/10.1103/PhysRevLett.83.3986
https://doi.org/10.1103/PhysRevLett.83.3986
https://doi.org/10.1063/1.1841157
https://doi.org/10.1063/1.1841157
https://doi.org/10.1063/1.1841157
https://doi.org/10.1063/1.1841157
https://doi.org/10.1103/PhysRevLett.16.1038
https://doi.org/10.1103/PhysRevLett.16.1038
https://doi.org/10.1103/PhysRevLett.16.1038
https://doi.org/10.1103/PhysRevLett.16.1038
https://doi.org/10.1063/1.1727448
https://doi.org/10.1063/1.1727448
https://doi.org/10.1063/1.1727448
https://doi.org/10.1063/1.1727448
https://doi.org/10.1103/PhysRevE.86.031135
https://doi.org/10.1103/PhysRevE.86.031135
https://doi.org/10.1103/PhysRevE.86.031135
https://doi.org/10.1103/PhysRevE.86.031135
https://doi.org/10.1209/0295-5075/114/10003
https://doi.org/10.1209/0295-5075/114/10003
https://doi.org/10.1209/0295-5075/114/10003
https://doi.org/10.1209/0295-5075/114/10003
https://doi.org/10.1088/1742-5468/2016/07/073203
https://doi.org/10.1088/1742-5468/2016/07/073203
https://doi.org/10.1088/1742-5468/2016/07/073203
https://doi.org/10.1088/1742-5468/aa650e
https://doi.org/10.1088/1742-5468/aa650e
https://doi.org/10.1088/1742-5468/aa650e
https://doi.org/10.1016/0031-8914(61)90063-5
https://doi.org/10.1016/0031-8914(61)90063-5
https://doi.org/10.1016/0031-8914(61)90063-5
https://doi.org/10.1016/0031-8914(61)90063-5
https://doi.org/10.1080/14786436108243366
https://doi.org/10.1080/14786436108243366
https://doi.org/10.1080/14786436108243366
https://doi.org/10.1080/14786436108243366
https://doi.org/10.1007/BF01877590
https://doi.org/10.1007/BF01877590
https://doi.org/10.1007/BF01877590
https://doi.org/10.1007/BF01877590
https://doi.org/10.1103/PhysRevLett.91.167004
https://doi.org/10.1103/PhysRevLett.91.167004
https://doi.org/10.1103/PhysRevLett.91.167004
https://doi.org/10.1103/PhysRevLett.91.167004
https://doi.org/10.1103/PhysRevLett.114.190601
https://doi.org/10.1103/PhysRevLett.114.190601
https://doi.org/10.1103/PhysRevLett.114.190601
https://doi.org/10.1103/PhysRevLett.114.190601
https://doi.org/10.1103/PhysRevE.96.012140
https://doi.org/10.1103/PhysRevE.96.012140
https://doi.org/10.1103/PhysRevE.96.012140
https://doi.org/10.1103/PhysRevE.96.012140
https://doi.org/10.1039/c3ra45342a
https://doi.org/10.1039/c3ra45342a
https://doi.org/10.1039/c3ra45342a
https://doi.org/10.1039/c3ra45342a
https://doi.org/10.1016/j.tsf.2015.11.046
https://doi.org/10.1016/j.tsf.2015.11.046
https://doi.org/10.1016/j.tsf.2015.11.046
https://doi.org/10.1016/j.tsf.2015.11.046
https://doi.org/10.1103/PhysRevE.97.032131
https://doi.org/10.1103/PhysRevE.97.032131
https://doi.org/10.1103/PhysRevE.97.032131
https://doi.org/10.1103/PhysRevE.97.032131
https://doi.org/10.1021/ci020287e
https://doi.org/10.1021/ci020287e
https://doi.org/10.1021/ci020287e
https://doi.org/10.1021/ci020287e
https://doi.org/10.1021/la900196b
https://doi.org/10.1021/la900196b
https://doi.org/10.1021/la900196b
https://doi.org/10.1021/la900196b
https://doi.org/10.1209/0295-5075/78/20003
https://doi.org/10.1209/0295-5075/78/20003
https://doi.org/10.1209/0295-5075/78/20003
https://doi.org/10.1209/0295-5075/78/20003
https://doi.org/10.1209/0295-5075/82/50007
https://doi.org/10.1209/0295-5075/82/50007
https://doi.org/10.1209/0295-5075/82/50007
https://doi.org/10.1209/0295-5075/82/50007
https://doi.org/10.1016/j.physa.2008.08.010
https://doi.org/10.1016/j.physa.2008.08.010
https://doi.org/10.1016/j.physa.2008.08.010
https://doi.org/10.1016/j.physa.2008.08.010
https://doi.org/10.1063/1.2927877
