
Computer science and parsimony: a reappraisal, with discussion of
methods for poorly structured datasets

Pablo A. Goloboff*

CONICET, INSUE, Fundaci�on Miguel Lillo, 4000, S.M. de Tucum�an, Argentina

Accepted 14 April 2014

Abstract

In recent years, several publications in computer science journals have proposed new heuristic methods for parsimony analysis.
This contribution discusses those papers, including methods highly praised by their authors, such as Hydra, Sampars and
GA + PR + LS. Trees of comparable or better scores can be obtained using the program TNT, but from one to three orders of
magnitude faster. In some cases, the search methods are very similar to others long in use in phylogenetics, but the enormous
speed differences seem to correspond more to poor implementations than to actual differences in the methods themselves.
© The Willi Hennig Society 2014.

Introduction

In recent years there have been a number of papers
published in journals devoted to informatics or com-
puter science (CS) that have studied and proposed
heuristic methods for searching phylogenetic trees
under parsimony. These papers have a common
denominator in that, for the most part, they ignore
almost completely the contributions by biologists to
parsimony analysis. Conversely, the claims and meth-
ods in such papers have not been scrutinized by the
biological community. Based on citation numbers from
actual biologists, the impact those papers have had on
phylogenetic practice effectively equates to zero. This
is in contrast to well established methods and software
used by biologists, such as Hennig86 (Farris, 1988),
PAUP* Swofford, 2001), Nona (Goloboff, 1993), or
TNT (tree analysis using new technology; Goloboff
et al., 2003, 2008), which benefited from years of test-
ing by a significant community of users and to some
extent compete with each other (thus being mutually
forced to improve). Despite this state of affairs, those
unfamiliar with the field of study could easily form the

mistaken impression, on reading some of these CS
papers of the past decade, that the authors are the first
scientists to ever approach the problem of how to find
the most parsimonious trees. This does not mean, of
course, that the contributions are irrelevant, but the
assessment of their relevance is generally hindered by
the lack of explicit references to known standards
developed by the biological community and by the
lack of available software. In some cases, the very
datasets used for testing the methods proposed are not
made available, thus making the assessment of their
relevance even more difficult.
It is probable that the foregoing combination of dif-

ficulties have discouraged biologists from examining
the methods and claims in such papers. In this contri-
bution, the main results of the papers concerned are
discussed, showing that the optimism and conclusions
of their authors are often based on arguments and
comparisons that are faulty, misleading, or irreproduc-
ible – sometimes all three simultaneously.
A number of papers (Go€effon et al., 2006, 2007;

Richer et al., 2009, 2012) are exceptions to the
majority of CS papers by using publicly available data-
sets and computer codes, thus making possible more
explicit comparisons with other methods (including*Corresponding author:

E-mail address: pablogolo@yahoo.com.ar

Cladistics
Cladistics (2014) 1–16

10.1111/cla.12082

© The Willi Hennig Society 2014



TNT, considered by biologists as the best program for
parsimony analysis; Hovenkamp, 2004; Giribet, 2005;
Meier and Ali, 2005). They concluded that Sampars
(Richer et al., 2012) is superior to Hydra (Go€effon
et al., 2007; Richer et al., 2009), LVB (Barker, 2004)
and GA + PR + LS (Ribeiro and Vianna, 2009); in
their 2007 paper, Go€effon et al. concluded that Hydra
outperforms TNT. In the CS literature, therefore, the
current state of affairs is that Sampars is the best
search strategy ever published for parsimony. One of
the co-authors (R. Tello) has posted up lecture slides
(http://www.tamps.cinvestav.mx/~ertello/bioinfo/sesion13.
pdf) stating very matter-of-factly (on slide 59) that
Sampars is the best method for finding most parsimo-
nious trees (but cites only other CS methods as
competitors).
Hydra and Sampars indeed appear to outperform

other CS methods, but it is shown below that when
using the very same methods recommended by Golob-
off (1999), TNT can reach (for difficult medium-sized
datasets) better parsimony scores, in much shorter
times. The same is true of other methods (cyclic per-
turbation schemes and tree-hybridization) implemented
in TNT since 2005.

Methods and background

Test datasets

The set of matrices presented by Andreatta and
Ribeiro (2002) and Ribeiro and Vianna (2005) consti-
tutes the test bed used by many of the papers dis-
cussed (it is found at http://www2.ic.uff.br/~celso/
grupo/instances.zip). From that set of matrices, all the
random instances (matrices 1–20) and the real
instances, called GOLO (actually a dataset from Zan-
der, 1995), ROPA and SCHU, were reanalyzed here.
In addition, the Zilla dataset of Chase et al. (1993)
and Roshan et al.’s (2004) dataset with 13 921 bacte-
rial sequences are used for some comparisons (both
datasets are available at http://cs.njit.edu/usman/soft
ware/recidcm3/public_datasets.tar.gz).

Computers

Most of the testing was carried out on a 32-bit Win-
dows operating platform running on an Intel I5 650
processor at 3.2 GHz. (with 4 GB of RAM, released
in early 2010). The only routines that were tested on
other machines (a variety of machines of about the
same speed, bought in 2011, forming a small Linux
cluster, but with each routine run on a single
processor) were the extensive ratchet and drifting and
the pfijo routine [XMULT and PF columns in
Tables 1–4)].

Background on tree-score calculations

Given the NP-completeness of phylogenetic prob-
lems, one of the crucial aspects of any method for
searching phylogenetic trees is its speed. Therefore,
with a few exceptions – such as Oblong (Goloboff,
2014), designed to privilege memory usage – most of
the contributions to parsimony analysis have been
aimed at improving speed. The improvements may be
both in the form of algorithms for faster score calcula-
tions during a search, or in the form of better ways to
select the trees to be evaluated (so as to increase the
chances of looking at fewer or better trees). As several
aspects of tree-score calculations will be discussed in
subsequent sections, a brief review of the basic ideas
to speed up tree evaluations during searches is given
here.
The length of any tree can be calculated from

scratch with algorithms such as those described by
Farris (1970) or Fitch (1971). However, those
algorithms require visiting every internal node,
and thus the time needed to evaluate a tree pro-
duced by branch-swapping will increase with number
of taxa (keep in mind that also the number of SPR
or TBR rearrangements increases with number of
taxa).
Given that they are so critical, methods to evaluate

the trees during searches with a speed that does not
strongly depend on the number of taxa were developed
relatively early in computational phylogenetics. The
first published description of a method for speeding up
tree-length calculations during searches was by
Goloboff (1994), but the speed of Hennig86 (Farris,
1988) and PAUP (Swofford, 2001) made it evident
that they used similar methods. Although neither
Farris nor Swofford had published a description,
Goloboff (1994, p. 434) noted that a similar logic had
been used by Farris (1970) to calculate the length
increment of adding a terminal to a growing Wagner
tree. Also, Ganapathy et al. (2003) mention that
Swofford (1986) described similar methods in his
thesis, which is not available online. Additional
improvements and extensions to the basic method were
published by Goloboff (1996, 1998, 1999), and imple-
mented in TNT (Goloboff et al., 2003, 2008).
Thus, among widely used parsimony programs, the

four fastest (Hennig86, PAUP*, Nona, and TNT) all
use essentially the same method to speed up searches.
Notably, the widely used Phylip (Felsenstein, 2005)
does not; it uses instead a full down-pass optimiza-
tion to calculate tree lengths during branch swapping,
which explains the speed difference with the other
four programs. The method used in Hennig86,
PAUP*, Nona and TNT is based on indirect calcula-
tions of tree length, which takes into account that
branch swapping consists of successive modifications

2 P. A. Goloboff / Cladistics (2014) 1–16



to an original tree. Thus, the lengths and character-
state reconstructions at each stage can be derived
from those in previous stages, instead of calculated
from scratch (a technique known as “incremental
computing” in CS). Branch swapping consists of clip-
ping the tree in two, creating two subtrees, and then
re-joining the two subtrees at different branches. The
length increment that will result from inserting one of
the subtrees at a specific branch of the other subtree
can be calculated by comparing the most parsimoni-
ous state-sets for the nodes delimiting the two corre-
sponding branches. In this way, the total length of
the new (complete) tree can be calculated at a speed
that does not (strongly) depend on the number of
taxa – the calculation requires only one comparison
between two (pairs of) nodes. Therefore, the time
needed for the evaluation of each rearrangement of a
tree with t taxa and c characters, approaches O(c)
instead of the O(tc) required by a full down-pass.
Evidently, in a full-fledged implementation such as

TNT, there are many other steps that need to be care-
fully considered, including bounding methods (based
on unions; Goloboff, 1996, 1999; note that a similar
approach was used in POY by Var�on and Wheeler
(2013), who did not cite Goloboff in that regard). All
such other shortcuts, however, only become relevant
after the indirect calculation of tree lengths has been
implemented – the indirect length calculation is thus
the first and most important step towards speeding up
searches. Analogous methods are also used in the fast-
est programs for maximum likelihood (RAxML, Sta-
matakis et al., 2005; PhyML, Guindon and Gascuel,
2003).

