GCS# 150420-004244

Molecular Phylogenetics and Evolution 88 (2015) 93-104

Contents lists available at ScienceDirect =
Molecular Phylogenetics and Evolution 5,
journal homepage: www.elsevier.com/locate/ympev ;,2{&\,

Identifying unstable taxa: Efficient implementation of triplet-based
measures of stability, and comparison with Phyutility and RogueNaRok

Pablo A. Goloboff*, Claudia A. Szumik

@ CrossMark
Yo

Consejo Nacional de Investigaciones Cientificas y Técnicas, Unidad Ejecutora Lillo, Miguel Lillo 251, 4000 S.M. de Tucumdn, Argentina

ARTICLE INFO ABSTRACT

Article history:

Received 7 November 2014
Revised 3 April 2015
Accepted 5 April 2015
Available online 10 April 2015

Keywords:

Reduced consensus
Rogue taxa

Unstable taxa
Ambiguity
Phylogenetic analysis

This paper describes an efficient implementation of triplet-based measures of stability, in the program
TNT. The only available implementations of such measures are much slower than the present one, either
because of an inefficient implementation (Phyutility, Thor) or because the stability is evaluated with
quartets (RogueNaRok, requiring O(t*), instead of the O(t>) possible for triplets). The method to quickly
calculate triplets is applied to solving IterPCR (Pol and Escapa, 2009). It is shown that, in some cases,
IterPCR or other algorithms in the program TNT (e.g. commands prunnelsen, prunmajor, or chkmoves)
produce more informative results than analysis with RogueNaRok.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

As long recognized, taxa that can vary their position in different
optimal or near-optimal trees (wildcard, rogue, unstable, or float-
ing taxa) may decrease the resolution and support of otherwise
well supported clades. A solution often used for avoiding these
problems is pruning the unstable taxa from the trees used to calcu-
late the consensus. It must be noted that a given selection of taxa
to include in the consensus is neither correct nor incorrect — each
selection simply displays different aspects of the information from
the original trees. When some taxa are excluded, the resulting con-
sensus is totally silent regarding the phylogenetic position of the
excluded taxa, and the consensus cannot be “wrong” regarding
that which it does not say. The difference between alternative
taxon prunings - or no pruning at all - lies only in how useful
the resulting trees are, for the study in question and from the point
of view of the taxonomist.

Wilkinson (1994, 1995, 1996) was among the first to publish
some methods to deal with the problem of unstable taxa in
phylogenetic analysis. Among many other early examples,
Goloboff (1995) presented a consensus excluding a taxon that
could be placed in very different positions in the optimal trees.
The topic of wildcard and unstable taxa was one of the topics often
discussed at meetings in the early nineties. Other early discussions

* This paper has been recommended for acceptance by N. Saitou.
* Corresponding author.
E-mail address: pablogolo@yahoo.com.ar (P.A. Goloboff).

http://dx.doi.org/10.1016/j.ympev.2015.04.003
1055-7903/© 2015 Elsevier Inc. All rights reserved.

of this problem were also provided by Thorley and Wilkinson
(1999), Anderson (2001), Kearney and Clark (2003), as well as
many other papers. More recently, the topic was revisited by
Pattengale et al. (2011), Aberer and Stamatakis (2011), and
Aberer et al. (2013), who proposed several algorithms for improv-
ing group frequencies from sets of bootstrap trees.

Given that the need to identify taxa of unstable positions had
long been established, the earliest versions of TNT (version 0.2,
presented at the 19th meeting of the Willi Hennig Society in
Leiden, 2000; and version 0.8, presented at the 22nd meeting in
New York, 2003; see Stevenson, 2004, p. 84) already included a
facility to find (using brute force) taxa decreasing the resolution
of the strict consensus (in the prunnelsen command).
Subsequent versions expanded the repertoire of options for other
types of consensus or specific groups, with the commands
pruncom, prunmajor, chkmoves, and taxonomy (see Table 1 for
brief description). Some of these options were used by Goloboff
et al. (2009) in their analysis of 73,060 taxa, to produce a pruned
consensus of 71,181 taxa displaying many additional taxonomic
groups. None of the papers by Pattengale et al. (2011), Aberer
and Stamatakis (2011), or Aberer et al. (2013), cite or discuss any
of these commands and options.

TNT now also implements identification of rogue taxa in a set
of trees with Pol and Escapa’s (2009) method of IterPCR, in the
pcrprune command. IterPCR is based on checking, for each taxon,
the fraction of triplets including it that are resolved identically in
all the trees. Pol and Escapa (2009) had implemented their method
with a TNT script, which serves as a proof-of-concept but is


Pablo
Typewriter
 GCS# 150420-004244 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ympev.2015.04.003&domain=pdf
http://dx.doi.org/10.1016/j.ympev.2015.04.003
mailto:pablogolo@yahoo.com.ar
http://dx.doi.org/10.1016/j.ympev.2015.04.003
http://www.sciencedirect.com/science/journal/10557903
http://www.elsevier.com/locate/ympev

94 P.A. Goloboff, CA. Szumik/Molecular Phylogenetics and Evolution 88 (2015) 93-104

Table 1
Commands to help detect unstable taxa in TNT.

Command  Available Description Published
in TNT reference
since

prunnelsen May 2000  Use brute force (=enumeration) to  Goloboff

find taxa decreasing resolution of et al. (2008)
strict consensus

pruncom June 2004  Use brute force (=enumeration) to  Goloboff

find taxa decreasing resolution of et al. (2008)
semistrict consensus

prunmajor  March For each group in a reference tree, ~Goloboff
2007 find the most similar group in one et al. (2008)

of the trees to be summarized (as
explained in Goloboff et al., 2009:
215), keeping note of the taxa to
be deleted to make groups iden-
tical. Taxa that have to be deleted
for more groups/trees have the
highest deletion scores. Heuristic,
improves majority rule trees
chkmoves  April 2007 Perform TBR (possibly accepting Goloboff
moves suboptimal by a specified et al. (2008)
absolute and relative fit
difference; Goloboff and Farris,
2001), and list the taxa/clades that
can be moved to more (or more
distant, optionally) locations. Pro-
vides character-based assess-
ments of stability
taxonomy December  Finds taxa to prune to match Goloboff
2011 groups in a reference taxonomy and
Catalano
(2012)
pcrprune March Pol and Escapa’s (2009) method, This
2012 IterPCR contribution

computationally very inefficient, with the consequence that only
relatively small numbers of taxa and/or trees can be analyzed.

The present paper describes how Pol and Escapa’s (2009)
method can be implemented efficiently, and provides some com-
parisons with other programs that implement triplet-based mea-
sures of stability.

2. EA, IterPCR and LSI

The earliest measure of taxon stability (EA, “explicitly agree”)
was proposed by Estabrook (1992); it calculated for each terminal
the proportion of all quartets including it that are identically
resolved in each of the input trees. If a taxon moves around in
the trees, then many quartets and triplets including it will be
resolved differently in different trees. Thorley and Wilkinson
(1999) provided measures derived from Estabrook’s, or “leaf stabil-
ity indices” (LSI), and extended them to triplets (instead of quar-
tets). One of the measures of Thorley and Wilkinson (1999)
calculates for each triplet the difference in frequency between
the most common and the second most common resolution; for
each terminal, the LSI is in this case the average difference in all
the triplets including the terminal. Using triplets instead of quar-
tets to calculate the EA or LSI produces rooted measures of stability.

EA and LSI require checking all the possible triplets for the t
taxa, and the number of triplets grows rapidly with number of
taxa, approaching £3. The unrooted version of these measures,
using quartets, requires checking a number of quartets that
increases much more rapidly, with t*. Using quartets is normally
unnecessary for summarizing the results of the analysis of a single
data set, which produces trees rooted on the same outgroup taxon
- the triplet-based measures are sufficient in that context.

Pol and Escapa (2009) noted that these indices were best calcu-
lated by creating a reduced subproblem for each polytomy of

degree d in the strict consensus, iteratively recalculating values
of stability (PC, positional congruence, similar to EA) after elim-
ination of the node with worst value; they called their method
IterPCR. But, although considering a reduced subproblem of the d
descendants of a polytomous node requires much less work than
for the full taxon set t, the number of triplets to check still
increases with d>. In Pol and Escapa’s implementation of IterPCR,
the cost of checking whether a triplet is resolved identically in all
input trees increases with number of terminals (linearly or more),
so that the cost of calculating IterPCR for a polytomy increases with
at least d*. A more efficient implementation is needed for the
method to be used in larger instances.