https://doi.org/10.1063/1.2927877
https://doi.org/10.1063/1.2927877
https://doi.org/10.1063/1.2927877
https://doi.org/10.1209/0295-5075/85/56003
https://doi.org/10.1209/0295-5075/85/56003
https://doi.org/10.1209/0295-5075/85/56003
https://doi.org/10.1209/0295-5075/85/56003
https://doi.org/10.1103/PhysRevE.91.012105
https://doi.org/10.1103/PhysRevE.91.012105
https://doi.org/10.1103/PhysRevE.91.012105
https://doi.org/10.1103/PhysRevE.91.012105
https://doi.org/10.1063/1.3424775
https://doi.org/10.1063/1.3424775
https://doi.org/10.1063/1.3424775
https://doi.org/10.1063/1.3424775
https://doi.org/10.1103/PhysRevE.85.011136
https://doi.org/10.1103/PhysRevE.85.011136
https://doi.org/10.1103/PhysRevE.85.011136
https://doi.org/10.1103/PhysRevE.85.011136
https://doi.org/10.1103/PhysRevE.100.012707
https://doi.org/10.1103/PhysRevE.100.012707
https://doi.org/10.1103/PhysRevE.100.012707
https://doi.org/10.1103/PhysRevE.100.012707
https://doi.org/10.1088/1742-5468/2008/03/P03013
https://doi.org/10.1088/1742-5468/2008/03/P03013
https://doi.org/10.1088/1742-5468/2008/03/P03013
https://doi.org/10.1103/PhysRevE.87.032103
https://doi.org/10.1103/PhysRevE.87.032103
https://doi.org/10.1103/PhysRevE.87.032103
https://doi.org/10.1103/PhysRevE.87.032103
https://doi.org/10.1007/s00220-013-1767-1
https://doi.org/10.1007/s00220-013-1767-1
https://doi.org/10.1007/s00220-013-1767-1
https://doi.org/10.1007/s00220-013-1767-1
https://doi.org/10.1103/PhysRevE.84.011140
https://doi.org/10.1103/PhysRevE.84.011140
https://doi.org/10.1103/PhysRevE.84.011140
https://doi.org/10.1103/PhysRevE.84.011140
https://doi.org/10.1103/PhysRevE.88.012134
https://doi.org/10.1103/PhysRevE.88.012134
https://doi.org/10.1103/PhysRevE.88.012134
https://doi.org/10.1103/PhysRevE.88.012134
https://doi.org/10.1103/PhysRevE.96.062133
https://doi.org/10.1103/PhysRevE.96.062133
https://doi.org/10.1103/PhysRevE.96.062133
https://doi.org/10.1103/PhysRevE.96.062133
https://doi.org/10.1103/PhysRevE.89.052124
https://doi.org/10.1103/PhysRevE.89.052124
https://doi.org/10.1103/PhysRevE.89.052124
https://doi.org/10.1103/PhysRevE.89.052124
https://doi.org/10.1007/s10955-015-1285-y
https://doi.org/10.1007/s10955-015-1285-y
https://doi.org/10.1007/s10955-015-1285-y
https://doi.org/10.1007/s10955-015-1285-y
https://doi.org/10.1063/1.4979497
https://doi.org/10.1063/1.4979497
https://doi.org/10.1063/1.4979497
https://doi.org/10.1063/1.4979497
https://doi.org/10.1063/1.2539141
https://doi.org/10.1063/1.2539141
https://doi.org/10.1063/1.2539141
https://doi.org/10.1063/1.2539141
https://doi.org/10.1103/PhysRevE.90.012120
https://doi.org/10.1103/PhysRevE.90.012120
https://doi.org/10.1103/PhysRevE.90.012120
https://doi.org/10.1103/PhysRevE.90.012120
https://doi.org/10.1088/0305-4470/13/3/007
https://doi.org/10.1088/0305-4470/13/3/007
https://doi.org/10.1088/0305-4470/13/3/007
https://doi.org/10.1088/0305-4470/13/3/007
https://doi.org/10.1103/PhysRevLett.63.2760
https://doi.org/10.1103/PhysRevLett.63.2760
https://doi.org/10.1103/PhysRevLett.63.2760
https://doi.org/10.1103/PhysRevLett.63.2760
https://doi.org/10.1103/PhysRevLett.63.2068
https://doi.org/10.1103/PhysRevLett.63.2068
https://doi.org/10.1103/PhysRevLett.63.2068
https://doi.org/10.1103/PhysRevLett.63.2068
https://doi.org/10.1103/PhysRevLett.100.168301
https://doi.org/10.1103/PhysRevLett.100.168301
https://doi.org/10.1103/PhysRevLett.100.168301
https://doi.org/10.1103/PhysRevLett.100.168301
https://doi.org/10.1103/PhysRevLett.78.2417
