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A piezoelectric composite homogenization model (PCHM) is presented in this article. A systematic
method for predicting the composite macroscopic history-dependent electromechanical response is
developed and particularized for piezoelectric fiber composites polarized with interdigitated electrodes.
As other composite models, the proposed PCHM requires appropriate constitutive equations describing
each pure constituent namely, fiber and matrix. In this work, dielectric matrix is modeled as electrome-
chanically linear while an existing non-linear phenomenological model is used for the fibers.
Additionally, a cutting-plane algorithm is developed and implemented to integrate the fibers constitutive
equation. The proposed PCHM is implemented in a previously developed ABAQUS/UEL piezoelectric shell.

To evaluate the proposed model, a representative elementary volume (REV) is analyzed with a finite
element (FE) model using an ABAQUS/UEL piezoelectric brick and the same material models for each con-
stituent of the composite. Practical examples are addressed with both, FE/REV and the proposed PCHM.
Electromechanical responses predicted with both approaches are in good agreement. Numerical results
illustrate the ability of the proposed PCHM to capture important aspects of piezoelectric devices such
as quasi-linear range, as well as both, pressure and electric-field driven depolarization. Finally, a brief
convergence analysis is performed indicating an encouraging computational performance of the pro-
posed PCHM.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Modern civilization evolution relies, to some extent, on the
development of complex and efficient systems. Accordingly, sev-
eral branches of science and technology are focused on developing
systems with the ability of assessing a given situation and respond-
ing in a suitable manner. This functionality confers outstanding
ability to fulfill the task or function for which they were designed.
Despite the wide application range and diversity of the aforemen-
tioned kind of systems, some common desired features are devised
e.g. optimum functionality, adaptation ability and integrated
design [1]. A technological area deeply involved in active systems
development is that one concerning active structures. The perfor-
mance level achieved by them is very promising for numerous
practical applications. The potential of these systems is reflected
in the number of research papers focused on the subject published
during the last decade [2–6].
Piezoelectric composites are attractive active materials. They
could be used for constructing smart devices with imminent tech-
nological applications. Because of the great potential of piezoelec-
tric composite materials in active structures and other
micro-electromechanical systems, accurate material models cap-
able of predicting their properties and response are of great inter-
est. In structural applications, engineers and designers are
generally focused on devices overall response. In those cases, the
main objective of the modeling is the prediction of macroscopic
material response avoiding an explicit constituent discretization.
This topic has recently become the subject of intensive study. In
this context, the development of reliable and efficient design and
modeling tools is of main interest.

2. Literature review

Reliable and effective calculation tools for the effective proper-
ties of piezoelectric composites are highly desirable for the design
of structural systems using this kind of materials. According to [7],
first Maxwell [8] and Wagner [9] later, did, maybe, the initial
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attempts to theoretically predict the dependence of dielectric
properties of a composite from its ceramic volume fraction. Five
decades later, Buesson and Klinsberg [10] derived equations for
the dielectric constants using series/parallel models. Subsequent
models based on the aforementioned research were developed
for piezoelectric composites. Earlier investigations were focused
on deriving the properties of piezoelectric composites consisting
of spherical inclusions immersed in a polymeric matrix. Later,
these approaches were extended to consider piezoelectric fibers
reinforced composites and others models have been proposed.

Numerous research works dealing with different approaches for
the evaluation of the effective piezoelectric composite properties
can be found in the specialized literature. Following [11], typical
methods for the determination of the macroscopic properties of
inhomogeneous media could be classified into three categories,
namely effective medium theories, theoretical bounding methods
and computational simulations. The former theories include the
Eshelby, Mori–Tanaka [12] methods, self-consistent scheme
[13,14], and other mean-field models [15]. The theoretical bound-
ing methods consist of the Hashin–Shtrikman [16] lower and
upper bounds as well as other higher-order bounds. Finally, the
computationally intensive models typically use finite element or
boundary element methods to calculate the response of a repre-
sentative volume element of piezoelectric composites [15,17–19].