Reinventing wheels

One of the aspects in which computer scientists
show their disdain for the work of biologists is in re-
describing previously published methods. An example
is Andreatta and Ribeiro’s (2002) “GRASP” algo-
rithm; it stands for “Greedy Randomized Adaptive
Search Procedure”, which is just a Wagner tree with a
closest-addition sequence. This was first proposed by
Farris (1970) and has been available for many years in
PAUP* and PAUP. Since the method described by
Goloboff (1994) is essential to speeding up tree-length
calculations, it is not all that suprising that it has been
published again, in different journals, four separate
times.
Yan and Bader (2003) published what they contend

is different to Goloboff (1994, 1996), that is, in using
down-pass optimizations only, but Goloboff (1996)
had been clear that the indirect length calculation
requires using the states for a new root located
between ancestor and descendant branch of the target

tree: it was already well known that, for finding final
state-sets, using a down-pass with tree-rerooting is
equivalent to doing an up-pass. For example, Swof-
ford and Maddison (1987) had used this property to
find final states for internal nodes using tree-rerooting
and only down-pass algorithms. Thus, Yan and Bad-
er’s method, although presented as different, is basi-
cally the same as that described by Goloboff (1994);
the only difference is that they find the root states
with down-passes only, instead of using down- and
up-passes. It is therefore unsurprising that, as stated
by Yan and Bader themselves (1994, p. 9), their
“new” method has the same time-dependencies as Go-
loboff’s (1994), with time of evaluation O(c) instead
of O(tc). Using only preliminary states for internal
nodes, as in Yan and Bader (2003), is a disadvantage
when zero-length branches are to be collapsed, but
their program does not do so. According to fig. 4 of
Bader et al. (2006), the branch-and-bound program
that uses the “new” method of optimization (Exact-
MP) is slower than the exact solution of PAUP* on a
single processor, which in turn is slower than TNT’s
[White and Holland (2011) have compared PAUP*
with TNT]. The exact solution of TNT, however, is
not especially efficient, as pointed out in the documen-
tation of the program (challenging datasets today are
beyond the possibilities of exact solutions, so I have
chosen to invest most of my effort into improving
heuristic methods). For a faster exact search, see
White and Holland’s (2011) XMP, although that pro-
gram has the drawback that it does not eliminate
zero-length branches, does not allow for the use of
constraints, cannot save suboptimal trees and only
processes DNA data with Fitch optimization under
equal weights.
Ganapathy et al. (2003) described the same method

as Goloboff (1994), but their method was also based
on down-passes: they admitted in the paper (as
requested by an anonymous reviewer, pers. commun.
from the reviewer) that their method for calculating
length is “similar to other techniques described in
other papers; . . . what is new is the mathematical
analysis” (p. 245–246). They were much more cryptic
than Yan and Bader (2003) in the similarities of their
method with that of Goloboff (1994).
Keith et al. (2005) published the same method. That

is, for the fourth time. In addition to the indirect cal-
culation of tree lengths during branch swapping, their
program uses a search method with similarities to sim-
ulated annealing and tree-drifting (Goloboff, 1999). It
is thus unsurprising that (for Zilla) their program has
a speed comparable to that of PAUP* using the
ratchet (Nixon, 1999). They (and the reviewers) have
missed the obvious implication that PAUP* uses a
similar method to calculate tree-lengths during the
search, and explicitly stated that “to the best of [their]

P. A. Goloboff / Cladistics (2014) 1–16 3



knowledge, this is the first time that such an algorithm
has been described” (p. 463).
Finally, Ribeiro and Vianna (2005) also used indi-

rect calculation of tree lengths for branch swapping;
they did not describe the details, simply stating that
(when inserting one subtree into the other) they derive
the length increment from the ancestral states of both
subtrees. Their only comment on this method [“the
investigation of each neighborhood SPR can be imple-
mented in time O(mn2), which is one order of magni-
tude faster than the implementation originally
proposed in Andreatta and Ribeiro (2002)”, p. 330]
implied that it had never been used before. This 2005
paper is based on Vianna (2004), where he was more
explicit than in the subsequent paper: he incorrectly
stated that the algorithm of Goloboff (1994, 1996)
evaluates each rearrangement during swapping with
times that depend on the number of taxa – that is,
O(tc) instead of O(c). In Vianna’s account, this is
because cutting a branch requires O(tc) to find final
states, and reinserting it at another location requires
O(c) to calculate the length increment; the total time
for evaluating a rearrangement would then be O(tc)
(Vianna, 2004; p. 26). Two facts, however, are missing
from the picture presented by Vianna (2004). First,
that clipping using the incremental optimization of
Goloboff (1996) can be done much faster than O(tc).
Second, that a search program does not evaluate a sin-
gle rearrangement; it tries instead all the possible rein-
sertions for each clipping, rendering the relative time
needed for the clipping negligible and making the total
time needed to evaluate each rearrangement indepen-
dent of the number of taxa [which has been perfectly
clear for other biologists, such as Ronquist (1998) and
Felsenstein (2004), and to other computer scientists,
such as Yan and Bader (2003)]: the multiplicity of
reinsertions per clipping was explicitly stated by
Goloboff (1994, p. 435). Perhaps Vianna’s (2004)
worst omission on this issue, however, is that
[although he used some shortcuts in the vein of “short-
cut A” of Goloboff (1996) to lessen the work needed]
his own method [very similar to Goloboff’s (1994,
1996), but with some adaptations to binary characters,
the only ones his program can handle] also requires
finding final states when clipping the tree, so that any
difference in dependence is purely illusory.

Variable neighbourhoods

One of the reasons computer scientists often put for-
ward for not discussing the work of biologists in detail
is that the properties of tree-search algorithms should
be studied independently of specific implementations.
This was clearly stated by Andreatta and Ribeiro

(2002), in one of the earliest contributions of this kind:

Luckow and Pimentel (1985) have conducted the first evalua-

tion study of algorithms for the phylogeny problem, in which

they tested strategies offered by some software packages.

Another study was later conducted by Platnick (1987), involv-

ing different programs. These studies do not provide a good

basis for assessing algorithm efficiency and their results are

not conclusive, as far as the algorithms themselves are not

precisely described in the references, and completely different

techniques and languages have been used for their implemen-

tation. (p. 434)

Blazewicz et al. (2010) made a very similar point:

In order to eliminate the influence of a style of implementa-

tion of algorithms on efficiency of applications, a general

framework is designed. This work provides an architectural

basis for comparison. (p. 77)

On first impression it sounds a reasonable idea, but
carries with it the problem that a given implementa-
tion can easily turn the conclusions established on the
basis of another implementation upside down.
A case where this can happen is in determining the

best “neighbourhood” to use during a local search.
Biologists are well aware of the differences between
SPR and TBR, and that TBR is more thorough and in
many cases more time consuming. Probably most of
them are also familiar with the idea that applying a
different swapping algorithm at different stages of the
search may increase the efficiency. For example, Nona
started each replication with SPR saving a single tree,
and only when it was not possible to find better trees
using SPR, did it switch to the more time-consuming
TBR. The idea was not to spend so much effort using
a thorough algorithm such as TBR if the tree was still
sufficiently suboptimal for a more superficial algorithm
to find better solutions easily. My recollection
(20 years later) is that I implemented the alternating
swappers of Nona after being inspired by some feature
of PAUP or Hennig86, although I cannot find today
the reference (either in the manuals, or programs). In
any event, switching from one swapper to another
seemed unworthy of a name or much discussion, just a
matter of obvious common sense given the implemen-
tation then used. Another example of switching
between swapping algorithms as the search proceeds is
in POY (Var�on et al., 2010; for Version 4 and earlier
versions as well).
A number of CS papers (e.g. Andreatta and Ribeiro,

2002; Ribeiro and Vianna, 2005; Go€effon et al., 2007;
Blazewicz et al., 2010) made a point of using “vari-
able” or “progressive” neighbourhoods. However,
there is a very important qualification: which swapping
algorithm provides the best trade-off between results
and computing time depends on the implementation.
If the length of each rearrangement is calculated by
using the full down-pass of Fitch’s (1971) algorithm,

4 P. A. Goloboff / Cladistics (2014) 1–16



then the speed with which NNI, SPR or TBR evaluate
rearrangements is identical. When each rearrangement,
however, is evaluated instead with an indirect length
calculation, then the speed with which each rearrange-
ment can be evaluated increases as we move from
NNI to SPR, and from SPR to TBR. As discussed by
Goloboff (1996, p. 202), this is because the work
(=time) needed to recalculate the final states when the
tree is divided in two subtrees leads to evaluating more
reinsertion points under TBR than under SPR. In fact,
in TNT, TBR uses bounding algorithms not used in
SPR, with the result that (for large empirical datasets)
TBR not only evaluates individual rearrangements fas-
ter – it also needs a shorter absolute time than SPR to
complete a cycle of rearrangements, or to move from a
Wagner tree (Farris, 1970) to a locally optimal tree.
Of course, the SPR swapper in TNT could be modified
so that it uses those shortcuts now implemented only
in TBR, but this seems unnecessary, because: (i) the
TBR algorithm is already fast enough that it can be
applied to many thousands of taxa, and (ii) in those
cases where analysis of large datasets becomes impossi-
bly slow due to lack of structure, the shortcut will be
equally unproductive for SPR, so that the implementa-
tion without using the shortcut should suffice. Thus,
although in Nona (where TBR was only slightly more
efficient than SPR) it was advantageous to start each
replication with SPR, the situation is different in TNT
(where TBR is much more efficient than SPR). For
that reason, in most searching contexts of TNT, the
use of SPR in the initial stages of the search was elimi-
nated (in May 2005, as pointed out in the program
documentation and its web site). TNT does not imple-
ment NNI, but PAUP* does and, predictably, each
rearrangement is evaluated with NNI over 200 times
slower than with TBR (for Zilla). In TNT, the speed
difference between TBR and SPR increases with num-
ber of taxa and dataset structure; for the 13 921-taxon
dataset of Roshan et al. (2004), TBR can evaluate
rearrangements about 70 times faster than SPR.
In connection with the differences in time needed to

evaluate rearrangements by NNI, SPR and TBR,
Go€effon et al. (2007, p. 3) stated that:

the variation cost induced by a NNI transformation can be

easily calculated. . . On the contrary, a large neighborhood

relation like TBR requires more computational effort. Explor-

ing all the neighbors of a configuration using TBR is compu-

tationally expensive. Indeed, the neighboring trees are subject

to important topological modifications. Thus, less information

can be conserved for the calculation of the parsimony score

of a neighbor tree.