3. Previous work
3.1. Computer programs and scripts

The first program to calculate LSI was RadCon (Thorley and
Page, 2000), but only the code for the program is available today
- existing binaries are for the PPC Mac, no longer supported. To
our knowledge, only two other programs to calculate triplet-based
measures of stability are available today. These are Phyutility, pub-
lished by Smith and Dunn (2008), and the THOR python script by
Hill and Wilkinson (available at http://code.google.com/p/phyloge-
netics/, used by Lahr et al. (2011)). Phyutility has been widely used
and cited (e.g. Struck et al., 2011; Nosenko et al., 2013).

RogueNaRok is primarily intended to implement maximization
of the Relative Bipartition Information Criterion, RBIC (defined as
the sum of all support values divided by the maximum possible
support in a fully bifurcating tree with the full taxon set; Aberer
et al., 2013). However, the RogueNaRok suite (Aberer et al., 2013)
also implements the unrooted version of the LSI, based on quartets
(no triplet implementation is included). Table 2 shows (second col-
umn) the times used by RogueNaRok to calculate the LSI for 100
trees for the classic Zilla rbcL data set (Chase et al., 1993, with
500 taxa), pruned to have varying numbers of taxa (the set of test
trees was created by running 100 random addition sequences with
no branch swapping, retaining all the trees, using a random seed of
1, with the Windows version of TNT). The implementation of quar-
tets in RogueNaRok is indeed efficient, but the time needed to cal-
culate the unrooted LSI with RogueNaRok increases much more
rapidly than what could be done with an efficient implementation
of triplets; the curve time = K t*°%5! (where K is a constant that
depends on the processor speed) fits the observed times with
1?=0.9923." Thus, the program quickly becomes impractical as
matrices have increasing numbers of taxa.

Phyutility (third column in Table 2) is significantly slower than
RogueNaRok for the numbers of taxa that could be checked, even
when it is checking triplets instead of quartets. The empirical results
for Phyutility indicate time = K t23%°1 with r? = 0.9981. Based on the
times needed on the computer used for this paper (an Intel [7-3770
processor running at 3.40 GHz) for increasing numbers of taxa, the
time needed to calculate the LSI for 100 trees of 1000 taxa would
be about 3.5 days in the case of RogueNaRok, and about 2 weeks in
the case of Phyutility. These are extrapolations, because in our
experiments RogueNaRok crashes for trees with more than 200 taxa,
and Phyutility runs out of memory for trees with more than 350.

Phyutility is in fact so slow that a simple TNT script (as in Fig. 1)
has a comparable speed (Table 2, fourth column), even when the
script is being interpreted by TNT and it uses no time-saving short-
cuts at all. This script is similar to the one used by Pol and Escapa
(2009), but calculates the LSI (instead of PC) for all the taxa
(instead of the nodes connected to a given polytomy in the

1 This was estimated with more data than shown in Table 2.


http://code.google.com/p/phylogenetics/
http://code.google.com/p/phylogenetics/

P.A. Goloboff, C.A. Szumik/Molecular Phylogenetics and Evolution 88 (2015) 93-104 95

Table 2

Time and memory usage for different programs to calculate the LSI (Thorley and
Wilkinson, 1999), both rooted (Phyutility and TNT-script, based on triplets), or
unrooted (RogueNaRok, based on quartets). TNT-script used the same routine
indicated in Fig. 1. The times are for the trees resulting from 100 random addition
sequences for Zilla, retaining all trees, with no branch-swapping, and all the other
options as default in the Windows version of TNT, pruned to contain different
numbers of taxa. The time to complete Phyutility and TNT-script runs for larger
numbers of taxa was extrapolated, from the number of triplets examined in runs
interrupted after 5-10 min (this was automatically handled by the scripts used).
RogueNaRok crashes for trees with more than 200 taxa.

Taxa TIME(s) RAM (Mbytes)

RogueNaRok  Phyutility =~ TNT-script RogueNaRok Phyutility

50 2.7 12.84 5.53 0.9 -
100 32.36 172.7 106.28 33 239
150 161.82 843.88 1179.27 74 49
200 507.02 2474.46 2113.98 125 89.5
250 - 5270.9 5519.62 - 154.6
300 - 13711.98  24937.50 - 248.3
350 - 28983.17  25422.43 - 257.4
macro=;

sil = all
var: my,sec tback danod trip[3] dif[root] mydif ;
set danod root +1;
set tback ntrees + 1;
macfloat 0 ;
collapse none ;
loop 0 ntax set dif[#1] O ; stop
hold + 2;
combine root 3 trip
ttag -;
ttag =
freqdif /+.-"trip[0-2]";
copytree +;
if ( tnodes[ ntrees ])
set mydif ( $ttag 'danod');
set dif[ "trip[0]'] += "'mydif’ ;
set dif[ "trip[1]'] += 'mydif';
set dif[ "trip[2]'] += 'mydif’ ;
end
keep 'tback’;
endcomb ;
macfloat 10 ;
sil - all ;
loop 0 ntax
set dif[#1] /=100 * (ntax * (ntax-1))/2;
quote $taxon #1: 'dif[#1]" ;
stop ;
proc/;
Fig. 1. TNT script to calculate leaf stability indices (LSI, Thorley and Wilkinson,

1999). The script enumerates all combinations of triplets and calculates the
frequency-difference consensus (Goloboff et al., 2003) for each taxon subset.

consensus); note that the script provides an approximation to the
LSI values, because the freqdif command outputs values of fre-
quency as truncated percentages, with no decimals (thus produc-
ing some differences in the third or fourth decimal).

Finally, THOR is significantly slower than Phyutility or
RogueNaRok, hardly surprising since it is a Python script inter-
preted at run-time.

3.2. Theoretical methods for faster calculations

Although the time dependence of Phyutility approaches O(t*), a
number of more theoretically oriented papers have proposed
methods to check triplets with cost O(t%). For significant numbers
of taxa, this is orders of magnitude faster than what can be done
with Phyutility, or the O(t*) used by RogueNaRok to check quartets.

It must be noted that the calculation of the triplet distance
between two trees can in fact be done faster than O(t), with com-
plexities as low as O(t?) or even O(t Int), with methods such as
those reviewed by Sand et al. (2013). However, those methods
are based on simply calculating the number of triplets not shared
by two trees, without identifying them. Examining the individual
triplets in a set of trees is required for methods like LSI and espe-
cially IterPCR (in this case, because those triplets can be stored
and later reused for calculating values of PC after exclusion of some
taxa; see Section 4.3).

Mosses (2005) noted that existing methods for identifying most
recent common ancestors in constant time (e.g. Schieber and
Vishkin, 1988; Gusfield, 1997) could be used to determine the fre-
quency of all triplet resolutions with time O(t>). However (as he
noted), other methods to identify the resolution for each triplet
in constant time may have advantages over the identification of
most recent common ancestors. Mosses (2005) proposed another
method to calculate the triplets supported by the input trees (p.
40) with cost O(t%). His method was implemented in a program
(see Appendix B, p. 93), which was apparently available at the time
when Ranwez et al. (2010) published their paper with another
supertree method based on triplets. The program, however, is no
longer available at the URL given in Mosses (2005), and used the
counts of triplet frequencies to subsequently calculate a supertree,
not the PC or LSI.

Lin et al. (2009), when describing another method to create tri-
plet supertrees, state that “for each possible triplet over the set of
all taxa [n] we count and store the frequency displayed by all the
input trees [k] in O(kn®) time”. The paper is concerned with the
more computationally demanding aspects of the method (i.e. in
finding the tree once the frequency for each triplet has been
checked in all the input trees), and then gives no details of how
the O(kn®) calculation is carried out; no program is provided with
their paper (nor is available at the “software” page of the
Computational Biology Laboratory, http://genome.cs.iastate.edu/
CBL/download/).

4. The method implemented in TNT

The implementation in TNT also uses a method which checks
each triplet in approximately constant time. The algorithm has
some similarities with methods proposed by Mosses (2005), but
is simple enough that it can be implemented even in scripts. The
Supplementary Material includes a TNT script which calculates
(for a single tree) the resolution of each triplet, graphically showing
each step of the algorithm, in less than 200 lines of code. The
method used in TNT differs from Mosses’ (2005) in not checking
triplets based on lists of descendants of different internal nodes,
but using instead marked intersecting paths. The algorithm is dis-
cussed below, using as reference the example of Fig. 2 and the
pseudocode of Fig. 3.