Investigations developed by Wang [20], Dunn and Taya [21],
Chen [22] and Shodja et al. [23] extend the Eshelby classical solu-
tion for an infinite medium with ellipsoidal inclusions, in order to
include the piezoelectric aspect. These approaches do not take into
account the interactions between inclusions. The model presented
by Odegard [24] is based on the self-consistent Mori–Tanaka
method and the extensions proposed by Dvorak and Srinivas
[25]. Other models were proposed for the analysis of history
dependent non-linear effects in piezoelectric composite materials.
The model proposed by Tan and Tong [26] uses uniform field
model to capture the response to moderate and monotonic electric
fields. Aboudi [27,28] uses a homogenization micro-mechanic
based model for the study of the hysteretic response of a composite
reinforced with ferroelectric fiber with periodic structure. Muliana
[29] presents a simplified micro-electromechanical model averag-
ing the field variables inside the volume. The model includes the
hysteretic phenomena, repolarization of the fibers and the vis-
coelastic matrix effects. For this purpose, the model considers the
electric field as a constant parameter, expressing the non-linear
electromechanic coupling relations in terms of mechanic stress
and electric field components.

Computational intensive approaches analyze the composite
response identifying a representative elementary volume (REV),
typically denoted as unit cell. The unit cell is identified in such a
way that it exhibits the more relevant properties of the composite
microstructure. Then, it is explicitly modeled and, by imposing
suitable boundary conditions, the effective electromechanical
properties are calculated. The electric field pattern and the ability
to explode different coupling modes of piezo-composites are clo-
sely related to electrodes configuration. Bent and Hagood [15] pro-
pose a material model for piezoelectric composite laminates
polarized with interdigitated electrodes. The model uses the uni-
form field method to obtain the effective material properties. The
investigation includes comparisons with a finite element model
for different constituent material properties, volume relations
and electrodes geometric aspects. Based on this last model,
Luccioni [30] proposes a formal, systematic approach in order to
make series and parallel combinations of mechanical non-linear
models. Martinez and Artemev [18] present a computationally
intensive analysis of actuators and sensors constructed with piezo-
electric laminates polarized with interdigitated electrodes. The
analysis considers the presence of damaged fibers and the depolar-
ization near the damaged zones. The authors present a quantifica-
tion of the performance degradation associated with the fiber
damage, reporting degradation levels up to 10%. Jayendiran and
Arockiarajan [31] and Lin and Muliana [32] present simplified
microelectromechanical models and physical tests for overall hys-
teretic response of active, 1–3 and 0–3 piezocomposites samples
polarized with plate-type electrodes.

Interdigitated electrode pattern allows to exploit the maximum
piezoelectric coupling [33] when in-plane actuation is needed,
mainly in thin walled structures. Therefore, a numerical material
model for composites reinforced with piezoelectric fibers polarized
with interdigitated electrodes is presented in this paper. Based on
the general composite materials mechanical model proposed by
Luccioni [30], a systematic method for predicting the history
dependent electromechanical material behavior and properties is
developed in this work, emphasizing its relatively easy implemen-
tation and inclusion in a variety of general purpose finite element
codes within an incremental analysis framework.

3. Proposed piezoelectric composite material model

As stated in the preceding section, the proposed piezoelectric
composite homogenization model (PCHM) combines and extends
existing approaches [15,30] introducing the electromechanical
fields that take place in the considered piezoelectric composites
in order to obtain their macroscopic properties, state and internal
variables.

As other composite models, the proposed PCHM requires appro-
priate constitutive equations (CEs) of each pure constituents
namely, fiber and matrix. A variety of constitutive models for the
piezoelectric fibers, either linear or non-linear, can be included in
the proposed model structure. In the context of this paper, the phe-
nomenological ferroelectric model proposed by Huber and Fleck
[34] is implemented along with a cutting plane algorithm, proposed
in this work, to integrate the CE. This phenomenological model per-
forms quite well for uni-axial loading states, which is consistent
with fibers immersed in a soft matrix and far enough from electrodes
zones. It exhibits good balance between implementation effort and
ability to capture most of the main features of ferroelectric materi-
als, e.g. independent evolution of both, strain and polarization
states, as well as electric field and stress driven depolarization. The
proposed homogenization model admits, certainly, the possibility
of including other, more complex and reliable models.