The statement is incorrect: TBR derives more rear-
rangements per clipping, but because all of them can
be traced easily to a single clip, every one can be eval-
uated with less work than in SPR, and much less work
than in NNI.

Although several authors have examined variable
neighbourhoods, in most cases the only changes in
neighbourhood are switches between NNI and SPR [or
versions of SPR where the clipped subtree is reinserted
at a given maximum distance from the original posi-
tion, as also done in RAxML (Stamatakis et al.,
2005)]. The only paper testing variable neighbourhoods
that has examined TBR is that of Blazewicz et al.
(2010); they used a full down-pass to evaluate scores
and explicitly pointed out (p. 87–89) that TBR was so
slow as to be simply prohibitive. Andreatta and
Ribeiro (2002), Blazewicz et al. (2010) and Ribeiro
and Vianna (2005) used neighbourhoods that switch
from NNI to SPR as the search proceeds and the pre-
ceding swapping method fails to improve results. The
latter authors also used what they called “2-SPR” as
the final neighbourhood, where two branches of the
tree are cut and then reinserted (as done in the
“mswap” command of Nona). Go€effon et al. (2007),
however, used a decreasing neighbourhood instead –
when SPR finds a better tree, then the search contin-
ues with a less exhaustive algorithm (either NNI or
SPR reinserting at a smaller distance from original
position). The rationale could be that there is no
point in using an “exhaustive” algorithm such as the
full SPR when more superficial algorithms could per-
haps lead to better trees now that some change has
been done to the tree. Vazquez-Ortiz and Rodriguez-
Tello (2011) explored both increasing and decreasing
neighbourhoods.
Of all the papers concerned, only Ribeiro and

Vianna (2005) were explicit in their use of indirect
calculation of tree lengths (and their implementation
seems rather inefficient, see below). Thus, the conclu-
sions of all such papers about the relative effective-
ness of using NNI, SPR, or TBR, at different stages
of the search must be taken with a grain of salt. As
careful implementations become progressively faster in
evaluating individual rearrangements with neighbour-
hoods of larger size, there is less and less to be gained
by applying an algorithm that examines fewer rear-
rangements at lower speeds, such as NNI, or even
SPR.
The papers by Viana et al. (2007, 2009) and Lin

et al. (2007) are interesting in that they used a special
form of tree representation, such that the neighbour-
hoods of a local search can be defined in terms of
rearrangements to the tree notation itself. Thus, the
rearrangements are not defined in terms of clips and
reinsertions of subtrees, which has the unfortunate
consequence that (despite the hopes of Lin et al.
(2007, p. 1916) in this regard) the indirect length calcu-
lation is neither applied nor, apparently, applicable.
Thus, even if the types of rearrangements used in these
papers eventually prove advantageous in some way,
they are doomed to be laden with length evaluations

P. A. Goloboff / Cladistics (2014) 1–16 5



hundreds or thousands of times slower than the neigh-
bourhoods of standard methods.
In practice, the notion that tree-search algorithms

should be studied without regard to a specific imple-
mentation only serves as an excuse for the authors not
to make embarrassing comparisons between other pro-
grams and their own. This is hardly in the interest of
actual users of phylogenetic methods.

Comparisons with TNT

There are some CS papers that do make compari-
sons with the heuristic methods of TNT, but none of
these comparisons is very informative. A common
approach is to state that the “default” algorithms of
TNT were used. Roshan et al. (2004) did this, as dis-
cussed by Goloboff and Pol (2007), as did the authors
of Hydra and Sampars (Go€effon, 2006; Go€effon et al.,
2006; Richer et al., 2009; Vazquez-Ortiz, 2011).
Richer et al. (2009) stated:

TNT . . . is known to be highly optimized to be able to evalu-

ate millions of trees per second. TNT integrates a large num-

ber of search strategies such as tree drifting, parsimony

ratchet, sectorial search and more others. The reference soft-

ware TNT was used with its default parameters specified in

the documentation.

Thus, the authors give the impression that they have
compared their algorithm with (among others) the
ratchet and tree-drifting. The TNT runs were done by
Go€effon (2006) in his thesis, where he gave additional
details:

The time allotted for Hydra is of 300 s (5 min) on the real

instances, and 1000 s on the random instances, more difficult.

Tree analysis using new technology does not require a specifi-

cation of duration and it finishes by itself; executed on an

AMD Athlon 64 X2 3800, its execution times do not exceed

5 s. (p. 116, translated from French)

The crucial point not mentioned anywhere in those
papers is that the default of the xmult command in
TNT does not include drifting or ratchet – only secto-
rial search and tree-fusing. Goloboff (1999), however,
was explicit that

. . . both [sectorial search] and [tree-fusing] require some struc-

ture in the data—which is normally the case for real data-

sets. . .. For small datasets (i.e., below 100 taxa) neither

[sectorial search] nor [tree-fusing] are usually of much help.

Small datasets are difficult to analyze only when very poorly

structured. That situation is best analyzed by doing multiple

RAS + TBR followed by extensive [tree-drifting]. (p. 425)

Goloboff (1999) also stated that the ratchet was
as appropriate as tree-drifting for unstructured and
random datasets and that his implementation of the
ratchet could be improved (speeding it up to work
at the same speed as tree-drifting), which I subse-

quently did when TNT was released in 2003. A simi-
lar recommendation was made by Goloboff (2002, p.
77–78):

Datasets with fewer than 100 taxa will be difficult to analyze

only when extremely incongruent. In those cases, the methods

of tree-fusing and sectorial searches perform more poorly. . .
Therefore, smaller datasets are best analyzed by means of

extensive ratchet and/or tree-drifting, reducing tree-fusing and

sectorial searches to a minimum.

Thus, all the papers that examined the defaults
of TNT on random datasets have used exactly the
algorithms and options Goloboff (1999, 2002) advised
not to use.
There is, however, still another detail to be consid-

ered: Richer et al. (2009) concluded that Hydra is
superior to TNT despite the fact that it finds trees that
are only slightly better but using a much longer time
[they gave no detailed timings, but the thesis of Go€ef-
fon (2006) stated that they used 1000 s for the random
datasets, which TNT runs in a second or less]. The
alleged reason for the superiority of Hydra is that it
reaches the same or similar scores by evaluating fewer
rearrangements. The reasoning goes that if Hydra was
made to evaluate its rearrangements at the same speed
of TNT, then it would be clearly superior. Lin et al.
(2007) and Lin (2008) presented a similar argument in
defence of their own tabu-search methods (which they
compared only with PAUP* and Phylip). That, how-
ever, is impossible because the speed of rearrangement
methods necessarily decreases as fewer rearrangements
are derived per clipping. This applies not only to NNI,
but also to randomly chosen SPR or TBR moves, as
undertaken in some programs; selecting a clipping and
a single reinsertion point at random leads to much
slower tree evaluations than when all reinsertion points
are subsequently tried for each clipping. Thus, the fact
that Hydra evaluates fewer rearrangements to achieve
similar scores is of secondary interest at best. In an
actual phylogenetic analysis, the user’s primary con-
cern is not in how many rearrangements were made
but the time needed to finish.
A contribution with some interesting ideas is that of

Gregor et al. (2013), who proposed a method for
approximating most parsimonious trees without
searching, but instead detecting patterns in the data.
They compared their PTree program with PAUP* and
TNT, but in the case of TNT, only against SPR. Their
reasons for comparing against SPR, instead of TBR
or the more elaborate search strategies implemented in
TNT, are not stated anywhere in the paper. Gregor
et al. (2013) found that “compared to PAUP* with
the SPR or TBR heuristic and TNT with the SPR
heuristic, PTree performs worse in all tests in terms of
the parsimony costs.. . .” (p. 12). For the two largest
datasets tested by Gregor et al. (up to 8000 taxa), the

6 P. A. Goloboff / Cladistics (2014) 1–16



difference with SPR in TNT (the runs with PAUP*
could not be finished for those datasets) was over
1500 steps in favour of TNT. Given that the scores of
PTree were vastly inferior, it is difficult to make mean-
ingful speed comparisons, despite which they nonethe-
less reported that “while PTree was faster than TNT
SPR with the HIV dataset with more than 4000
sequences, PTree was slower than TNT SPR with the
RAxML dataset” (p. 12). But the TNT times they
reported are way too long for a single Wagner tree
plus SPR. For 8000 taxa and 1600 bp they reported
that TNT needed over 33 h, when building a Wagner
tree plus SPR on a single tree for that size of dataset
takes only between 5 and 20 min (as opposed to the
23 h of PTree). The only way in which the TNT runs
could have used so much time is by using multiple
replications and/or saving multiple trees per replica-
tion. As the TNT scores were probably better than
those of PTree within the first few replications (as sug-
gested by the huge score differences reported in their
tables 1 and 3), then the comparison was shifted in
favour of PTree by making TNT run for hours and
hours – just by adding more replications. Another
striking detail of Gregor et al. (2013) is that the “aver-
age” tree lengths reported in their tables 1 and 3 (pur-
portedly from 10 independent runs of PTree)
contained only integer numbers – no decimals (the text
said nothing about rounding to integers, which would
be highly unusual anyway). The datasets used by Gre-
gor et al. (2013) were subsets of taxa from other data-
sets, and they cannot be reconstructed from their
description of the experiments, so that their results
cannot be checked directly.
Carroll et al. (2007, 2009) released a phylogeny

package they call PSODA. They did not propose any
new methods for tree searching, simply presenting a
new implementation of stepwise addition of trees,
branch-swapping, and ratchet, which they compared
only with Phylip and PAUP*. Although they men-
tioned the existence of TNT, they provided no com-
parisons. In a sequel to those papers, Sundberg et al.
(2012) proposed a new method, “partial tree mixing”
or PTM, based on decomposing the dataset in smaller
subsets, analyzing, and then combining the results.
They stated that

. . . the performance of PTM was compared to PAUP* using

stepwise addition and TBR. TNT and DCM are newer pro-

grams which implement a wide variety of heuristic methods.