4.1. Basic method

Consider as example the tree in Fig. 2. To check all triplets, a tri-
ply nested loop is used; the first two loops determine the first two
taxa of the triplet, and the third level loop determines the third.
The key to accelerated calculation is in a preprocessing done after


http://genome.cs.iastate.edu/CBL/download/
http://genome.cs.iastate.edu/CBL/download/

96 P.A. Goloboff, CA. Szumik/Molecular Phylogenetics and Evolution 88 (2015) 93-104
K K K
A J A J @ J
C (o (3
A A A A A
H H
A A E A E
L L
B B B B
B [ N [
F F
] B 1 C ]
D D D
K K K
e e e e o e
Cc c C
@ A A A
H H E_l H
A E A E A E
L L L
B B B B B B
B G B s G B B G
F | F F
D E D-| F [n-|
1 D.l 1 D.l ]
D D D

Fig. 2. A tree illustrating the marked intersecting paths used to check triplet resolution in TNT. A, the path below the first taxon (A) is marked; B, the path below the second
taxon (B) is marked; C, the path below the intersection node is marked as a non-terminal taxon (@); D, the path below the third taxon (C) is followed until it crosses a marked
branch -since a branch marked as non-terminal is found first, then it can be concluded that the triplet is resolved as (C(AB)); E, following the path below taxon D, a branch
marked as B is encountered first, indicating that the triplet is resolved as (A(BD)); F, when the first marked node is the intersection point between the first two marked paths,

then a polytomy is concluded, (ABE).

the first two taxa of a triplet are selected; this allows using that
preprocessing for speeding up the calculations for the triplets
formed by those two first taxa and each of the remaining taxa.
This preprocessing is done at lines §1-§4 of the pseudocode, and
at the top row of Fig. 2. The preprocessing first unmarks all tree
nodes, then places three types of marks. First, it marks each node
below the first taxon as the taxon (Fig. 2A, or Fig. 3, line §2).
Then, it marks the nodes below the second taxon (Fig. 2B, Fig. 3 line
§3) until it finds either a marked node, or the tree root; the node at
the intersection between the two paths (i.e. the first node marked
as A encountered when coming down from taxon B in Fig. 2B) is
recorded for future identification of polytomies (using in the pseu-
docode, Fig. 3 line §3, the variable entrypoint). Last, the prepro-
cessing marks all nodes below the intersection with a code
different from each of the terminal taxa (in Fig. 2C, marked as @;
in the pseudocode, Fig. 3 line §4, numbered as numtaxa - keep
in mind that terminal taxa are numbered from 0 to number of taxa
minus 1).

After this preprocessing, it is possible to check the triplets
formed by those first two taxa and each of the remaining taxa with
successively less work required. For each of those terminals, the
first node marked found when traveling toward the root indicates
the resolution of the triplet. If it is a node marked as the first taxon,
then the triplet is resolved with the first and third taxa closer to
each other; if marked as the second, then the triplet is resolved
with the second and third taxa closer; if marked as the number
of taxa, then the triplet is resolved with first and second taxa clo-
ser. This is shown at line §6 and subsequent lines in the pseu-
docode. It is also shown in Fig. 2D for terminal taxon C (since a
node marked as root is encountered, it can be concluded that taxa
A and B are closer than they are to C), and in Fig. 2E for terminal
taxon D (since a node marked as B is encountered, it can be con-
cluded that B and D are closer than they are to D). When the first
marked node found traveling toward the root is the intersection
point (as in Fig. 2F, for ABE), then the triplet is unresolved in the
tree.

The nodes visited while traveling down each of the third mem-
ber of a triplet can also be marked, recording for each third

member already used the initial mark it leads to (with variable
ends_at in line §5 of the pseudocode). This is shown in Fig. 2E,
where the three internal nodes between terminal taxon D and
the first node marked as B are themselves marked as D when tra-
veling down. This makes it possible to check subsequent triplets by
traveling down fewer nodes. For example, after marking the nodes
between D and the first marked node below as D, and recording
that D leads to a B mark, it is possible to travel down F just one
node, encountering a node marked as D. Since D had previously
been recorded as leading to a B mark, then it can be concluded that
B and F are closer to each other than they are to A. In fact, for the
tree in Fig. 2, after the node below taxon E has been marked (in
Fig. 2F), each of the internal nodes has a mark, and each of the
seven remaining taxa (F-L) can be checked by traveling down a
single node.

This algorithm can be used for both PC and LSI, but in the case of
PC, calculations can be further speeded up. PC calculates the pro-
portion of triplets with a given terminal taxon that are resolved
identically in all the trees. Thus, when checking each triplet, as
soon as a tree is found where the triplet is unresolved, or resolved
differently from previous trees, there is no need to check the triplet
in the remaining trees.

4.2. Speeding up the preprocessing

Especially in the case of PC (and IterPCR), a significant propor-
tion of the time may be used only in unmarking every node of
every tree (line §1 of pseudocode). In the case of LSI, this time is
not so significant, because every triplet must be checked on every
tree; in the case of PC, abandoning the checking of a triplet after
looking at only the first trees means that the proportion of time
used in the inner loops is lower. Thus, saving time in the prepro-
cessing may have an actual impact on the final times.

In the pseudocode of Fig. 3, EMPTY is defined as a constant.
Instead, EMPTY can be defined as a value lower than any value a
marked node could possibly take. This requires marking nodes
with values larger than numtaxa. This can be done by adding a
value (curkey) to each of the marked nodes, increasing curkey with



P.A. Goloboff, C.A. Szumik/Molecular Phylogenetics and Evolution 88 (2015) 93-104 97

function filLLSI ( ) {
for(i=0;i<numtaxa-2; ++i){ /**taxoni**/

for(j=i+1;j<numtaxa-1;++j){/* taxon j**/

§1 set mark for every node x, of every tree a, to EMPTY
§2 for each tree a, for each node x in the path between i and root, set mark[a ]J[x ] =i
§3 for each tree a, for each node x in the path between j and intersection with previous path,
set mark[ a ][ x ] = j; record, for each tree a, node x in the intersection, as entrypoint[a ] = x
§4 for each node x in the path between entrypoint[ a ] and root, set mark[ a ][ x ] = numtaxa
for (k=j+1; k <numtaxa ; ++ k) { /** taxon k **/
countout [ 0] = countout[1] = countout[2]=0;
for(a=0;a< numtrees; ++a){ /* trees */

ends_at = ends_at_space[a];

§5 mark path, for tree a, for each node x between k and the first_node below that is non

EMPTY, setting mark[a][x] =k

§6 endcode = ends_at [ mark[ a ][ first_node ] ]
if (endcode == i || endcode == j || endcode == numtaxa )

isout = ends_at[ k] = endcode ;

else isout = ends_at [ k ] = ends_at [ endcode ] ;

if ( first_node == entrypoint[a] )

isout = ends_at [ k] = numtaxa + 1; /** a polytomy! **/

if (isout <= numtaxa )
if (isout == i) ++ countout [0 ] ;

else if (isout == j ) ++ countout [1 ] ;

else ++ countout[ 2] ;
} /= end trees **/

§7 use values of countout (frequency of each resolution) to calculate freqdiff = frequency difference

sumfreqs[ i ] += freqdiff ;
sumfreqs[ j ] += freqdiff ;
sumfreqs[ k ] += freqdiff ;
} /**end k */
} #*endj*/
} I**endi**/
for(a=0;a< numtaxa;++a)

LSl_vals[a]= 2 * sumfreqs[a ]/ ( ( numtaxa-1) * ( numtaxa-2));

return ; }

Fig. 3. C-style pseudocode implementing the algorithm for fast triplet calculation discussed in the text. The function fill_LSI uses several arrays which must have been
allocated previously. Numtrees and numtaxa indicate the number of trees and terminal taxa. The arrays used are LSI_vals (with numtaxa cells, used to store the values of LSI
for each taxon); mark (a 2-dimensional array, with numtrees x numtaxa cells); entrypoint (with numtrees cells, indicating the intersection between the paths below the
first two taxa of a triplet, i, j); countout (with 3 cells, used to indicate how many trees had the first, second, or third member of the triplet as less closely related than the other
two); sumfreqs (with numtaxa cells, must be initialized to zero before calling fill_LSI, indicating the frequency difference for the different resolutions; see Thorley and

Wilkinson, 1999). See text for additional discussion.

every round of preprocessing, so that nodes marked in previous
rounds remain set at values small enough to be ignored. EMPTY
must also be defined as a variable, which increases together with
curkey. Then, EMPTY is initialized at the beginning of the function
as —1 and curkey as 0. For every round of preprocessing, both vari-
ables are increased in numtaxa + 1. Each node mark is done with
the corresponding value of i, j, or k plus curkey. Traveling down
a terminal taxon continues until a node marked with a value
greater than EMPTY is found. The taxon to which the mark encoun-
tered corresponds is calculated by subtracting curkey from the
mark. When after several rounds of preprocessing EMPTY and cur-
key become larger than a certain limit (e.g. more than can be held
in a 32-bit number), they are reset to —1 and O respectively, and
the following round of preprocessing needs to visit each of the
nodes of each tree. By defining this limit to be a large enough num-
ber (e.g. 10°), the full visit of all tree nodes for unmarking is done
only after thousands of rounds of preprocessing, even for numbers
of taxa in the order of 10° or 10°.