Since various ideas and models from previous works are
employed, it is convenient to state that the main contribution of
this article is the combination of existing models, extending one
of them to be able to handle electromechanical fields and the
numerical implementation in the general purpose finite element
package ABAQUS [35]. Fig. 1 underlines the fundamental models,
ideas and their interrelations contributing to the proposed model.

3.1. Composite idealized representation

A piezoelectric composite lamina has the appearance depicted in
Fig. 2. The lamina response is the result of various phenomena and
processes taking place at different scales inside it. These scales def-
inition are rather arbitrary and conveniently adopted for the analy-
sis being performed. The fibers behavior could be analyzed with an
approach characterized by a length scale called micro-electrom
echanical. The combination of fibers with a polymeric matrix forms
the lamina whose analysis corresponds to the meso-scale. Finally,
the macro-electromechanical scale is related to the behavior of
piezoelectric laminate at structural level, when disposed as actuator
or sensor.



Fig. 1. Previous work, background and ‘‘this paper’’ contribution scheme.

Fig. 2. Single lamina of piezoelectric composite polarized with interdigitated
electrodes.

Fig. 3. Piezoelectric composite and homogenization stages.
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In this work, the matrix behavior is assumed linear-elastic
while the fiber material response is described with the classical
constitutive equations for piezoelectric media, expressed, in indi-
cial notation, by

rij ¼ CE
ijkl �kl � �r

kl

� �
� ekijEk ð1Þ

Di � Pr
i ¼ eikl �kl � �r

kl

� �
þ v�ikEk ð2Þ

where the fourth rank tensor CE
ijkl is the mechanical stiffness tensor

at constant electric field, ekij is the piezoelectric tensor and v�ik is the
dielectric module measured at constant strain. The internal state
variables �r

kl and Pr
i are the remanent strain and polarization respec-

tively. rij is the stress tensor, �kl is the strain tensor, Di is the electric
displacement vector and Ek the electric field vector.

Both, CE
ijkl and v�ik are assumed constants. However, piezoelectric

tensor is assumed to be function of Pr
i , with the following simple

functional relation:
ekij ¼
Pr

P0
e33nkninj þ e31nkaij þ

1
2

e15 niajk � njaik
� �� �

ð3Þ

where,

Pr ¼
ffiffiffiffiffiffiffiffiffi
Pr

i P
r
i

q
ð4Þ

ni ¼
Pr

i

Pr ð5Þ

aij ¼ dij � ninj ð6Þ

The meso-electromechanic scale approach allows modeling the
composite behavior based on the properties of each phase and on
geometric aspects namely volume fractions, electrode spacing and
electrode width.

Based on electrodes pattern, fiber arrangement and geometry of
the considered piezoelectric composite, a RVE or unit cell is identi-
fied. The model assumes that the unit cell could be constructed in
three stages (A, B and C). The three stages are represented in Fig. 3
where the successive composition is presented. In each stage, two
material phases are distinguished and combined to give rise to a
homogeneous equivalent material. In the next stage, this homoge-
neous material is combined with a new portion of polymeric
matrix. For clarity, the fiber is represented in black and the matrix
in white. Different gray shades are used for the resulting partial
material as the successive combinations take place. Each composi-
tion stage introduces a particular aspect which could be identified
in the composite behavior. The matrix portion parallel to the fiber
introduces stress and strain distribution effects in both longitudi-
nal and transversal directions, as function of constituent disposi-
tion and volumetric fraction. Stages A and B represent the
electromechanical response in portions far enough from the elec-
trodes. On the other side, stage C adds a portion of matrix in series
with the homogeneous material obtained with A and B stages and
introduces electric effects only relative to the electric field in the
fiber as function of the electric potential applied to the electrodes.
The amount of electric field achieving the fiber is mainly influenced
by the matrix/fiber dielectric properties relation and by electrode
fingers width and separation [15,36].