https://doi.org/10.1103/PhysRevLett.78.2417
https://doi.org/10.1103/PhysRevLett.78.2417
https://doi.org/10.1103/PhysRevLett.78.2417
https://doi.org/10.1021/la000446t
https://doi.org/10.1021/la000446t
https://doi.org/10.1021/la000446t
https://doi.org/10.1021/la000446t
https://doi.org/10.1021/ja109524h
https://doi.org/10.1021/ja109524h
https://doi.org/10.1021/ja109524h
https://doi.org/10.1021/ja109524h
https://doi.org/10.1039/c2fd20084h
https://doi.org/10.1039/c2fd20084h
https://doi.org/10.1039/c2fd20084h
https://doi.org/10.1039/c2fd20084h
https://doi.org/10.1021/j100146a027
https://doi.org/10.1021/j100146a027
https://doi.org/10.1021/j100146a027
https://doi.org/10.1021/j100146a027
https://doi.org/10.1088/0953-8984/8/47/044
https://doi.org/10.1088/0953-8984/8/47/044
https://doi.org/10.1088/0953-8984/8/47/044
https://doi.org/10.1088/0953-8984/8/47/044
https://doi.org/10.1021/nl504158h
https://doi.org/10.1021/nl504158h
https://doi.org/10.1021/nl504158h
https://doi.org/10.1021/nl504158h
https://doi.org/10.1063/1.460673
https://doi.org/10.1063/1.460673
https://doi.org/10.1063/1.460673
https://doi.org/10.1063/1.460673
https://doi.org/10.1016/S0167-5729(99)00011-4
https://doi.org/10.1016/S0167-5729(99)00011-4
https://doi.org/10.1016/S0167-5729(99)00011-4
https://doi.org/10.1016/S0167-5729(99)00011-4
https://doi.org/10.1016/S0039-6028(00)00892-X
https://doi.org/10.1016/S0039-6028(00)00892-X
https://doi.org/10.1016/S0039-6028(00)00892-X
https://doi.org/10.1016/S0039-6028(00)00892-X
https://doi.org/10.1103/PhysRevA.4.675
https://doi.org/10.1103/PhysRevA.4.675
https://doi.org/10.1103/PhysRevA.4.675
https://doi.org/10.1103/PhysRevA.4.675
https://doi.org/10.1103/PhysRevA.31.1776
https://doi.org/10.1103/PhysRevA.31.1776
https://doi.org/10.1103/PhysRevA.31.1776
https://doi.org/10.1103/PhysRevA.31.1776
https://doi.org/10.1103/PhysRevE.72.051717
https://doi.org/10.1103/PhysRevE.72.051717
https://doi.org/10.1103/PhysRevE.72.051717
https://doi.org/10.1103/PhysRevE.72.051717
https://doi.org/10.1103/PhysRevLett.98.217801
https://doi.org/10.1103/PhysRevLett.98.217801
https://doi.org/10.1103/PhysRevLett.98.217801
https://doi.org/10.1103/PhysRevLett.98.217801
https://doi.org/10.1063/1.1731986
https://doi.org/10.1063/1.1731986
https://doi.org/10.1063/1.1731986
https://doi.org/10.1063/1.1731986
https://doi.org/10.1063/1.4960618
https://doi.org/10.1063/1.4960618
https://doi.org/10.1063/1.4960618
https://doi.org/10.1063/1.4960618
https://doi.org/10.1016/j.physa.2009.06.010
https://doi.org/10.1016/j.physa.2009.06.010
https://doi.org/10.1016/j.physa.2009.06.010
https://doi.org/10.1016/j.physa.2009.06.010
https://doi.org/10.1016/j.physa.2011.09.005
https://doi.org/10.1016/j.physa.2011.09.005
https://doi.org/10.1016/j.physa.2011.09.005
https://doi.org/10.1016/j.physa.2011.09.005
https://doi.org/10.1016/j.jmmm.2014.07.055
https://doi.org/10.1016/j.jmmm.2014.07.055
https://doi.org/10.1016/j.jmmm.2014.07.055
https://doi.org/10.1016/j.jmmm.2014.07.055
https://doi.org/10.1140/epjb/e2014-41003-0
https://doi.org/10.1140/epjb/e2014-41003-0
https://doi.org/10.1140/epjb/e2014-41003-0
https://doi.org/10.1140/epjb/e2014-41003-0
https://doi.org/10.1016/j.physa.2015.01.023
https://doi.org/10.1016/j.physa.2015.01.023
https://doi.org/10.1016/j.physa.2015.01.023
https://doi.org/10.1016/j.physa.2015.01.023
https://doi.org/10.1016/j.jash.2015.12.010
https://doi.org/10.1016/j.jash.2015.12.010
https://doi.org/10.1016/j.jash.2015.12.010
https://doi.org/10.1016/j.jash.2015.12.010