With this technique for avoiding superfluous work during pre-
processing, the amount of time saved for large numbers of taxa
can be in the order of 25-30% in the case of relatively similar trees
(trees that are most parsimonious, or close to), to up to 50% in the
case of PC for very different trees.

4.3. Storing triplet information with low memory requirements

In the case of IterPCR, Pol and Escapa (2009) noted that the
individual PC values need to be recalculated again after each round
of elimination, because triplets including one of the eliminated
taxa are no longer relevant, thus changing proportions of identi-
cally resolved triplets for the taxa remaining. However, whether
a given triplet is identically resolved on all trees cannot change
with elimination of other taxa not included in the triplet, and stor-
ing this information for each triplet avoids the need to recheck all
the trees again for each round of elimination. Storing the triplets
can thus potentially greatly speed up calculation of IterPCR. It
can also speed up the calculation of PC values, by allowing triplets
not yet checked to be inferred from triplets already checked (see
Section 4.6).

The easiest, most naive way to store the triplets would be to
create a 3-dimensional array, where each cell uses a single byte.
Thus, if this variable is named ident, then ident[i, j, k] = 1 indicates
that the triplet i, j, k, is resolved identically in all trees.

However, that naive method would be a waste of memory. First,
many combinations of values of i, j, k are impossible, because the
triplets are checked in such a way (see Fig. 3) that j can never be
equal or greater than i, and k can never be equal or greater than



98 P.A. Goloboff, CA. Szumik/Molecular Phylogenetics and Evolution 88 (2015) 93-104

j. This also means that, as the values of i (the first dimension)
increase, then the number np; of possible values for index j
decreases, with npj=t — i — 2. Likewise for index k, so that np;, = -
t —j — 1. In this way, the triplet formed by taxa i, j, k (the inequal-
ity k > j > i is mandatory for this to work) is not stored at index[i, j,
k], but instead at index [i,j —i — 1, k —j — 1]. While access to the
array storing the information is more complicated, it is still an
insignificant time compared to the time needed to re-check the tri-
plet in each of the input trees, and the number of values that need
to be actually stored is 1/6 of the naive approach. This reduction in
memory corresponds to the number of possible orderings of the
three members of each triplet.

Another obvious way to save memory is by considering that
storing whether the resolution of each triplet is identical in all
the trees requires a single bit, not a byte. If index is made a
three-dimensional array, where the last dimension contains as
many 32-bit cells as needed to store the bits required, then the
information on triplet resolution can be accessed by checking
whether the corresponding bit in the array is on or off (this tech-
nique, used in RogueNaRok, is also mentioned in Aberer’s 2011
thesis, but he makes no mention of the method explained in the
previous paragraph; note also that RogueNaRok needs to store res-
olution of quartets, much more numerous than triplets). Each of
the cells in the previous case contained eight bits, but only one is
actually needed, so that the memory used reduces to 1/8 of the
1/6, or 1/48 of the memory needed by the naive approach. The
actual number of 32-bit cells to allocate is npy +31/32. The bit
representing the triplet i, j, k is located at the cell corresponding
to i, j—i—1, k—j—1/32, and within that cell, it is the bit

void set_mem_bufs ( int numtaxa)

{

inta,b,i,j;

identified by the remainder of dividing k —j — 1 in 32 (easily done
with the module operation, indicated with % in the pseudocode).
The pseudocode to allocate memory, store triplets, and subse-
quently access them is shown in Fig. 4. The actual RAM required
to store all triplets for different numbers of taxa is shown in
Fig. 5 and the last column of Table 3 (compare with last two col-
umns of Table 2; it is unclear whether Phyutility and
RogueNaRok are actually storing the triplets or the memory allo-
cated is being used for other purposes; triplet storage is not really
needed for calculation of the LSI).

Although this is in principle not needed for IterPCR, if some
method requires storing the individual resolution of a triplet, then
a similar approach using 2 bits per triplet could be used (4 values
are possible with 2 bits, enough to indicate each of 3 taxa as sister
to the others, or unresolved). Storing the individual resolution of
each triplet allows further speedups in the case of PC and IterPCR
(see Section 4.6) because it makes it possible to infer triplets not
yet checked from triplets already checked, at the expense of
memory.

4.4, Creating reduced trees

In IterPCR, the resolution of each individual polytomy in the
strict consensus tree is treated separately, by creating a reduced
subproblem. In TNT, these reduced instances are created automati-
cally, by internally creating reduced trees that represent the nodes
connected to the polytomy. That is, for a polytomy where an ances-
tral node leads to n descendants, reduced trees with n leaves (with
descendants renumbered from O to n — 1) are created. The creation

ident = allocate ( (hnumtaxa - 2 ) * sizeof (int ** ) ) ;
for(i=0;i<numtaxa-2;++i){
ident [i] = allocate ( (humtaxa-i-2) * sizeof (int *));
for(j=i+13j<numtaxa-1;++j){

a=(numtaxa-j-1);
b=1+((a+31)/32);

ident[i][j-i-1]=allocate (b * sizeof (int));}}

void storem (inti,intj,intk)

{

unsigned int the_bit ;

the_bit=1<<((k-j-1)%32);
ident[i][j-i-1][(k-j-1)/32] |= the_bit;

}

int is_triplet_identical (inti,intj,intk)

{

unsigned int the_bit;

the bit=1<<((k-j-1)%32);
if ((ident[i][j-i-11[(k-j-1)/32] & the_bit)) return1;

return 0 ;

}

Fig. 4. C-style pseudocode showing how to allocate memory (set_mem_bufs), store that a triplet i, j, k is resolved identically in all trees (storem), and to retrieve whether a
triplet is resolved identically in all trees (is_triplet_identical). Code to store how the triplet is resolved is similar, but using two bits per triplet.



P.A. Goloboff, C.A. Szumik/Molecular Phylogenetics and Evolution 88 (2015) 93-104

800 -
Phyutility
700 -

600 -

Time (sec)

500 - 5 .
400 -
o * RogueNaRok
300 - J

200 -

100+ °

RAM (Mb)

0 %

350
taxa

99

120 -

o

.
RogueNaRok
L]

100 1 o

L]
° Phyutility
80 -

20 1

TNT
0 $cocoopoO0OEON00QAN000QO000D
100 150 200 250 300 350

taxa

Fig. 5. Plot of time versus number of taxa (left), and RAM used versus number of taxa, for Phyutility, RogueNaRok, and TNT, on 100 trees, calculated as indicated in the text.
The RAM for Phyutility is an approximation, recorded from the Windows memory manager, as the amount of RAM used becomes more stable during the initial stages of the
run. The RAM used by TNT corresponds to a data set with no characters (thus using memory only to hold the taxon names and trees, just like Phyutility), storing the triplet

resolution for subsequent use (as indicated for IterPCR in Section 4.3).

Table 3

Time and RAM usage for the implementation in TNT, for both PC (Estabrook, 1992) and LSI (Thorley and Wilkinson, 1999), in the case of 100 trees with different numbers of taxa.
The times differ for moderately parsimonious trees (PT, the same tree sets used for Table 1), or random trees (rand). PT* indicates the same set of moderately parsimonious trees,
but inferring triplets from previously calculated triplet (this requires additional amounts of RAM, to store triplet resolution, as indicated in last column). Nodes/triplet is the
average number of nodes that have to be traveled in the innermost loop (at line §5 of the pseudocode, see Fig. 3), for the third member of each triplet (it does not include the
number of nodes visited during the preprocessing done for the first two members of each triplet). RAM varies according to whether program stores only whether triplet is
resolved identically in all trees (left column, a single bit per triplet needed), or whether it stores as well how the triplet is resolved (last column, two bits per triplet needed).