3.2. Homogenization model for the piezoelectric composite (PCHM)

A general non linear model for piezoelectric fiber reinforced
composites polarized with interdigitated electrodes is presented
in this paper. The model is obtained as a generalization of classical
mixture theory taking into account the relations between the
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strains, stresses, electric field, electric displacement and polariza-
tion in the components. The aforementioned relations are
expressed in principal symmetry directions of the material. The
homogenization model is based on Reuss and Voigt theories and
on the uniform field model proposed by Bent and Hagood [15]
for the linear range. Based on these approaches Luccioni [30] pro-
poses a systematic model to make series and parallel combinations
of non-linear mechanical models. In this work an extension of this
last approach is presented in order to include the electric field and
to take into account the non-linear electromechanical behavior of
the piezoelectric/ferroelectric composites. Although the model in
this paper is applied to fiber reinforced composites polarized with
interdigitated electrodes, the general non-linear piezoelectric com-
posite approach proposed is applicable to a wide variety of com-
posite with non-linear behavior.

In order to take into account the non-linear phenomena, e.g.
re-polarization, saturation and electromechanical coupling varia-
tion, all the field variables must be known for each material phase
at every load increment. The deformations and electric field in the
piezoelectric fibers are obtained from those of the composite by a
so-called decomposition procedure. After these quantities are cal-
culated, the constitutive equations in each constituent are inte-
grated and then, the updated composite field variables are
determined through a re-composition procedure.

The aforementioned procedure suggests the convenience of
developing a well suited organized numerical tool to systematize
the calculations. Having this objective in mind, based on Luccioni
[30] original work and extending it to include electromechanical
coupling, an alternative way of expressing the constitutive equa-
tion of each constituent is proposed in this paper. Using this
approach, the composite behavior can be obtained in a relative
simple manner introducing hypothesis similar to those of the clas-
sic mixture theory [26]. Regarding each field variable, strain, elec-
tric field, mechanical stress and electric displacement the material
could work in series or parallel, depending on the relative disposi-
tion of each phase. The relation among the values of these variables
in the components and in the composite is established based on its
nature or physical properties. In this scenario it could be stated
that the mechanical stresses and electric displacement on one side
and strains and electric field on the other side behave in analogous
way. In the directions in which the phases are disposed in series,
the stress and electric displacement maintain the same value in
both phases. In the directions in which the material phases are dis-
posed in parallel, the composite stresses and electric displacement
are obtained as combination of the quantities of each material
phase multiplied by its volume fraction. In a similar way, in the
directions in which the components are disposed in parallel, the
strains and electric field maintain the same value in both phases,
while in the directions in which components are disposed in series,
the composite values are obtained as combination of those corre-
sponding to each phase multiplied by its volume fraction. The
aforementioned behavior of the involved physical quantities and
the expressions used to calculate them are summarized in Table 1.

For the subsequent mathematical developments a symbolic
matrix–vector notation is introduced. The symbolic entities
encompass the physical tensor and vector components arranged
Table 1
Variables combination mode.

Variable Voigt (Parallel) Reuss (Series)

r
P

kcrc Same value
D

P
kcDc Same value

e Same value
P

kcec

E Same value
P

kcEc
in a convenient manner. Stress tensor components are arranged
in vector r ¼ fr11;r22;r33;r12;r13;r23gT , while engineering strain

components are ordered as e ¼ fe11; e22; e33;2e12;2e13;2e23gT .
Finally, the following arrangement results,

R ¼
r

D

� �
; C ¼

e

E

� �
ð7Þ

The constitutive equation is stated as,

r

D

� �
¼ CE �eT

e ve

" #
e

E

� �
� CE �eT

e ve

" #
er

0

� �
þ

0
Pr

� �
ð8Þ

R ¼ CC� C
er

0

� �
þ

0
Pr

� �
¼ CĈ�

0
Pr

� �
ð9Þ

In the preceding equation the following variable change was
introduced,

bC ¼ C�
er

0

� �
ð10Þ

R and C components are rearranged as follows,

R� ¼ aRRþ aCC ð11Þ
C� ¼ aCRþ aRC ð12Þ

where aR is a diagonal tensor whose diagonal elements are 1 when
the corresponding stress (strain) or electric displacement (electric
field) component work in parallel (series) or 0 when the corre-
sponding stress (strain) or electric displacement (electric field)
component work in series (parallel). In a similar manner, aC is a
diagonal tensor whose diagonal elements are 1 or 0 when the cor-
responding stress (strain) or electric displacement (electric field)
component work in series (parallel) or parallel (series). The equality
aR þ aC ¼ I holds.