Partial Tree Mixing was implemented in the open source phy-

logenetics program PSODA. These methods were tested on

datasets ranging from 218 to 8780 taxa. PTM was compared

against stepwise maximum parsimony where both were fol-

lowed by a TBR based search until a minima was found. As

the step which combines the two final partial trees is equiva-

lent to a standard TBR search, the PTM algorithm was fur-

ther refined using the Parsimony Ratchet and a sectorial

search. (p. 12)

They did not state how many trees were saved in
TNT or PAUP* – obviously a large number, given the
run times reported. Again, their reasons for improving
the results of their own method with ratchet and secto-
rial search, but without giving TNT such a benefit,
were unspecified. They succintly stated (in the caption
of their table 2) that “TNT finishes much faster than
PTM, but finds less parsimonious trees”. For the Zilla
dataset, PTM found a tree of the known minimum
length (16 218), and TNT found (in a single run) a
tree one step longer. This, however, was a single run
of TNT, which took 7 s to complete: in contrast, PTM
took 2.5 h. If they had tried other random seeds for
TNT, one can conjecture that they would have found
a most parsimonious tree in longer times – say, 30 s.
Even more interesting is the difference in lengths
between PTM and TNT in other datasets, for it
reveals how carelessly they have made the compari-
sons. For the dataset “RDPII”, PAUP* produced trees
50 steps longer than the best known trees (33 515
steps), while the score reported by TNT was 8651 steps
longer. For dataset “U”, PAUP* produced trees 911
steps longer than the best known trees (92 195 steps),
while TNT reported trees 109 064 steps longer. The
only reasonable explanation for such huge length dif-
ferences is that the “U” and “RDPII” datasets had
their gaps coded as a fifth state in TNT (which is the
default for DNA sequences), instead of a missing entry
as in the other programs. Evidently, Sundberg et al.
(2012) neither checked the documentation of TNT for
the default treatment of gaps, nor made sure that the
datasets had been read under the same conditions by
the different programs. No additional checking of their
method is possible, because (despite the paper stating
that the method has been implemented in that pack-
age) current versions of PSODA do not include any
options for calculating PTM, and (except for Zilla) the
datasets they used are not publicly available.

In the void

The papers in the preceding section include some
comparisons with TNT and PAUP*, even if incom-
plete. In the papers discussed in this section, the only
comparisons are with other CS papers. As no program
is publicly available for any of the methods discussed
in this section, the only possible comparisons are from
the timings given by the authors using their own
implementation. This is in fact how these CS authors
have compared their results against those of others,
that is, by reference to the timings and results given in
the original papers; none of the comparisons cited here
involves new runs of previous programs.
The paper of Ribeiro and Vianna (2009) naturally

supersedes Andreatta and Ribeiro (2002), Vianna

P. A. Goloboff / Cladistics (2014) 1–16 7



(2004) and Ribeiro and Vianna (2005). They summa-
rized their results by means of plots of “time-to-tar-
get”. These plots show the probability of finding a
given target length as the search proceeds in time. For
the matrix SCHU (113 taxa), their fig. 5 shows that
the probability of finding trees of 760 steps (shortest
trees are 759) after a 200 s run with their best method
(GA + PR + LS) was about 0.55; having a probability
close to unity of finding 760 steps took more than
350 s. Comparable calculations can be made with
TNT; with “xmult = hit 300 giveup 760 noupdate” the
program will hit length 760 independently 300 times
(note that these are the defaults of TNT, except for
giving up each cycle as soon as the length 760 is
found). Dividing the total time needed for the 300 hits
to 760 steps (25.57 s) by 300, it can be concluded that
TNT needs to run for 0.085 s to have P = 1.0 of find-
ing trees of 760 steps. This is 4100 times faster than
GA + PR + LS. Ribeiro and Vianna (2009) did not
provide time-to-target plots for the length 759 (short-
est known trees for that dataset), but TNT needs
0.132 s to have P = 1.0 of finding 759 steps – 1500
times shorter than what GA + PR + LS needs to have
a P = 0.55 of finding trees 1 step longer. The programs
used by Ribeiro and Vianna (2009) are completely
inadequate for use in actual phylogenetic work. These
timings are for GA + PR + LS, which is their best
method; the time-to-target plots for their earlier
GRASP/VND (Ribeiro and Vianna, 2005; figs 11 and
12) were much worse, over 25 000 times slower than
TNT (although some of that difference may be
explained by a computer slower than current ones).
Some years before Ribeiro and Vianna (2005) used an
average of 32 836 s to find the best length (496) for
the GOLO dataset (see their table 2), Goloboff (1999)
had already reported (p. 425) that trees of 496 steps
had been found by TNT 63 times in a total time of
4.31 min (i.e. every 4 s), running on slower machines.
Viana et al. (2007) compared their results only to

Vianna (2004). Their method produced results that
were far from optimal in many cases, using very long
runtimes. The scores reported in a subsequent paper
(Viana et al., 2009) were somewhat better, but the run-
times were even worse than in the 2007 paper. For
example, for their instance 14 (a “perfect” phylogeny
of 35 taxa) their heuristic method took 8 s – which is
about 1000 times slower than TNT’s exact solution for
such a homoplasy-free dataset. Table 2 of Viana et al.
(2007) shows that for ROPA and SCHU, the times
used (respectively) to reach solutions 5 and 1 steps
above minimum known length were 533 and 2832 s:
TNT needs, to find better or equal average lengths,
average times well below 0.1 s. Thus, Viana et al.’s
(2009) program is at least 5000–28 000 times slower
than TNT.

Blazewicz et al. (2010) compared their results with
those of Ribeiro and Vianna (2005), Viana et al.
(2009) and Go€effon et al. (2007). Their runs using
NNI did not take much time, but the resulting scores
were too far from optimal to be seriously considered;
their TBR implementation also found very poor
scores, by virtue of being too slow to reasonably
explore tree space (Blazewicz et al., 2010; p. 87–89).
For the methods based on VNS (variable neighbour-
hood search with some NNIs and then SPR) the
actual times are as long as for the papers just dis-
cussed (see their table 11, which summarizes results of
10 runs or more). For the ROPA dataset, the average
length found by Blazewicz et al. is 327.27 steps or
more, and average time is 107 s or more. For TNT,
the command “xmult = repl 2” was repeated 300
times with different random seeds (only two replica-
tions, instead of the default five, are needed to match
or outperform Blazewicz et al.). On this dataset, this
takes an average time of 0.031 s, and the average
length is 326.96 – that is, shorter trees than Blazewicz
et al.’s, but 3400 times faster. For SCHU, Blazewicz
et al. (2010) reported an average of 760.7 steps for
their best routine, and average times between 1152 and
6047 s. TNT (same commands as for ROPA) takes an
average of 0.088 s to run, and the average length is
759.97. Thus, for SCHUH, TNT finds a better average
length, but over 10 000 times faster. This huge speed
difference is even more significant given that the tim-
ings reported by Blazewicz et al. (2010) correspond to
runs using 16 processors, instead of just one as in the
TNT runs.

Hydra, Sampars, and undescribed TNT methods

Richer et al. (2012) described a simulated annealing
method, Sampars, based on previous work by Vazquez-
Ortiz (2011) and Vazquez-Ortiz and Rodriguez-Tello
(2011). This series of papers started out with a humble
attitude:

. . .the aim of this work is not the development of a new soft-

ware able to compete with the best softwares like TNT

because they make an intensive use of several heuristics and

strategies. Our aim here is to present a new neighborhood

which. . . could be used to improve the efficiency of the exist-

ing softwares. (Go€effon et al., 2007, p. 7)

Gradually, however, they became more boastful,
and in their most recent paper (Richer et al., 2012),
they considered Hydra (Go€effon et al., 2007; Richer
et al., 2009) to be well established as the “state-of-the-
art”, because of the previous demonstration that
Hydra examines fewer rearrangements than TNT to
achieve comparable lengths. They compared Sampars
to Hydra, LVB (Barker, 2004), and GA + PR + LS

8 P. A. Goloboff / Cladistics (2014) 1–16



(Ribeiro and Vianna, 2009), and found Sampars to be
the best of the four methods – and thus, in their view,
the best method ever proposed for parsimony. For
their comparisons they used a Xeon X5650 (a proces-
sor released the same year as the one used for most of
the comparisons here, with only minor differences in
speed).