E. E. VOGEL et al. PHYSICAL REVIEW E 00, 002100 (2020)

[70] E. E. Vogel, G. Saravia, D. Pastén, and V. Muñoz,
Tectonophysics 712, 723 (2017).

[71] E. E. Vogel, G. Saravia, S. Kobe, R. Schumann, and R. Schuster,
Renewable Energy 126, 724 (2018).

[72] C. E. Shannon, Bell. Sys. Tech. J. 27, 379 (1948).
[73] A. Crisanti, M. Falcioni, G. Paladin, M. Serva, and A. Vulpiani,

Phys. Rev. E 50, 138 (1994).
[74] H. Xi and J. D. Gunton, Phys. Rev. E 52, 4963 (1995).
[75] R. V. Cakmur, D. A. Egolf, B. B. Plapp, and E. Bodenschatz,

Phys. Rev. Lett. 79, 1853 (1997).
[76] A. C.-L. Chian, R. A. Miranda, E. L. Rempel, Y. Saiki, and M.

Yamada, Phys. Rev. Lett. 104, 254102 (2010).

[77] R. A. Miranda, E. L. Rempel, and A. C.-L. Chian, Mon. Not. R.
Astron. Soc. 448, 804 (2015).

[78] P. Manshour, S. Saberi, M. Sahimi, J. Peinke, A. F. Pacheco,
and M. R. Rahimi Tabar, Phys. Rev. Lett. 102, 014101
(2009).

[79] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

[80] F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
[81] O. A. Negrete, P. Vargas, F. Peña, G. Saravia, and E. E. Vogel,

Entropy 20, 933 (2018).
[82] E. E. Vogel, F. G. Brevis, D. Pastén, V. Muñoz, R. Miranda, and

A. Chian (unpublished).

002100-12

https://doi.org/10.1016/j.tecto.2017.06.031
https://doi.org/10.1016/j.tecto.2017.06.031
https://doi.org/10.1016/j.tecto.2017.06.031
https://doi.org/10.1016/j.tecto.2017.06.031
https://doi.org/10.1016/j.renene.2018.03.064
https://doi.org/10.1016/j.renene.2018.03.064
https://doi.org/10.1016/j.renene.2018.03.064
https://doi.org/10.1016/j.renene.2018.03.064
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1103/PhysRevE.50.138
https://doi.org/10.1103/PhysRevE.50.138
https://doi.org/10.1103/PhysRevE.50.138
https://doi.org/10.1103/PhysRevE.50.138
https://doi.org/10.1103/PhysRevE.52.4963
https://doi.org/10.1103/PhysRevE.52.4963
https://doi.org/10.1103/PhysRevE.52.4963
https://doi.org/10.1103/PhysRevE.52.4963
https://doi.org/10.1103/PhysRevLett.79.1853
https://doi.org/10.1103/PhysRevLett.79.1853
https://doi.org/10.1103/PhysRevLett.79.1853
https://doi.org/10.1103/PhysRevLett.79.1853
https://doi.org/10.1103/PhysRevLett.104.254102
https://doi.org/10.1103/PhysRevLett.104.254102
https://doi.org/10.1103/PhysRevLett.104.254102
https://doi.org/10.1103/PhysRevLett.104.254102
https://doi.org/10.1093/mnras/stu2682
https://doi.org/10.1093/mnras/stu2682
https://doi.org/10.1093/mnras/stu2682
https://doi.org/10.1093/mnras/stu2682
https://doi.org/10.1103/PhysRevLett.102.014101
https://doi.org/10.1103/PhysRevLett.102.014101
https://doi.org/10.1103/PhysRevLett.102.014101
https://doi.org/10.1103/PhysRevLett.102.014101
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.3390/e20120933
https://doi.org/10.3390/e20120933
https://doi.org/10.3390/e20120933
https://doi.org/10.3390/e20120933