With the operations defined in Eqs. (11) and (12), the variables
that maintain the same value in both phases and the composite
(C�) are separated from those that should be obtained by a combi-
nation of each phase contribution (R�). In a similar way, Eqs. (11)
and (12) can be inversely written as,

R ¼ aRR� þ aCC� ð13Þ
C ¼ aCR� þ aRC� ð14Þ

R� groups the stresses and electric displacement components acting
in parallel and strain and electric field components acting in series.
C� encompasses strain and electric field components acting in par-
allel and stress and electric displacement acting in series.
Combining Eq. (11) with Eqs. (9) and (10) the following relation is
obtained:

R� ¼ aR CbC þ 0
Pr

� �� �
þ aCbC þ aC er

0

� �
ð15Þ

After a rearrangement results,

R� ¼ aRCþ aC
� �bC þ aR 0

Pr

� �
þ aE er

0

� �
ð16Þ

In a similar manner, after combining Eq. (11) with Eqs. (8) and (9),
the following expression is obtained,

C� ¼ aCCþ aR
� �bC þ aC 0

Pr

� �
þ aR er

0

� �
ð17Þ

Clearing bC from Eq. (17), replacing it in Eq. (16) and making
some algebraic operations it results,

R� ¼ C�C� � C�aC 0
Pr

� �
� C�aR er

0

� �
þ aR 0

Pr

� �
þ aC er

0

� �
ð18Þ
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where

C� ¼ aRCþ aC
� �

aCCþ aR
� ��1 ð19Þ

The preceding equations are valid both, for the composite and
for a particular constituent. To make a distinction, sub-index c is
introduced when referring to a constituent.

Taking into consideration that R� has stress and electric dis-
placement components acting in parallel and strain and electric
field acting in series, R� corresponding to the composite is obtained
as a superposition of all material phases multiplied by its respec-
tive volume fraction,

R� ¼
X
c¼1

kcR
�
c ð20Þ

Operating,

R� ¼
X
c¼1

kcC�c

 !
C� �

X
c¼1

kc C�ca
C � aR

	 
 0
Pr

� �
c

�
X
c¼1

kc C�ca
R � aC

	 
 er

0

� �
c

ð21Þ

In the last expression, C� contains strain, stress, electric field and
electric displacement components common to all composite
components.

Expression (21) can be stated as,

R� ¼ C�C� � R�r ð22Þ

where

R�r ¼
X
c¼1

kcR
�r
c ð23Þ

and

R�rc ¼ C�ca
C � aR

	 
 0
Pr

� �
c

þ C�ca
R � aC

	 
 er

0

� �
c

ð24Þ

and

C� ¼
X
c¼1

kcC�c ð25Þ

The stresses and electric displacement corresponding to the
composite are grouped in R and can be calculated with the aid of
Eqs. (13) and (14),

R ¼ ar C�C� � R�r½ � þ aCC� ¼ aRC� þ aC
	 


C� � aRR�r ð26Þ

and

C ¼ aC C�C� � R�r½ � þ aRC� ¼ aCC� þ aR
	 


C� � aCR�r ð27Þ

From Eqs. (26) and (27) it results,

C� ¼ aCC� þ aR
� ��1

Cþ aCR�r
� �

ð28Þ

Replacing Eq. (28) in (26) the following constitutive equation
for the composite is obtained

R ¼ CC� Rr ð29Þ

where

C ¼ aRC� þ aC
� �

aCC� þ aR
� ��1 ð30Þ

and

Rr ¼ aR � CaC
� �

R�r ð31Þ

To analyze the composite behavior in presence of material
non-linear behavior, such as polarization switching and saturation,
it is necessary to know the strains and electric field for each material
phase. These variables can be determined in terms of the corre-
sponding quantities of the composite. From the condition C�c ¼ C�

and expressions (11) and (12), the following relation can be stated
for each material phase or constituent,
Cc ¼ aCR�c þ aRC�c ¼ aC C�cC
�
c � R�rc

� �
þ aRC�c

¼ aCC�c þ aR
� �

C� � aCR�rc ð32Þ

Taking into account Eq. (28),

Cc ¼ /cCþ eCr
c ð33Þ

where

/c ¼ aCC�c þ aR
� �

aCC� þ aR
� ��1 ð34Þ

andeCr
c ¼ /ca

ER�r � aCR�rc ð35Þ
3.3. Constituent material models

For the composite being modeled, two phases are present. One
corresponds to the polymeric matrix and the other one to the piezo-
electric fiber. The matrix is modeled as mechanically linear elastic
and electrically linear with no repolarization and hysteresis. On
the other side, a phenomenological thermodynamically consistent
ferroelectric model is used to describe the fiber behavior, since
switching, hysteresis and repolarization processes are intended to
be modeled.