Taxa TIME (s) Nodes/triplet RAM (MBytes)
PC LSI PT Rand Triplet ident Triplet resol
PT PT* Rand PT Rand

50 0.03 0.02 0.02 0.03 0.06 1.96 2.26 0.17 0.17

100 0.17 0.11 0.08 0.33 0.53 217 2.52 0.36 0.38

150 0.55 0.30 0.17 0.98 1.83 2.09 2.62 0.61 0.67

200 1.22 0.63 0.39 245 4.63 2.04 2.68 0.92 1.07

250 2.16 1.22 0.72 4.89 9.19 2.05 2.73 1.32 1.62

300 4.05 2.05 1.16 8.41 16.47 2.03 2.79 1.82 2.34

350 6.19 2.97 1.8 13.28 26.86 2.05 2.83 243 3.26

of these reduced trees is straightforward and requires no special
discussion.

4.5. Performance analysis

The exact time complexity of the method is hard to calculate.
For binary trees, after preprocessing a pair of taxa, then for the
third triplet member, every tree node must be visited, on average,
about two times (first time to mark it on the way down from the
first descendant, second on the way down from the other). This
suggests a constant time for each triplet, and a total time O(£3).
But this is the case only when the first pair of taxa can be combined
with most of the remaining taxa. Consider the case of 26 taxa
named alphabetically from to A to Z; when picking pair X and Y,
then the only possible third triplet member is Z, and it is likely that
several nodes will have to be traveled until the marked path is
intersected. To further complicate matters, the time used in pre-
processing is proportionally negligible when picking the first pairs
of taxa (e.g. A and B in the example), because then many triplets
can be checked efficiently on the basis of that preprocessing
(C-Z, in the example), but proportionally significant when picking
the last pairs of taxa (such as X and Y, which can only be combined
with Z). Which of the two aspects of the calculations dominates the
process, and how this dominance changes with numbers of taxa, is

difficult to calculate exactly. The precise number of nodes visited
(both in the preprocessing, and in the final checking of triplets)
also depends on the tree topology, and even on how the taxa are
numbered in the matrix.

Thus, the time complexity can be theoretically expected to
increase approximately with O(t3), but there may be minor varia-
tions relative to this expectation. The method was thus tested
empirically, with the same set of trees used to test Phyutility and
RogueNaRok (see Table 2). The results are shown in Table 3, and
it can be seen that the difference in actual times with those pro-
grams is very significant. For (near) most parsimonious trees, the
times for the calculation of LSI fit the curve time = K t>°%7? with
?=0.998; in the case of random trees, the curve is somewhat
steeper, with time = K 312316 (#? = 0.99987) (calculation of PC is
significantly faster, as explained in Section 4.2). This difference
agrees with the fact that the number of nodes that have to be trav-
eled at the inner loop which identifies triplets remains approxi-
mately constant for near most parsimonious trees, while it
increases with the taxa in the case of random trees (see Table 3).
However, the increase in the number of nodes traveled is very
moderate (e.g. for a 4-fold increase in taxa, from 100 to 400, it is
necessary to visit 12% more nodes, from 2.515 to 2.822).
Therefore, even in the worst case (calculation of LSI on random
trees), TNT considerably outperforms Phyutility and RogueNaRok



100 P.A. Goloboff, CA. Szumik/Molecular Phylogenetics and Evolution 88 (2015) 93-104

(see Fig. 5). The work done by RogueNaRok is not strictly compara-
ble to that of TNT, because RogueNaRok checks quartets, which is
much more costly than checking triplets. Recall (from
Section 3.1) that RogueNaRok can be extrapolated to take 3.5 days
on 100 trees of 1000 taxa. When all the trees (as in the analysis of a
single data set) are rooted on the same taxon, triplets suffice to
identify unstable taxa, and with the method just described, TNT
calculates the LSI for 1000 taxa on 100 random trees in 11.3 min.

4.6. Inferring triplets from already checked triplets

The final improvement for calculating PC values can be achieved
by considering that some triplets jointly imply others. This depen-
dence has been known for a long time (e.g. Dekker, 1986), and it
has been extensively discussed specially in relation to three-item
analysis (e.g. De Laet and Smets, 1988). For example, if each of
the trees displays a(bc) and a(bd), it then follows that each of
the trees must also display a(cd). Table 4 shows all possible
combinations for two triplets that share two taxa (a, b) and display
a unique taxon per triplet (c, d).

Inferring a triplet from others avoids the need to check each of
the trees for that triplet; the time saved by using this technique is
then more significant when checking larger numbers of trees. The
time saved is also more significant as the trees are more congruent
- it is possible to infer more triplets without having to check them
on the trees. Note that, in the case of PC, the tree sets that take
longer to check are those comprising more similar trees (e.g. com-
pare the times of parsimonious versus random trees, columns PT
and rand in Table 3), so the method of inferring triplets is best
applied in precisely that situation.

A problem with checking triplets is that, as calculations
advance, there are many triplets that have been checked already;
some of those will allow inferring the triplet to be currently
checked, others will not. Finding the triplets previously checked
that allow inferring the present one may thus be more costly than
just checking the triplet on the trees.

To avoid that problem, the implementation in TNT uses a differ-
ent approach; as it confirms that a triplet is identically resolved in
all the trees, it then compares that triplet to previously resolved
triplets comprising the same first and second member and
attempts to resolve in advance triplets not yet checked. Recall
(from the pseudocode of Fig. 3) that the triplet just checked is com-
posed of taxa i, j, k. Then, previously checked triplets comprising
the same first and second member can be enumerated with a loop
where n takes values between j and k (exclusive). Inside that loop,
it is first necessary to check whether the triplet i, j, n is resolved
identically in all trees (and how). Then, the resolution of the tri-
plets i, j, k and i,j, n can be used to infer the resolution of the triplet
i,n, k(asj<n<k,itis guaranteed that the triplet i, n, k has not yet
been checked). If, applying the rules of Table 4, the triplet i, n, k can
be resolved from the other two, then its resolution is stored.

Table 4

Rules to combine triplets. Of the 9 possible combinations of resolutions for the triplets
abc and abd, 7 allow inferring an unambiguous resolution for the triplet acd and two
(marked with ?) are compatible with more than one resolution for acd.

abc abd acd
a(bd) a(dc)
a(bc) + b(ad) c(ad)
d(ab) d(ac)
a(bd) d(ac)
b(ac) + b(ad) ?
d(ab) d(ac)
a(bd) c(ad)
c(ab) + b(ad) c(ad)
d(ab) ?

As each triplet is enumerated to be examined on the trees, the
program first checks whether the triplet has been resolved in
advance from previous triplets. Recall, from Section 4.3, that res-
olution of a triplet is stored in two bits; value 0 is used to indicate
no resolution, and values 1-3 are used to indicate respectively first,
second, or third member of the triplet as sister to the rest (there-
fore, a value different from 0 at the corresponding location indi-
cates that the triplet is resolved). If the triplet has been resolved,
the examination of the trees for that triplet is skipped.

The exact time gain by using this technique is very hard to pre-
dict. When the examination of a triplet on the trees is not required
(thus saving some time at some point of the calculations), this
means that the paths below the third member of the triplet are
not marked. Therefore, subsequent triplets for the same first two
taxa that have to be checked on the trees may require visiting more
nodes (thus increasing the time for other parts of the calculation);
that subsequent triplets may or may not themselves be skipped
simply complicates analysis of performance even more.

Then, the time gain can only be examined empirically. For ran-
dom trees (data not shown), essentially no time is saved by apply-
ing this technique (in some cases, it may even be somewhat slower
than calculations without using it). For that reason, using triplet
inference in advance is optional in TNT. As can be seen in
Table 3, for sets of parsimonious trees, the calculations using triplet
inference in advance can proceed (for larger numbers of taxa) at
about twice the speed (PT* column) without using it (PT column).
As expected, the speed is increased even more significantly when
the trees are numerous and very similar; e.g. for a hundred trees
of 500 taxa, with 5-10% of the taxa placed at random positions,
and the remaining 90-95% related in exactly the same way,
calculations proceed about 4 times faster.

5. Pruning trees or matrices?

The pcrprune command in TNT includes the option of saving to
a taxon-group the taxa to prune for improving the consensus, so
this group can be subsequently used to easily produce a pruned
consensus. It must be stressed that the aim of the analysis is to find
taxa which, when pruned from the trees, will improve resolution.
This is different from eliminating the taxa from the matrix: pruning
some taxa (rogue or not) may alter the relationships between the
other taxa. Unless there are independent grounds to exclude those
taxa from the analysis (e.g. the suspicion of taxonomic misidentifi-
cation or errors in sequencing), then the character information pro-
vided by the rogue taxa must be considered. Of course, the
condition of being a rogue may help detect chimaeric or misse-
quenced taxa, but this needs to be independently verified - being
a rogue can provide in itself no grounds for exclusion from the
matrix.