Datasets used by Richer et al. 2012

The most significant differences between Sampars
and the other programs are in the random datasets.
These are 20 datasets with 45–75 taxa, 61–159 binary
characters, and significant numbers of missing entries,
created by Ribeiro and Vianna (2005), and then con-
sidered as a standard by Go€effon (2006), Go€effon
et al. (2006, 2007), Viana et al. (2007), Ribeiro and
Vianna (2009), Vazquez-Ortiz (2011), Vazquez-Ortiz
and Rodriguez-Tello (2011) and Richer et al. (2012).
Most of these papers used them without comment, but
Go€effon (2007) justified the use of such datasets on
the grounds that

. . .the real instances of reasonable size available in the literature

(including Zilla) do not offer any real challenge. . . These data-

sets are well structured. . . However, random instances with

missing data are difficult; with them, the robustness of the best

software is undermined. (p. 117–118, translated from French)

Note that because it is only in the random datasets
that these methods outperform the plain xmult com-
mand of TNT, if one were to blindly follow the rec-
ommendation of the authors and routinely use their
methods, then in the case of real-life datasets one
would be adopting inferior methods because these only
do well in random datasets (which of course no bio-
logical dataset resembles). There is, however, another
twist, in the fact that on such random datasets no
group is well supported. A plethora of phylogenetic lit-
erature exists that is concerned with eliminating
weakly supported groups from the final conclusions:
several papers (e.g. Farris et al., 1996; K€allersj€o et al.,
1999; Goloboff and Farris, 2001) proposed that well
supported groups can be found without much effort
and without the need to actually find the trees of mini-
mum length (as rediscovered a few years later by com-
puter scientists: Williams et al., 2004). If groups of
negligible support can be safely ignored, the reason-
able course of action for those random datasets cre-
ated by Ribeiro and Vianna (2005) would be “do not
even bother finding shortest trees” – showing that

Table 1
Average scores reached by different methods for the 20 random datasets. The data for Hydra and Sampars were taken from the literature (from
Go€effon (2006), who did 20-min runs, and from Richer et al. (2012), who give averages for 30 independent runs, respectively). The rest were
done with TNT, with 30 independent runs of each routine

Dataset

Average score

Worst RB + H 9 6Hydra SAMP RAS + H XMUL PF RB + H 9 3 RB + H 9 6

1 545.40 545.13 545.33 545.00 545.00 545.13 545.00 545

2 1356.10 1355.30 1355.17 1354.84 1354.47 1355.50 1354.80 1356
3 833.90 833.43 833.57 833.22 833.28 833.37 833.07 834
4 589.40 588.23 588.76 588.09 588.06 587.97 587.77 589
5 789.00 789.00 789.03 789.00 789.00 789.00 789.00 789
6 597.30 596.57 597.20 596.03 596.09 596.83 596.63 598
7 1270.70 1270.83 1270.77 1270.62 1269.62 1269.40 1269.07 1270

8 854.10 853.33 853.17 854.12 853.34 853.00 852.97 853

9 1145.20 1144.73 1144.37 1143.25 1143.78 1144.07 1143.37 1145
10 721.30 720.80 720.67 720.00 720.00 720.03 720.00 720

11 542.60 542.21 542.53 541.28 542.00 541.87 541.60 543
12 1213.60 1215.27 1215.07 1215.53 1212.84 1211.65 1210.21 1214

13 1518.50 1517.77 1516.50 1516.78 1516.62 1515.47 1515.17 1518
14 1161.90 1163.03 1163.87 1161.47 1161.62 1162.28 1161.58 1163

15 754.50 753.90 753.77 753.16 752.62 752.77 752.45 754
16 530.80 531.00 532.40 531.75 531.19 529.73 529.10 532
17 2455.20 2456.00 2454.33 2452.97 2451.16 2450.83 2450.42 2453

18 1523.70 1525.67 1521.23 1522.09 1521.06 1521.08 1521.00 1521

19 1016.90 1016.23 1015.20 1015.19 1014.81 1013.00 1012.5 1015

20 663.90 662.82 665.20 664.00 664.41 662.06 661.73 664

SAMP, Sampars; RAS + H, 100 random addition sequences plus TBR (with mulpars off), retaining the final point of each addition sequence,
followed by six cycles of selecting best 40 trees and 500 rounds of hybridization; XMUL, xmult command, with 500 iterations of tree-drifting
and 500 of ratchet (the rest of parameters as defaults), running for 8 min; PF, a single random addition sequence plus TBR, followed by the pfijo
command (with options nums 2500 chunksize 20); RB + H, rebuildit + hybrid script, three to six cycles (see text for details). The last column
(Worst RB + H 9 6) indicates the worst score obtained in the 30 runs. Bold values indicate those that outperform Sampars, except for the last
column, where bold indicates that the worst TNT run produced better results than the average for Sampars.

P. A. Goloboff / Cladistics (2014) 1–16 9



those datasets do not strongly support any conclusion
is very easy and does not require time-consuming
analyses. Thus, methods to actually find the most
parsimonious trees in random datasets are much less
important than methods to improve the efficiency on
empirical well-structured datasets. Random datasets
pose peculiar problems for algorithms based on local
searches, especially when missing entries are abundant:
the differences in tree scores among all possible trees
are minimal, and radically different trees can easily
have minimum differences in score. Search algorithms
therefore have to be adapted to these peculiarities.
This is a natural consequence of the “NFL theorem”
of Wolpert and Macready (1997), which is well known
in the field of computer science: some tree-search algo-
rithms will be more suited to some problems than to
others (and no search algorithm will be best for all
possible classes of problems).
As discussed above, the peculiarities of unstructured

datasets had been recognized by Goloboff (1999,
2002), who pointed out that small but difficult datasets
were best analysed by means of numerous starting
points, each followed by extensive ratchet and drifting.
Ratchet and tree-drifting are based on cyclic perturba-
tions. After its first non-beta release in late 2003, TNT
incorporated in 2005 two additional methods that can
be used to produce cyclic perturbations (see the list of
BugFixes, which is distributed with the TNT package,
also available at http://www.zmuc.dk/public/phylog-
eny/TNT/BugFixes.htm).

The first of those two methods is the command pfijo
(introduced in TNT in May 2005), which borrows
some ideas from Roshan et al.’s (2004) rec-i-dcm3. As
discussed by Goloboff and Pol (2007), rec-i-dcm3
(although originally presented as a “divide-and-
conquer” technique) is best seen as a cyclic perturba-
tion scheme, just like the ratchet. High search efforts
for the reduced datasets are therefore counterproduc-
tive – the analysis of the reduced datasets best serves
to perturbate and provide a new starting point for
searching, not to “conquer by division”. Thus, the pfijo
command is a sort of ratchet, where the perturbation
is given by creating reduced datasets from sectors of
the tree (the name pfijo comes from the spanish pi~n�on
fijo – fixed-wheel or fixed-gear – as opposed to the
ratchet or free-wheel). For the reduced datasets,
instead of replacing the HTU’s by their own down-
pass states (which in a true sectorial search produces
exact score evaluations), the states of one of the
descendants of the HTU will be used with a probabil-
ity that depends on a constant K (which changes the
parsimony landscape). The higher the value of K, the
higher the probability that the basal HTU states will
be chosen, so that lower values of K perturbate more
strongly (by selecting representatives further away
from the root states for each sector; in rec-i-dcm3 only
terminals were selected). After searching for each “per-
turbated” reduced dataset (with only four rounds of
RAS + TBR, and tree-fusing with original resolution),
then full TBR and a few cycles of tree-drifting from

Table 2
Difference in average score, for each of the 20 datasets, relative to Sampars. All methods run as indicated for Table 1

Dataset

Difference with Sampars

Worst RB + H 9 6 SD SamparsHydra RAS + H XMUL PF RB + H 9 3 RB + H 9 6

1 +0.27 +0.20 �0.13 �0.13 0 �0.13 �0.13 0.43
2 +0.80 �0.13 �0.46 �0.83 +0.20 �0.50 +0.70 0.97
3 +0.47 +0.14 �0.21 �0.15 �0.06 �0.36 +0.57 0.56
4 +1.17 +0.53 �0.14 �0.17 �0.26 �0.46 +0.77 0.80
5 0 +0.03 0 0 0 0 0 0.00
6 +0.73 +0.63 �0.54 �0.48 +0.26 +0.06 +1.43 0.56
7 �0.13 �0.06 �0.21 �1.21 �1.43 �1.76 �0.83 1.63
8 +0.77 �0.16 �0.79 +0.01 �0.33 �0.36 �0.33 1.27
9 +0.47 �0.36 �1.43 �0.95 �0.66 �1.36 +0.27 1.09
10 +0.50 �0.13 �0.80 �0.80 �0.77 �0.80 �0.80 0.70
11 +0.39 +0.32 �0.93 �0.21 �0.34 �0.61 +0.79 0.72
12 �1.67 �0.20 +0.26 �2.43 �3.62 �5.06 �1.27 2.76
13 +0.73 �1.27 �0.99 �1.15 �2.30 �2.60 +0.23 1.91
14 �1.13 +0.84 �1.56 �1.41 �0.75 �1.45 �0.03 1.82
15 +0.60 �0.13 �0.74 �1.28 �1.13 �1.45 +0.10 1.11
16 �0.20 +1.40 +0.75 +0.19 �1.27 �1.90 +1.00 1.23
17 �0.80 �1.67 �3.03 �4.84 �5.17 �5.58 �3.00 2.63
18 �1.97 �4.44 �3.58 �4.61 �4.59 �4.67 �4.67 3.96
19 +0.67 �1.03 �1.04 �1.42 �3.23 �3.73 �1.23 2.14
20 +1.08 +2.38 +1.18 +1.59 �0.76 �1.09 +1.18 1.44
∑ +2.75 �3.11 �14.39 �20.28 �26.21 �33.81 �5.25

A negative difference indicates that (for that dataset) the method in question ouperforms Sampars. The last row indicates the sum of differ-
ences. Bold values indicate those cases where the magnitude of the difference in favour of TNT is larger than the standard deviation for Sampars
scores (reported by Richer et al. (2012), included in the last column for comparison).