Phenomenological ferroelectric switching models are addressed
by Cocks and McMeeking [37], Kamlah and Tsakmakis [38], Huber
and Fleck [34], Landis [39] and Semenov et al. [40], to name a few.
The phenomenological constitutive model presented by Huber and
Fleck [34] is used in this work. A complete description of the ther-
modynamical framework can be found, for instance, in [39,41]. In
general terms, the phenomenological model consists of a switching
surface and evolution rules for the internal variables. The switch-
ing surface defines the loading state and indicates when switching
processes take place.

The switching surface is defined in the space of bS ¼ S� So andbE ¼ E� Eo,

G bS; bE; Pr; er
� �

� Gc 6 0 ð36Þ

where S is the deviatoric part of stress tensor r (in indicial notation
sij ¼ rij � dijrkk=3). The quantities So and Eo define the switching
surface centre and Gc is the critical switching value. The condition
G� Gc < 0 implies that the material experiments no switching.
During repolarization G� Gc ¼ 0. Cases in which G� Gc > 0 are
inadmissible.

As proposed by Huber and Fleck [34], the following switching
surface is used in this work,

G2 ¼ a f ŝ2
e þ bE


 


2 þ b f bE � Pr � bS ¼ a f ŝ2

e þ bEi
bEi þ b f bSij

bEiP
r
j ð37Þ

where

ŝe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
bS : bSr

ð38Þ

bS ¼ S� So ð39Þ

and

bE ¼ E� Eo ð40Þ

As indicated by experimental observations, an electric field appli-
cation from a non polarized initial state can indeed introduce a
remanent strain state [42]. The third term of the switching function
(Eq. (37)) introduces a coupling between mechanical and electrical
terms and it is activated when remanent polarization takes place.
The scalars a f and b f are constants introduced for dimensional con-
sistency purposes, allowing model predictions calibration with
experimental tests.
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The switching surface centre (So;Eo) evolves according to the
following rules:

_So ¼ hsðerÞ _er ð41Þ

and

_Eo ¼ heðPrÞ _Pr ð42Þ

where hsðerÞ and heðPrÞ are scalar functions of remanent strain and
polarization, respectively. Expressions for hsðerÞ and heðPrÞ are cho-
sen so that high values of hardening are obtained when approach-
ing saturation,

hsðerÞ ¼ h0s 1�
I2
4 3� I3

I2

� �3
� �

esat

0BB@
1CCA
�ns

ð43Þ

heðPrÞ ¼ h0e 1�
Pr

 



Psat

� ��ne

ð44Þ

where I2 e I3 are the second and third invariants of remanent defor-
mation tensor er; h0e and h0s are initial hardening rates while ns and
ne are exponents regulating the hardening rate, lock-up and
response shape. Psat and esat are saturation remanent polarization
and deformation, respectively.

An associative flow rule is used for er and Pr , according to that

_Pr ¼ _k
@G

@bE ð45Þ

and

_er ¼ _k
@G

@bS ð46Þ

where _k > 0 implies switching process and _k ¼ 0 means linear
response.

To integrate the constitutive ferroelectric switching equations
corresponding to the fibers, a class of return-mapping algorithm,
called cutting-plane scheme [43] is implemented along with the
proposed composite model. The constitutive equation integration
is derived in Section 4.3.
Fig. 4. Decomposition and
3.4. Composite calculation scheme

In the preceding development and for the successive calcula-
tions corresponding to the composite, a decomposition process fol-
lowed by a composition one is clearly distinguished. Based on
nodal mechanical displacements and electric potentials, deforma-
tions and electric field are calculated. These quantities are decom-
posed up to determine the corresponding values soliciting the
piezoelectric fibers and with these values the constitutive equa-
tions are integrated. After material properties update, internal vari-
ables and state of the material, stress and electric displacement are
updated. This is the starting point to the re-composition process
for the updated composite state calculation. The process is
schematically summarized in Fig. 4 using the same colors of Fig. 3.