That unstable taxa should not be excluded from the matrix has
long been recognized. Kearney and Clark (2003), who seem other-
wise skeptical of pruned consensus methods for dealing with the
problem of missing entries, admit that “the clear advantage these
methods have over omitting taxa is that they include all taxa that
may affect the topology of the tree”. Even earlier, Wilkinson (1995)
had made it clear that taxa which alter the relationships between
the other taxa should not be excluded from the matrix, and devised
a method to detect those taxa which (by virtue of their character-
state combinations) could not possibly affect the relationships
between the other taxa (he called this method safe taxonomic
reduction or STR; an improved heuristic was recently proposed
by Siu-Ting et al., 2015). In the reduced consensus presented by
Goloboff (1995, Fig. 63), the single rogue taxon had numerous
missing entries (its alternative locations required the same number
of steps for each character; Goloboff, 1995: 138), and it did not



P.A. Goloboff, C.A. Szumik/Molecular Phylogenetics and Evolution 88 (2015) 93-104 101

affect the relationships between the other taxa. Of course, in many
cases, “taxonomically safe” eliminations will not be sufficient to
improve the resolution of the consensus, and then the taxa respon-
sible for the decrease in resolution must instead be ignored
(pruned) when calculating consensus. Excluding from the matrix
the rogue taxa, when they affect the relationships between the
other taxa, amounts to ignoring relevant information - the charac-
ter-state combinations provided by the rogues are relevant pre-
cisely because they affect the relationships between the other
taxa. Examples of some taxa affecting the relationships between
the others have been known since the earliest days of cladistics.
This is the very reason why Wagner trees may fail to find a most
parsimonious tree (the relationships for the initially added taxa
are not the same as when taxa not yet added are considered),
and why analyses with a comprehensive representation of taxa
are now preferred over “chicken-monkey-mouse” analyses (once
acceptable, now seen as overly simplistic). A simple example of a
taxon affecting the relationships between the other taxa is in
Fig. 6A. The optimal tree displays ((ab)(cd)), but if taxon d is
excluded from the matrix, then the optimal tree displays (a(bc))
- i.e. with b closer to ¢ than it is to a, which is contrary to the
relationships supported by all the evidence taken together.
Bootstrapping the full matrix, and ignoring the position of d (i.e.
pruning d from the trees, not from the matrix), produces a well sup-
ported ((ab)c). In contrast, bootstrapping with d excluded from the
matrix produces a well supported (a(bc)). In the example, d is not a
“rogue” taxon in the sense that it does not move among alternative
positions in optimal or near-optimal trees, but the same effect can
also be produced when taxon d is a rogue. This is the case for the
modified matrix of Fig. 6B; calculating most parsimonious trees
with TNT, then finding the rogue and displaying the strict consen-
sus with indication of its possible locations (with “pcrprune [>0;
nelsen | | {0};”) produces the results shown in Fig. 6B. Running
the matrix without d displays a closer to the group c-h, instead
of closer to b as supported by all the evidence considered
simultaneously.

000000 X
100000 99
111000
011111
000111 99

X x

b c
99L_ 5 95L_p

a0 T X
[V - 2 - B -

d excluded
from matrix

all position of
taxa d ignored

0000000000
1000000000
1110000000
0111110000
0001111227

a0 T X

-0
)
03
]
]
]
= 3
= o
= o
20
© o

h ?2?2?2?2?211111 -9

position of
d ignored

d excluded
from matrix

Fig. 6. Matrices for which inclusion/exclusion of a taxon (d) modifies the
relationships between the other taxa, when analyzed under parsimony with equal
weights; bootstrap frequencies are for every character represented by 10 identical
copies. In the top matrix, d is not a rogue taxon. In the bottom matrix, d can change
its position to be sister group of different taxa/clades in the rest of the tree,
producing 7 equally parsimonious trees. The examples illustrate the difference
between excluding taxa from the trees (which displays only selected aspects of the
same input trees) and excluding taxa from the matrix (which ignores part of the
evidence provided by the observations and can thus produce different trees).

Although Aberer had stated in his thesis (Aberer, 2011) that
there is no need to exclude rogue taxa from the matrix, Aberer
and Stamatakis (2011) recommend excluding them from the
matrix and re-running the analysis. Aberer and Stamatakis demon-
strate that excluding the rogues often produces a different set of
relationships for the remaining taxa, but never explain why that
is a reason to exclude the rogues and reanalyze the pruned matrix.
It is in fact a reason to not exclude the rogues. The recommenda-
tion of Aberer and Stamatakis (2011) is against the most basic prin-
ciples of empirical inference: as much relevant evidence as
possible should be taken into account. Perhaps realizing this, in
their subsequent paper Aberer et al. (2013) refer only to pruning
taxa from trees.

6. Discussion and conclusions

The problem of improving group supports or consensus trees by
pruning taxa is a complex and multifaceted one. Deepak et al.
(2012) demonstrate that finding optimal reduced consensus trees
(sensu Wilkinson, 1994) is an NP-hard problem. The RogueNaRok
algorithms attempt to find taxa to prune maximizing two criteria:
either the number of groups at a given cutoff frequency for the con-
sensus (with the —b flag), or the sum of group supports. Ideally,
other factors should be considered as well: for example, pruning
a taxon to gain a bipartition of 2, may be deemed less desirable
than pruning a taxon to gain a bipartition setting apart a large
group. The second case, at least in most situations, will be consid-
ered as more informative; it certainly allows for easier subsequent
improvement by pruning additional taxa (as it produces two poly-
tomies of lower-order than the big polytomy left in the former
case). It is also necessary to consider the cost of pruning taxa, so
that a trade-off is made between the number of consensus nodes
gained and taxa pruned. The cost of pruning, furthermore, may
not be uniform for all taxa (the researcher may be more interested
in determining the relationships of some taxa, including taxa that
cannot be pruned at all).

But the problem is not just computational: it is also necessary to
consider whether the criteria themselves always produce the
desired result. In the case of TNT, most commands, instead of
calculating overall sums of supports or number of nodes in the
whole tree, strive to improve the resolution or support of polyto-
mous or poorly supported nodes, one at a time. In this regard,
the PC values of the reduced problem representing a polytomy in
the strict consensus are used only as a guide to try taxon (or group)
prunings, but the actual effect of pruning is assessed by recalculat-
ing the consensus. Those prunings that make the polytomy more
resolved can be displayed (or saved). This, unlike RogueNaRok,
does not use an optimality criterion over all the tree. In part, the
approach in TNT was chosen because actual taxonomic practice
requires considering aspects other than sheer number of groups
or sums of group frequencies, and it is not obvious how - or even
whether - all these aspects can be captured in a single optimality
criterion. To further complicate matters, as noted by the online
help of RogueNaRok itself, using different cutoffs for the nodes to
be optimized (i.e. the —c option) can produce substantially differ-
ent sets of rogue taxa, thus blurring the benefits of using an
optimality criterion (only the user can choose the result of one cut-
off over another, and the resulting trees are the only possible basis
to make this decision). What is obvious is that, in some contexts,
the optimality criterion used by RogueNaRok produces results that
are less than ideal, even exploring different cutoffs.

One of the cases in which the RogueNaRok results are
unsatisfactory is when a polytomy can be improved by pruning
several taxa that belong to a single group, which amounts - from
the point of view of the taxonomist - to a single pruning. This is



102 P.A. Goloboff, CA. Szumik/Molecular Phylogenetics and Evolution 88 (2015) 93-104

x 0000 X d
a 000? 9
b 0107 € f
c 0112 b e
d 0112 a
e 1?7711
f 1?21 I
g 1?2?20 '
e
A B strict consensus c pruned
(all taxa) consensus

Fig. 7. A matrix which produces 7 most parsimonious trees, for which the number
of resolved groups as optimality criterion for deciding taxon prunings finds no
possible improvement. The pruning of the group efg (present in the strict consensus
tree) with indication of the branches where this group can join the other subtree,
however, gives much more information of the groupings and topology in the input
trees.

especially clear in the case of strict consensus trees, but perhaps an
analogous criterion could be applied in the case of majority rule
consensus trees or frequencies of individual groups. As example,
consider the matrix of Fig. 7A, which produces seven equally
parsimonious trees and the strict consensus of Fig. 7B. Taxa e, f
and g form a monophyletic group in all the optimal trees, but this
group can move around the skeleton formed by the other taxa
(Fig. 7C shows the possible locations of the group efg, with the
TNT commands “pcrprune [>0; nelsen | | {0};”). Pruning only one
terminal taxon at a time, it is not possible to improve the consen-
sus shown in Fig. 7B - the three must be removed at the same time.
Since RogueNaRok seeks a tree where the support/number of