10 P. A. Goloboff / Cladistics (2014) 1–16



the resulting tree are performed. The process is
repeated a certain number of times (optionally, the
resulting trees can be subject to tree-fusing (Goloboff,
1999) every certain number of cycles). The advantage
over other search algorithms is that it can move to
trees that are rather different from the starting one,
yet near-optimal, in relatively little time. Thus, it is as
appropriate as the ratchet for random datasets.
The other TNT command that allows cyclic perturba-

tions is the command hybrid (introduced in TNT in
December 2005). This command is primarily intended
for hybridizing trees that are too different for tree-
fusing to be useful (see below), but also makes it possi-
ble to reinsert in an incomplete tree the missing taxa by
using a random addition sequence. Then, with the
scripting language of TNT, it is easy to repeatedly create
random groups of taxa to be pruned and reinserted in
the tree; the following example will prune off and rein-
sert on tree number 0 random sets of 20 taxa, 100 times:

loop1100 ½routine1�
rseed �;
agroup ¼ 0 �20\00;
pruntaxa0=f0g;
hybrid � 0;
stop

The first line of the loop makes sure that the ran-
dom seed is changed every time (so that a different set
of taxa is selected every iteration); the second line

selects the set of taxa (making sure that the outgroup,
taxon 0 by default, is not included); the third line
removes the taxa selected from tree 0; the fourth and
last line of the loop reinserts the taxa and swaps (with
TBR) the tree. This is another sort of ratchet, where
the cyclic perturbation is given by removing and rein-
serting subsets of taxa.
The hybrid command, however, is intended primarily

for hybridizing trees. Much of the success of Golob-
off’s (1999) strategies was in the use of tree-fusing,
which is not very useful for random datasets: tree-fus-
ing only exchanges subgroups with identical taxon
composition in both trees, but two independently
found near-optimal trees for a random dataset are
unlikely to share many groups (the same is true when
some wildcard taxa can float around very different
positions in the tree). The hybrid command will take
two input trees and identify two partitions in each
tree. These partitions will have as similar a taxon com-
position as possible, and be as evenly sized as possible
(i.e. they will preferably have about half the taxa). The
taxa not shared by the subtrees will be removed, the
two halves of the trees exchanged, and then the trees
will be completed (as explained above) and swapped
with TBR. Assume there are two trees A and B, each
with two parts: parts A1 and B1 have a similar but not
identical taxon composition, and so do parts A2 and
B2. The hybrid command will use the two trees A1A2

and B1B2 to create two new trees, A1B2, and A2B1. In
some cases, this will lead to improvements. This differs
from most other attempts at using genetic algorithms

Table 3
Average times (in seconds) for 30 runs (Sampars times taken from Richer et al., 2009). All methods run as indicated for Table 1

Dataset SAMP RAS + H XMUL PF RB + H 9 3 RB + H 9 6

1 1407.6 16.5 480.0 37.0 58.5 114.1
2 1938.2 37.1 480.0 97.3 91.8 183.0
3 2506.3 28.1 480.0 69.0 78.9 157.5
4 1341.1 21.8 480.0 50.4 69.0 137.9
5 2007.9 24.7 480.0 65.9 72.2 145.4
6 1164.3 24.5 480.0 52.5 72.5 147.3
7 4063.8 43.5 480.0 105.8 116.8 236.2
8 2884.7 39.2 480.0 81.7 101.5 205.6
9 3237.5 38.1 480.0 93.3 104.7 207.7
10 2288.0 32.2 480.0 72.1 100.1 201.8
11 3807.8 29.8 480.0 50.9 88.7 176.4
12 3668.4 65.2 480.0 125.9 137.2 270.6
13 2514.2 52.4 480.0 134.1 121.9 240.1
14 2847.1 53.6 480.0 113.1 127.2 249.3
15 4808.6 42.1 480.0 82.3 110.4 222.2
16 3268.2 36.8 480.0 61.1 92.1 179.5
17 8020.2 98.6 480.0 238.1 193.4 381.2
18 4451.4 64.7 480.0 156.0 153.2 307.6
19 6875.3 57.9 480.0 107.7 133.6 266.3
20 7149.4 44.5 480.0 76.3 109.0 215.7
Speedratio 91 982.9 97.3 939.7 931.8 916.0

Note that the XMUL routine was run with a timeout of 8 min (the times are included to allow comparison with the other routines). The last
row indicates the average speed ratio relative to Sampars (calculated for each dataset as TSAMP/TM and then averaged across datasets for each
method M).

P. A. Goloboff / Cladistics (2014) 1–16 11



in that it exchanges evenly sized partitions. Other
methods simply select some subgroup of a tree at ran-
dom, and randomly place it in some part of the other
tree, which is very unlikely to lead to improvements;
Ribeiro and Vianna (2009) also attempted to exchange
even-sized partitions first; Go€effon et al. (2006) and
Richer et al. (2009) used a hybridization that tries to
preserve relative distances between taxa, but the
exchange of even-sized partitions takes care of that
problem more naturally. The hybrid method is not as
effective as tree-fusing on well-structured datasets,
because tree-fusing attempts many exchanges and can
evaluate them quickly using incremental down-pass
optimization – so as to effect only those exchanges
that improve the tree. The hybrid command, however,
still provides a way to exchange significant portions of
the trees in the case of unstructured datasets, in com-
bination with scripts (to facilitate repeated exchanges
of tree parts). For example, the following TNT script
will effect 100 exchanges between randomly chosen
pairs of trees:

loop1100 ½routine2�
rseed �;
tgroup ¼ 0 � 2;
hybrid f0g;
stop

As shown in the following sections, when these rou-
tines are used on the random datasets, the results sig-
nificantly outperform those of Hydra or Sampars.

Hybridization

This applies cycles of the hybridization (similar to
routine 2) to initial populations of trees obtained by
RAS + TBR (100 replications, passing onto the hybrid-
izer the best 40 trees available). Each cycle of hybridiza-
tion consists of 500 exchanges between two randomly
chosen trees, and six such cycles (each starting from the
best 40 trees available) were repeated. The results are
shown in Tables 1–4 (column RAS + H). As can be
seen in Table 2, the average results are only 0.16 steps
shorter (3.11/20) than those for Sampars [but note that
Richer et al. (2012) concluded the superiority of Sam-
pars over Hydra because of an even smaller difference,
only 0.14 steps]. In 10 datasets, the average length
found by pure hybridization is better than the average
of Sampars; on the other 10 it is worse. Thus, the results
in terms of score are very similar for both methods, but
the difference in time is extremely significant: tree
hybridization with TNT takes 80 times less than
reported by Richer et al. (2012) for Sampars. If the
tree-hybridization is replaced with tree-fusing, the
results are [as anticipated by Goloboff (1999)] very
poor, with no cycle of fusing producing any significant
improvement to the original set of trees. Thus, the tree
hybridization implemented in TNT in 2005, although so
far undescribed in the literature, is an important tool to
apply to random or very poorly structured datasets.

Cyclic perturbations

The specific recommendation Goloboff (1999, 2002)
made for this type of dataset is using extensive ratchet

Table 4
Best scores found across all the runs for each method. All methods run as indicated for Table 1

Dataset Hydra SAMP RAS + H XMUL PF RB + H 9 3 RB + H 9 6

1 545 545 545 545 545 545 545
2 1354 1354 1354 1354 1354 1354 1354
3 833 833 833 833 833 833 833
4 588 587 588 587 588 587 587
5 789 789 789 789 789 789 789
6 596 596 596 596 596 596 596
7 1269 1269 1269 1269 1269 1269 1269
8 852 852 852 852 852 852 852
9 1144 1141 1143 1141 1142 1143 1141
10 721 720 720 720 720 720 720
11 542 541 541 540 540 540 540

12 1211 1208 1211 1209 1209 1208 1208
13 1515 1515 1515 1515 1515 1515 1515
14 1160 1160 1161 1160 1160 1160 1160
15 752 752 752 752 752 752 752
16 529 529 530 529 529 527 527

17 2453 2450 2454 2450 2450 2450 2450
18 1522 1521 1521 1521 1521 1521 1521
19 1013 1012 1012 1013 1012 1012 1012
20 661 659 662 661 662 660 660

Bold values indicate those cases where an individual method produced scores better than the others.

12 P. A. Goloboff / Cladistics (2014) 1–16



and drifting, easily done with the xmult command.
Thus, the first method based on cyclic perturbations to
be tested was 500 iterations of tree drifting and 500
iterations of ratchet per each starting point (initial
Wagner tree plus TBR), repeating this until a total of
8 min of search are completed. This was accomplished
with the commands “timeout 8:00; hold 1000;
xmult = rep 1000 drift 500 rat 500;”. The 8 min
allowed TNT to finish between about 100 � 50 repli-
cations, depending on the dataset. The results (shown
in Tables 1–4) are, in terms of score, clearly better
than those based on tree hybridization, producing an
average score that is 0.72 steps shorter than the aver-
age score of Sampars. The difference, however, is con-
centrated on the larger datasets (11–20): the average
diference for datasets 1–10 is 0.47 in favour of xmult,
while the average difference with Sampars for datasets
11–20 is 0.97 steps in favour of xmult. For 15 of the
20 datasets, xmult produces better average results than
Sampars, and for the other five, a worse average.
While the results are superior to those of Sampars,
these searches proceed (on average) seven times faster.
The other cyclic perturbation strategy tested on the

20 random datasets is the pfijo command, as discussed
above. The options used were “pfijo = nums 2500
chunksize 20;”, starting from a tree created by random
stepwise addition (mult = rep 1 hold 1;). Note that
pfijo saves the intermediate trees and thus requires that
maxtrees be set to more than 2500 (e.g. hold 2600).
This produced better results than ratchet and drifting,
with the average results for 16 datasets outperforming
results of Sampars. The average score difference with
Sampars is 1.01 steps in favour of pfijo, but for data-
sets 1–10 the difference is 0.47 steps, as opposed to
1.56 steps in favour of pfijo for datasets 11–20. In
addition to producing better results, this routine runs
almost 40 times faster than Sampars.