0000000000000001001001001
0000000000010000000000000
0000000000010000000000000
1000100000001110000000000
1001100000001110000000000
1100000000001000110000000
1100000000101000110000000
0010000110001000000110000
0010000111001000000110000
0010001100001000000000110
0010011100001000000000110

TQ "0 R0 T LN X

A

Strict consensus
(5MPT's)

nnnnnes=e

resolved groups over all the tree is maximum, the two additional
nodes gained when pruning the three taxa together are tied with
the two nodes lost when deleting e, f and g (efg itself, plus the
group ef), and RogueNaRok does not find any way to improve the
polytomy in Fig. 7B. These results are obtained even if using a cut-
off frequency of 100, and allowing three taxa to be pruned
simultaneously at each step, with the flags —s 3 —c¢ 100. When
using a lower cutoff (e.g. with the default —c 50), the situation is
worsened and the results of RogueNaRok fail to indicate any float-
ing group even when the group is much smaller, relative to the
region of the tree where the group can move. Aberer (2011:15)
does discuss the possibility that two taxa may have different pos-
sible locations in the trees but always moving together as sister
taxa; however, the optimality criterion used by RogueNaRok does
not properly take this into account for examples like Fig. 7. It is
not that the RogueNaRok result is “incorrect” - the problem is that
the optimality criterion maximized by RogueNaRok is not too use-
ful in this case. In contrast, the TNT commands prunnelsen and
pcrprune resolve polytomies in the consensus one at a time, by
considering the relationships of the terminals or groups connected
to the node in question. Thus, for a particular polytomy, TNT con-
siders the pruning of a group connected to the node examined as a
single prune - and then it reports that the consensus can be
improved by pruning the group efg, producing a summary as in
Fig. 7C, more useful than the RogueNaRok result. Aberer et al.
(2013:162) state that they “have already demonstrated” that their
methods “consistently identify rogues with a more harmful effect
on consensus tree support than rogues identified by triplet fre-
quency”; they provide no citation for the demonstration, but
probably refer to the thesis of Aberer (2011). However, the thesis
of Aberer (2011) does not consider IterPCR (Pol and Escapa,

a
All taxa prune O
B sum = 9.60 c sum =9.20

d
c

2 T o a0 =*a

y
L I
9
.80 Q
1.0 f
e
.80 P
1.0
o
a

prune O,R E prune O,P,Q,R
sum = 8.80 sum =7.00

Fig. 8. A matrix which produces 5 most parsimonious trees, with 4 taxa (O-R) of ambiguous placement, which can each be placed either at the base of the tree or as sister to 4
different groups. A, Strict consensus for all taxa. B, the most parsimonious tree having none of the taxa of ambiguous placement at the base; C-E, consensus and group
frequencies for different subsets of the taxa of ambiguous placement removed from the trees; in every case, sum of group frequencies is decreased, but the frequency of the

highlighted group increases. See text for additional discussion.



P.A. Goloboff, C.A. Szumik/Molecular Phylogenetics and Evolution 88 (2015) 93-104 103

2009) or any of the other methods in TNT described by Goloboff
et al. (2008). Aberer (2011) only evaluates LSI, only for terminal
taxa, only in the unrooted O(t*) version of RogueNaRok, and only
relative to the sum of frequencies for all the groups in the tree.
As observed by Wilkinson (2006) and Pol and Escapa (2009:517),
triplet measures like LSI or PC when calculated only for terminal
taxa can be misleading. For Fig. 7, taxon b has the lowest LSI, and
taxa efg the highest, when all terminal taxa are considered
(because efg covary); the situation is reversed when efg is counted
as a single unit, case in which that unit has the lowest value of LSI.

Finally, the pruning of some taxa may decrease the sum of sup-
ports over all tree groups, but increase the support for a specific
group. If the group in question is the target of the analysis, the sup-
ports calculated without those taxa may be more useful, despite
the decreased overall supports. Consider the matrix in Fig. 8; it
produces 5 equally parsimonious trees and the strict consensus
shown in Fig. 8A. The 5 trees result from different placements of
4 taxa, O-R; each of this taxa can be placed (one at a time) at the
base of the tree (as indicated in Fig. 8B with gray arrows), or as sis-
ter to 4 different groups in the other 4 trees; the fifth tree has none
of these rogues at the base, and is displayed in Fig. 8B (with group
frequencies shown on the branches). Assume that the taxonomist
is interested in resolving the middle part of the tree; when all
the taxa are considered, this group has a frequency of 0.20.
Pruning O (Fig. 8C) increases the support of the group from 0.20
to 0.40, but it decreases the sum of supports from 9.60 to 9.20.
Since the sum of supports is decreased, the criterion used by
RogueNaRok does not consider the pruning of O to be an “improve-
ment” even when it actually is. The same happens for pruning
additional taxa, P-R, which continue increasing the support of
the group and decreasing the total sum of supports (Figs. 8D-E).
RogueNaRok may take the groups in a reference tree (with the
—t option), and report the prunings needed to improve the sum
of supports for that tree; one might thus think that giving
RogueNaRok a tree with a single group - the group of interest —
would allow recognizing O-R as the taxa responsible for the low
support. However, this is not the case: the reference tree given to
RogueNaRok apparently cannot have polytomies (any attempt to
give RogueNaRok a less than fully resolved reference tree triggered
error messages or crashes). In contrast, IterPCR immediately recog-
nizes O-R as the problematic taxa, and so do the TNT commands
chkmoves, prunmajor (when using the full tree of Fig. 8B as refer-
ence), and prunnelsen. If each character is represented by several
copies, then these same results are mimicked by the trees resulting
from bootstrapping or jackknifing.

Thus, there are situations in which IterPCR or other methods in
TNT will produce more useful results than RogueNaRok. There is
little doubt, however, that the methods in TNT can be improved
as well (e.g. the algorithms only deal with rooted trees, but the lack
of resolution within a group may correspond to different rootings
of the subclade). Some of the methods used in TNT resemble
(although they are not identical to) maximum agreement subtrees
or agreement forests, and perhaps some of those methods could be
combined with the approach described here. And, of course, there
are many cases where the criterion of maximizing global group fre-
quencies produces more useful results than the methods in TNT.
One of the strengths Aberer et al. (2013) demonstrated for
RogueNaRok is that it can be used on trees with hundreds of thou-
sands of taxa; the algorithms of TNT cannot reach those limits
(neither in terms of memory, or speed), but still can easily handle
trees with a few thousand taxa.

In conclusion, it seems clear that although RogueNaRok is a big
step forward in methods for identification of rogues in very large
trees, it is still far from being the ultimate solution, and that more
flexible methods are needed. The very multiplicity of possible con-
texts in which phylogenetic trees are to be summarized, and the

fact that users may be more interested in displaying some
aspect of the input trees than others, make it unlikely that the most
useful summary of a set of trees will be always be achievable by
using only one global optimality criterion and a simple com-
mand-line program - a more interactive implementation, allowing
users to take active part in exploring different representations of
the relationships embodied in the trees, will probably be
necessary.

Acknowledgments

We thank comments from Salvador Arias and Santiago
Catalano. We also appreciated support from CONICET (PIP 112
201101 00687), and a grant (to J. Cracraft and L. Lohman, entitled
“Assembly and evolution of the Amazonian biota and its environ-
ment: an integrated approach”, from NSF, NASA, and Fundagao
de Amparo a Pesquisa do Estado de Sdo Paulo). Two reviewers
(Mark Wilkinson, and Anonymous) provided very helpful criti-
cisms of the manuscript.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ympev.2015.04.
003.

References

Aberer, A., 2011. Advanced Methods for Phylogenetic Post-Analysis. Master’s Thesis.
Technische Universitit Miinchen/Heidelberg Institute for Theoretical Studies,
Germany, January 2011, 77 pp.

Aberer, A., Stamatakis, A., 2011. A Simple and Accurate Method for Rogue Taxon
Identification. IEEE BIBM 2011, Atlanta, Georgia, USA, November 2011.

Aberer, A., Krompas, D., Stamatakis, A., 2013. Pruning rogue taxa improves
phylogenetic accuracy: an efficient algorithm and Webservice. Syst. Biol. 62,
162-166.

Anderson, ]., 2001. The phylogenetic trunk: maximal inclusion of taxa with missing
data in an analysis of the Lepospondyli (Vertebrata, Tetrapoda). Syst. Biol. 50,
170-193.

Chase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., et al., 1993. Phylogenetics of
seed plants: an analysis of nucleic sequences from the plastid gene rbcL. Ann.
Mo. Bot. Gard. 80, 528-580.

De Laet, J., Smets, E., 1988. On the three-taxon approach to parsimony analysis.
Cladistics 14, 363-381.

Deepak, A., Dong, J., Fernandez-Baca, D., 2012. Identifying rogue taxa through
reduced consensus: NP-Hardness and exact algorithms. In: ISBRA'12
Proceedings of the 8th International Conference on Bioinformatics Research
and Applications. Springer-Verlag, Heidelberg, pp. 87-89.

Dekker, M.C., 1986. Reconstruction Methods for Derivation Trees. Thesis submitted
to the Department of Mathematics and Computer Science, Vrije Universiteit,
Amsterdam.

Estabrook, G.F., 1992. Evaluating undirected positional congruence of individual
taxa between two estimates of the phylogenetic tree for a group of taxa. Syst.
Biol. 41, 172-177.

Goloboff, P., 1995. A revision of the South American spiders of the family
Nemesiidae (Araneae, Mygalomorphae). Part I: species from Peru, Chile,
Argentina, and Uruguay. Bull. Am. Mus. Nat. Hist. 224, 1-189.

Goloboff, P., Catalano, S., 2012. GB-to-TNT: facilitating creation of matrices from
GenBank and diagnosis of results in TNT. Cladistics 28, 503-513.

Goloboff, P., Farris, J., 2001. Methods for quick consensus estimation. Cladistics 17,
$26-S34.

Goloboff, P., Farris, ]., Nixon, K., 2008. TNT, a free program for phylogenetic analysis.
Cladistics 24, 774-786.

Goloboff, P., Farris, J., Kdllersjo, M., Oxelmann, B., Ramirez, M., Szumik, C., 2003.
Improvements to resampling measures of group support. Cladistics 19, 324-
332.

Goloboff, P., Catalano, S., Mirande, M., Szumik, C., Arias, J.S., Kdllersjo, M., Farris, ].S.,
2009. Phylogenetic analysis of 73,060 taxa supports major evolutionary groups.
Cladistics 25, 211-230.

Gusfield, D., 1997. Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology. Cambridge University Press, 534 pp.

Kearney, M., Clark, J., 2003. Problems due to missing data in phylogenetic analyses
including fossils: a critical review. ]. Vertebr. Paleontol. 23, 263-274.

Lahr, D., Grant, J., Nguyen, T., Lin, J.-H., Katz, L., 2011. Comprehensive phylogenetic
reconstruction of amoebozoa based on concatenated analyses of SSU-rDNA and
actin genes. PLoS ONE 6 (7), e22780. http://dx.doi.org/10.1371/
journal.pone.0022780.


http://dx.doi.org/10.1016/j.ympev.2015.04.003
http://dx.doi.org/10.1016/j.ympev.2015.04.003
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0020
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0020
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0020
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0005
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0005
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0005
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0025
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0025
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0025
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0035
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0035
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0040
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0040
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0040
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0040
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0045
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0045
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0045
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0050
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0050
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0050
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0070
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0070
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0055
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0055
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0060
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0060
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0180
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0180
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0180
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0065
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0065
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0065
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0075
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0075
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0080
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0080
http://dx.doi.org/10.1371/journal.pone.0022780
http://dx.doi.org/10.1371/journal.pone.0022780

104 P.A. Goloboff, C.A. Szumik / Molecular Phylogenetics and Evolution 88 (2015) 93-104

Lin, H.T., Gordon Burleigh, J., Eulenstein, O., 2009. Triplet supertree heuristics for the
tree of life. BMC Bioinformatics 10 (Suppl. 1), S8. http://dx.doi.org/10.1186/
1471-2105-10-S1-S8.

Mosses, C., 2005. Triplet Supertrees. Thesis presented to the Department of
Computer Science, University of Aarhus, Denmark, 6 June 2005, 94 pp.

Nosenko, T., Schreiber, F., Adamska, M., Adamski, M., Eitel, M., Hammel, ].,
Maldonado, M., Miiller, W.E.G., Nickel, M., Schierwater, B., Vacelet, ],
Wiens, M., Worheide, G., 2013. Deep metazoan phylogeny: when
different genes tell different stories. Mol. Phylogenet. Evol. 67 (2013),
223-233.

Pattengale, N., Aberer, A., Swenson, K., Stamatakis, A., Moret, B., 2011. Uncovering
hidden phylogenetic consensus in large datasets. [EEE/ACM Trans. Comput. Biol.
Bioinform. (TCBB) 8, 902-911.

Pol, D., Escapa, I.H., 2009. Unstable taxa in cladistic analysis: identification and the
assessment of relevant characters. Cladistics 25, 515-527.

Ranwez, V., Criscuolo, A., Douzery, E.J.P., 2010. SuperTriplets: a triplet-based
supertree approach to phylogenomics. Bioinformatics 26, 115-123.

Sand, A., Holt, M.K,, Johansen, J., Fagerberg, R., Brodal, G.S., Pedersen, C.N., Mailund,
T., 2013. Algorithms for computing the triplet and quartet distances for binary
and general trees. Biology - Spec. Iss. Dev. Bioinform. Algorithms 2 (4), 1189-
1209.

Schieber, B., Vishkin, U., 1988. On finding lowest common ancestors: simplifications
and parallelizations. SIAM J. Comput. 17, 1253-1262.

Siu-Ting, K., Pisani, D., Creevey, C.J., Wilkinson, M., 2015. Concatabominations:
identifying unstable taxa in morphological phylogenetics using a heuristic
extension to safe taxonomic reduction. Syst. Biol. 64, 137-143.

Smith, S.A., Dunn, C, 2008. Phyutility: a phyloinformatics utility for trees,
alignments, and molecular data. Bioinformatics 24, 715-716.

Stevenson, D.Wm., 2004. Abstracts of the 22nd annual meeting of the Willi Hennig
Society. Cladistics 20, 76-100.

Struck, T.H., Paul, C, Hill, N., Hartmann, S., Hosel, C., Kube, M., Lieb, B., Meyer, A.,
Tiedemann, R., Purschke, G., Bleidorn, C., 2011. Phylogenomic analyses unravel
annelid evolution. Nature 471, 95-98. http://dx.doi.org/10.1038/nature09864.

Thorley, J., Page, R.M., 2000. RadCon: phylogenetic tree comparison and consensus.
Bioinformatics 16, 486-487.

Thorley, J., Wilkinson, M., 1999. Testing the phylogenetic stability of early
tetrapods. J. Theoret. Biol. 200, 343-344.

Wilkinson, M., 1994. Common cladistic information and its consensus
representation: reduced Adams and cladistic consensus trees and profiles. Syst.
Biol. 43, 343-368.

Wilkinson, M., 1995. Coping with abundant missing entries in phylogenetic
inference using parsimony. Syst. Biol. 44, 501-514.

Wilkinson, M., 1996. Majority rule reduced consensus and their use in
bootstrapping. Mol. Biol. Evol. 13, 437-444.

Wilkinson, M., 2006. Identifying stable reference taxa for phylogenetic
nomenclature. Zoolog. Scr. 35, 109-112.


http://dx.doi.org/10.1186/1471-2105-10-S1-S8
http://dx.doi.org/10.1186/1471-2105-10-S1-S8
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0100
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0100
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0100
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0100
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0100
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0105
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0105
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0105
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0110
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0110
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0115
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0115
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0120
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0120
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0120
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0120
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0125
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0125
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0130
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0130
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0130
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0135
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0135
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0140
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0140
http://dx.doi.org/10.1038/nature09864
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0150
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0150
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0155
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0155
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0160
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0160
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0160
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0165
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0165
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0170
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0170
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0175
http://refhub.elsevier.com/S1055-7903(15)00099-8/h0175

	Identifying unstable taxa: Efficient implementation of triplet-based measures of stability, and comparison with Phyutility and RogueNaRok
	1 Introduction
	2 EA, IterPCR and LSI
	3 Previous work
	3.1 Computer programs and scripts
	3.2 Theoretical methods for faster calculations

	4 The method implemented in TNT
	4.1 Basic method
	4.2 Speeding up the preprocessing
	4.3 Storing triplet information with low memory requirements
	4.4 Creating reduced trees
	4.5 Performance analysis
	4.6 Inferring triplets from already checked triplets

	5 Pruning trees or matrices?
	6 Discussion and conclusions
	Acknowledgments
	Appendix A Supplementary material
	References