Combining cyclic perturbations with hybridization

The best results for the random datasets were
obtained by using the hybrid command to produce a
cyclic perturbation with deletion and reinsertion of
some taxa, but saving the trees at each cycle and sub-
jecting them to hybridization (RB + H columns in
Tables 1–4). This was implemented by means of a
script similar to the two routines shown above, except
that:

1 the results for each cycle of perturbation were
saved to memory, to be used for the subsequent
hybridization;

2 after a certain number of rounds (initially, 1000,
then every 250) of reinsertions of randomly pruned
taxa producing trees exceeding best trees by five steps,
the tree was returned to the last best tree (to avoid
drifting too far away from the best tree found);

3 the number of taxa pruned was a random number
between 5 and 25 instead of a fixed number;
4 global cycles were repeated, each with 4000

rounds of reinsertions first, followed by 500 rounds of
hybridization on the best 33% of the trees found so
far. The best overall tree is used as starting point for
the subsequent global cycle.
As this was implemented in scripts (rebuildit, glob-

hyb, and multirebuild), it is easy for the user to experi-
ment with additional ideas or fine tuning of the
options – the scripts can be changed with any text-
editor and run with TNT. Although the run times are
somewhat longer than for the previous routines, the
results in terms of score for this combined routine are
clearly the best. The average scores after three global
cycles are already significantly better than for
Sampars, with 16 datasets having a better average, two
ties, and two worse cases; for eight of the datasets, the
difference with Sampars (see Table 2) is larger than
the standard deviation of Sampars (reported by Richer
et al., 2012; included here in Table 2 for comparison).
After six global cycles, the combined routine produces
better average scores for 18 datasets, with one tie and
a single case (dataset 6) with a worse average (with a
minimal difference, however; only 0.06 steps beyond
the average of Sampars). In 10 of the datasets, the
difference with Sampars (Table 2) is larger than the
standard deviation of Sampars, and in nine of
the datasets, the worst out of 30 runs of the combined
routine produced tree scores below the average of
Sampars, indicating the magnitude of the difference in
effectiveness. Completing three cycles of partial build-
ing plus hybridization takes 30 times shorter than
Sampars, and completing six, about 16 times shorter.
This difference in time is well beyond what might be
expected from possible minor differences in speed of
the computers used.

Conclusions

Although most of the CS papers discussed in this
contribution were presented as important advances in
parsimony analysis, the methods they proposed are
clearly outperformed by routines that were already
available in TNT. Some of the methods discussed here
had not previously been described in any publication,
but they were implemented and documented in TNT
during 2005, so they were within the reach of the
authors of most of the papers cited here.
The contributions by the Richer laboratory and

associates (Go€effon, 2006; Go€effon et al., 2006, 2007;
Richer et al., 2009, 2012; Vazquez-Ortiz, 2011;
Vazquez-Ortiz and Rodriguez-Tello, 2011) are per-
haps the most significant in that they have eventu-
ally led to the development of programs (Hydra and

P. A. Goloboff / Cladistics (2014) 1–16 13



Sampars) that produce results of some quality on
random datasets. However, better results can be
found with appropriate TNT options, from 30 to 40
times faster.
The laboratories of Viana, Ribeiro and Blazewicz,

on the other hand, have proposed (Andreatta and
Ribeiro, 2002; Vianna, 2004; Ribeiro and Vianna,
2005, 2009; Viana et al., 2007, 2009; Blazewicz et al.,
2010) a series of methods that find trees of acceptable
quality in the case of empirical datasets, and strongly
suboptimal trees for the random datasets. None of
their programs is publicly available, but as the run-
times the authors report are well over 1000 times
longer than the runtimes needed by TNT to find com-
parable scores, the lack of availability of those pro-
grams does not seem to represent a serious loss for
biologists.
Of course, this is not to say that TNT could not be

outperformed by any possible program. Indeed, for
exact searches, White and Holland’s (2011) program
XMP does – and hopefully, for heuristic routines
applicable to large and difficult datasets, other pro-
grams will in the future. Demonstrating that a new
program convincingly outperforms some of the well-
established ones, however, will require more than
unverifiable claims and a couple casual comparisons.
At the very least, the flexibility of a program such as
TNT should be used to make it run with options that
are most appropriate for the dataset at hand – instead
of selecting the least appropriate, as the majority of
the papers discussed here seem to do. Alachiotis and
Stamatakis (2011) found similar problems with Kasap
and Benkrid’s (2010) earlier claim of acceleration of
parsimony calculations by hundreds or thousands of
times: the virtues of their FPGA implementation had
been grossly overestimated due to improper compari-
sons – Kasap and Benkrid compared their method
against a full optimization with PAUP*, but tree
searches do not use full optimizations and other pro-
grams are faster than PAUP*. Block and Maruyama
(2013) did compare FPGA against TNT, and they
concluded that their FPGA implementation (massively
parallel, but using a full down-pass per rearrangement)
was slower than TNT.
All of the CS contributions discussed here that pur-

ported to present new and useful methods for parsi-
mony analysis failed to provide adequate comparisons
against the software and methods currently used by
biologists. Some of the researchers involved in those
papers are leading figures in CS, and it is obvious
from their resum�es and achievements outside their
work on phylogenetics that they are highly qualified
scientists (e.g. Celso Ribeiro, David Bader). Unfortu-
nately the phylogeny programs they produced seem far
below the standards now used in biology. I surmise
that it is precisely that success in other aspects of their

careers that prevented them from investigating the his-
tory and current state of the field, and from dedicating
more time and energy to produce truly useful software
and methods for phylogenetic analysis. Biologists, on
the other hand, have been doing research on parsi-
mony searches for several decades now (starting with
Farris in the early 1970s), with a stamina and dedica-
tion that cannot be easily matched by occasional
forays into the field. A similar situation occurs in
model-based phylogenetic inference: all the programs
that have made a difference to actual users are not
those from occasional contributors suddenly struck by
genius, but come instead from researchers that have
dedicated their entire careers to phylogenetics (e.g. O.
Gascuel, J. Huelsenbeck, F. Ronquist, A. Stamatakis,
D. Swofford, D. Zwickl). This suggests the general
rule that the achievements of researchers in phyloge-
netic methodology tend to be inversely proportional to
their success in fields other than comparative biology.

Implementation

The scripts used for comparing against Hydra and
Sampars are available at http://www.lillo.org.ar/phylo
geny/published/scripts_CS_and_MP.zip. The methods
in those scripts have also been implemented as native in
the March 2014 version of TNT (in the rebuild and
tfuse:hybrid commands). Timings in Table 3 were pro-
duced with the scripts, because that is how the methods
were available to other researchers prior to 2014 (and it
is thus the appropriate comparison against Hydra and
Sampars). The new native implementation, however, is
25–30% faster than the scripts.

Acknowledgements

I wish to express my deep gratitude to a number
of people who were kind enough to share ideas, dis-
cuss problems, and/or criticize earlier versions of the
manuscript: Salvador Arias, James Carpenter, Santi-
ago Catalano, Mark Simmons and Claudia Szumik,
as well as an anonymous reviewer. Financial support
from CONICET (PIP 112 201101 00687) is greatly
appreciated.

References

Alachiotis, N., Stamatakis, A. 2011. FPGA acceleration of the
phylogenetic parsimony kernel? Proceedings of FPL 2011,
Conference on Field Programmable Logic and Applications,
Crete, September, pp. 1–6.

Andreatta, A.A., Ribeiro, C.C., 2002. Heuristics for the phylogeny
problem. J. Heuristics 8, 429–447.

Bader, D.A., Chandu, V., Yan, M. 2006. ExactMP: an efficient
parallel exact solver for phylogenetic tree reconstruction using

14 P. A. Goloboff / Cladistics (2014) 1–16



maximum parsimony. Proceedings of the International
Conference on Parallel Processing, 14–18 August, Columbus,
OH, pp. 65–73.

Barker, D., 2004. LVB: parsimony and simulated annealing in the
search for phylogenetic trees. Bioinformatics 20, 274–275.

Blazewicz, J., Formanowicz, P., Kedziora, P., Marciniak, P., Taron,
P., 2010. Adaptive memory programming: local search parallel
algorithms for phylogenetic tree construction. Ann. Oper. Res.
183, 75–94.

Block, H., Maruyama, T. 2013. A hardware acceleration of a
phylogenetic tree reconstruction with maximum parsimony
algorithm using FPGA. 2013 International Conference on Field-
Programmable Technology, FPT 2013, Kyoto, Japan, 9–11
December, pp. 318–321.

Carroll, H., Ebbert, M., Clement, M., Snell, Q. 2007. PSODA:
better tasting and less filling than PAUP. Proceedings of the 4th
Biotechnology and Bioinformatics Symposium, 19 and 20
October, Colorado Springs, CO, pp. 74–78.

Carroll, H.D., Teichert, A.R., Krein, J.L., Sundberg, K., Snell, Q.O.,
Clement, M.J., 2009. An open source phylogenetic search and
alignment package. Int. J. Bioinform. Res. Appl. 5, 349–364.

Chase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., et al.,
1993. Phylogenetics of seed plants: an analysis of nucleic
sequences from the plastid gene rbcL. Ann. Mo. Bot. Gard. 80,
528–580.

Farris, J.S., 1970. Methods for computing Wagner trees. Syst. Zool.
34, 21–24.

Farris, J.S. 1988. Hennig86, Program and Documentation. Port
Jefferson, New York.

Farris, J.S., Albert, V., K€allersj€o, M., Lipscomb, D., Kluge, A.,
1996. Parsimony jackknifing outperforms neighbor-joining.
Cladistics 12, 99–124.

Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates,
Sunderland, MA, pp. 580.

Felsenstein, J. 2005. PHYLIP (Phylogeny Inference Package)
Version 3.6. Distributed by the author. Department of Genome
Sciences, University of Washington, Seattle, http://evolution.
genetics.washington.edu/phylip.htm.

Fitch, W., 1971. Toward defining the course of evolution: minimal
change for a specific tree topology. Syst. Zool. 20, 406–416.

Ganapathy, G., Ramachandran, V., Warnow, T. 2003. Better hill-
climbing searches for parsimony. Proceedings of the Third
International Workshop on Algorithms in Bioinformatics (WABI
2003), 15–20 September, Budapest, Hungary, pp. 245–258.

Giribet, G., 2005. A review of “TNT: tree analysis using new
technology.”. Syst. Biol. 54, 176–178.

Go€effon, A. 2006. Nouvelles heuristiques de voisinage et m�em�etiques
pour le probl�eme Maximum de Parcimonie. Thesis de Doctorat,
�Ecole Doctorale d’Angers, pp. 1–56.

Go€effon, A., Richer, J.M., Hao, J.K., 2006. A distance-based
information preservation tree crossover for the maximum
parsimony problem. Lect. Notes Comp. Sci. 4193, 761–770.

Go€effon, A., Richer, J.M., Hao, J.K., 2007. Progressive tree
neighborhood applied to the maximum parsimony problem.
IEEE/ACM Trans. Comput. Biol. Bioinform. 5, 1–10.

Goloboff, P. 1993. Nona, a tree-searching program. Program and
documentation. Available at: http://www.lillo.org.ar/phylogeny/
Nona-PeeWee.

Goloboff, P., 1994. Character optimization and calculation of tree
lengths. Cladistics 9, 433–436.

Goloboff, P., 1996. Methods for faster parsimony analysis.
Cladistics 12, 199–220.

Goloboff, P., 1998. Tree searches under Sankoff parsimony.
Cladistics 14, 229–237.

Goloboff, P., 1999. Analyzing large data sets in reasonable times:
solutions for composite optima. Cladistics 15, 415–428.

Goloboff, P. 2002. Techniques for analyzing large data sets.
In DeSalle, R., Giribet, G., Wheeler, W. (Eds), Methods and
Tools in Biosciences and Medicine, Techniques in
Molecular Systematics and Evolution. Birkhâuser Verlag, Basel,
pp. 70–79.

Goloboff, P., 2014. Oblong, a program to analyse phylogenomic
data sets with millions of characters, requiring negligible amounts
of RAM. Cladistics, 30, 273–281.

Goloboff, P., Farris, J.S., 2001. Methods for quick consensus
estimation. Cladistics 17, S26–S34.

Goloboff, P., Pol, D., 2007. On divide-and-conquer strategies for
parsimony analysis of large data sets: Rec-I-DCM3 versus TNT.
Syst. Biol. 56, 485–495.

Goloboff, P., Farris, J.S., Nixon, K.C. 2003. TNT: Tree Analysis
using New Technology. Program and Documentation. http://
www.zmuc.dk/public/phylogeny/TNT.

Goloboff, P., Farris, J.S., Nixon, K.C., 2008. TNT, a free program
for phylogenetic analysis. Cladistics 24, 774–786.

Gregor, I., Steinbr€uck, L., McHardy, A., 2013. PTree: pattern-based,
stochastic search for maximum parsimony phylogenies. PeerJ 1,
e89. pp. 1–12.

Guindon, S., Gascuel, O., 2003. A simple, fast and accurate
algorithm to estimate large phylogenies by maximum likelihood.
Syst. Biol. 52, 696–704.

Hovenkamp, P. 2004. Review of T.N.T. – tree analysis using new
technology, Version 1.0, by P. Goloboff, J. S. Farris, K. Nixon.
Cladistics 20, 378–383.

K€allersj€o, M., Albert, V., Farris, J.S., 1999. Homoplasy increases
phylogenetic structure. Cladistics 15, 91–93.

Kasap, S., Benkrid, K., 2010. High performance phylogenetic
analysis with maximum parsimony on reconfigurable hardware.
IEEE Trans.Very Large Scale Integrat. (VLSI) Syst. 99, 1–13.

Keith, J., Adams, P., Ragan, M., Bryant, D., 2005. Sampling
phylogenetic tree space with the generalized Gibbs sampler. Mol.
Phylogenet. Evol. 34, 459–468.

Lin, Y.M. 2008. Tabu search and genetic algorithms for phylogeny
inference. PhD thesis, North Carolina University, Faculty of
Operations Research, Raleigh, NC, pp. 119.

Lin, Y.M., Fang, S.C., Thorne, J.L., 2007. Tabu search algorithm
for maximum parsimony phylogeny inference. Eur. J. Oper. Res.
176, 1908–1917.

Luckow, M., Pimentel, R., 1985. An empirical comparison of
numerical Wagner computer programs. Cladistics. 1, 47–66.

Meier, R., Ali, F.B., 2005. The newest kid on the parsimony block:
TNT (tree analysis using new technology). Syst. Entomol. 30,
179–182.

Nixon, K., 1999. The parsimony ratchet, a new method for rapid
parsimony analysis. Cladistics 15, 407–414.

Platnick, M., 1987. An empirical comparison of microcomputer
parsimony programs. Cladistics. 3, 121–144.

Ribeiro, C.C., Vianna, D.S., 2005. A GRASP/VND heuristic for the
phylogeny problem using a new neighborhood structure. Int.
Trans. Oper. Res. 12, 325–338.

Ribeiro, C.C., Vianna, D.S., 2009. A hybrid genetic algorithm for
the phylogeny problem using path-relinking as a progressive
crossover strategy. Int. Trans. Oper. Res. 16, 641–657.

Richer, J.M., Go€effon, A., Hao, J.K., 2009. A memetic algorithm
for phylogenetic reconstruction with maximum parsimony. Lect.
Notes Comp. Sci. 5483, 164–175.

Richer, J.M., Rodriguez-Tello, E., Vazquez-Ortiz, K.E., 2012.
Maximum parsimony phylogenetic inference using simulated
annealing. Proceedings of the EVOLVE 2012, Mexico City,
Mexico. Adv. Intell. Soft Comp. 175, 189–203.

Ronquist, F., 1998. Fast Fitch-parsimony algorithms for large data
sets. Cladistics 14, 387–400.

Roshan, U.W., Moret, B.M.E., Williams, T.L., Warnow, T. 2004.
Rec-I-DCM3: a fast algorithmic technique for reconstructing
large phylogenetic trees. Proceedings of the 3rd IEEE
Computational Systems Bioinformatics Conference (CSB 2004),
16–19 August, Stanford, CA, pp. 98–109.

Stamatakis, A., Ludwig, T., Meier, H., 2005. RAxML-III: a fast
program for maximum likelihood-based inference of large
phylogenetic trees. Bioinformatics 21, 456–463.

Sundberg, K., Clement, M., Snell, Q., Whiting, M., Crandall, K.
2012. Phylogenetic search through partial tree mixing. BMC
Bioinformatics 13 (Suppl.), S8–S18.

P. A. Goloboff / Cladistics (2014) 1–16 15



Swofford, D.L. 1986. Studies in numerical cladistics: phylogenetic
inference under the principle of maximum parsimony. PhD
thesis, University of Illinois at Urbana, Champaign, pp. 289.

Swofford, D.L. 2001. PAUP*: Phylogenetic Analysis using Parsimony
(* and Other Methods). Sinauer Associates, Sunderland, MA.

Swofford, D.L., Maddison, W.P., 1987. Reconstructing ancestral
character states under Wagner parsimony. Math. Biosci. 87, 199–
229.

Var�on, A., Wheeler, W., 2013. Local search for the generalized tree
alignment problem. BMC Bioinformatics 14, 66–78.

Var�on, A., Vinh, L.S., Wheeler, W.C., 2010. POY version 4:
phylogenetic analysis using dynamic homologies. Cladistics 26,
72–85.

Vazquez-Ortiz, K.E. 2011. Metaheur�ısticas para la resoluci�on del
problema de m�axima parsimonia. Tesis de Maestr�ıa, Centro de
Investigaci�on y de Estudios Avanzados del Instituto Polit�ecnico
Nacional, Laboratorio de Tecnolog�ıas de la Informaci�on, pp.
116.

Vazquez-Ortiz, K.E., Rodriguez-Tello, E. 2011. Metaheuristics for
the maximum parsimony problem. Proceedings of the Sixth
IASTED CIB 2011, November, Pittsburgh, PA. ACTA Press,
Calgary, pp. 105–113.

Viana, G.V., Gomes, F.A., Ferreira, C.E., Meneses, C.N. 2007. Uma
implementac�~ao eficiente de uma heur�ıstica de busca local em
multi-vizinhanc�as para um problema de filogenia. Proceedings of

the XXXIX Simp�osio Brasileiro de Pesquisa Operacional,
Fortaleza, Brasil, pp. 2045–2056.

Viana, G.V., Gomes, F.A., Meneses, C.N., Ferreira, C.E., 2009.
Parallelization of a multineighborhood local search
heuristic for a phylogeny problem. Int. J. Bioinform. Res.
Appl. 5, 163–177.

Vianna, D.S. 2004. Heur�ısticas h�ıbridas para o problema da
filogenia. Tese de Doutorado, Pontificia Universidad Cat�olica de
R�ıo de Janeiro, pp. 101.

White, W.T., Holland, B.R., 2011. Faster exact maximum parsimony
search with XMP. Bioinformatics 27, 1359–1367.

Williams, T., Berger-Wolf, B.M.T., Roshan, U., Warnow, T. 2004.
The relationship between maximum parsimony scores and
phylogenetic tree topologies. Technical Report TR-CS-2004-04,
Department of Computer Science, The University of New
Mexico.

Wolpert, D.H., Macready, W.G., 1997. No free lunch theorems for
optimization. IEEE Trans. Evol. Comp. 1, 67–82.

Yan, M., Bader, D. 2003. Fast character optimization in parsimony
phylogeny reconstruction. Technical Report, August 27, University
of New Mexico at Albuquerque.

Zander, R., 1995. Phylogenetic relationships of Hyophiladelphus gen.
nov. (Pottiaceae, Musci) and a perspective on the cladistic
method. Bryologist 98, 363–374.

16 P. A. Goloboff / Cladistics (2014) 1–16