Due to the non linear nature of the problem (the term eCr
c of Eq.

(33) is not known in advance) the decomposition process should be
done in an iterative way [30] or with an explicit advancing scheme.
Due to the complexity and high non linearity of the problem
involved, the last approach with control of critical time step is used
in this work. Decomposition/Composition (D/C) processes are per-
formed in 3 stages. In each D/C stage two components are involved.
D/C process is detailed in the next section.

4. Numerical implementation

The proposed PCHM has been implemented and included in
ABAQUS. Since, the main contribution of the present article is
related to the constitutive model itself it could be implemented
in ABAQUS via the UMAT user subroutine. Nevertheless, at the
moment UMAT does not support electric variables in its interface.
Thus, the material model implementation has been made by
embedding it inside the USER ELEMENT subroutine (UEL) of the
piezoelectric shell finite element originally proposed by
Guennam and Luccioni [44]. The integration of the material model
with the aforementioned shell element provide a tool for modeling
piezoelectric laminates in non linear material range.

PCHM results are compared with a detailed unit cell model
(UCDM). The UCDM is an explicit FE discretization of the
piezo-composite RVE. In order to construct the FE/UCDM, a piezo-
electric solid brick finite element has also been implemented as a
composition scheme.
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UEL subroutine including the same constitutive model for pure
piezoelectric/ferroelectric materials used in the PCHM.

The whole code of the numerical tools developed and used in
this work is organized in a modular way in order to facilitate the
maintenance, debugging and code reuse. The principal modules
are:

� Piezoelectric shell module
� Piezoelectric solid 3D brick module
� Piezo-composite homogenization model (PCHM) module
� Constitutive module for pure piezoelectric/ferroelectric materi-

als using a cutting plane return mapping algorithm.

A scheme of the tools developed and implemented along this
work is depicted in Fig. 5.

Besides the homogenization model itself, two main ingredients
can be identified in this work, namely the integration of the pure
material constitutive equation and the FE implementation.

4.1. Non linear FE generalities

Non linear FE formulation is widely explained in the specialized
bibliography. Therefore, only the features necessary to explain the
framework of the numerical implementation of the proposed
model are presented. According to physics laws, for a body to be
in equilibrium, internal and external forces must be balanced.
This is expressed as,

Fint � Fext ¼ 0 ð47Þ

Physical nature of forces depends on the problem being considered.
For the case of piezoelectric analysis, the term force includes
mechanical forces and moments as well as electric charges.
Moreover, as stated in Section 3.2, mechanical stresses and electric

displacement are grouped in vector R ¼ fr;DgT and strains and
electric field are grouped in vector C ¼ fe;EgT .

In finite elements procedures, nodal displacements are defined.
For the problem being considered, nodal displacements are grouped

in vector d ¼ fu;/gT , where u includes mechanical displacements
and rotations, while / corresponds to electric potentials. The for-
mulation used and the type of element considered define a matrix
operator relating d with C,

C ¼ Bd ð48Þ

Thus, internal force vector is calculated as

Fint ¼
Z

Ve

BTRdV ð49Þ

In a non-linear quasi-static incremental analysis, equality (47)
must be verified at every load increment n. Provided that equilib-
rium at increment n is verified, the equilibrium state at nþ 1 must
be found. If there are unbalanced forces at nþ 1, a residual
Piezo-Composite
Homogeniza�on
Module (PCHM).

Cons�tu�ve Module 
for pure ferroelectric

materials (Huber and Fleck 
2001).

Piezoelectric Shell 
Module (Guennam
and Luccioni 2009).

Piezoelectric Solid 
3D Brick Module.

Can be used with…

Used to modelize
pure fibre material in:

Fig. 5. Numerical tools developed/implemented in this work.
RðkÞnþ1 ¼ FintðkÞ
nþ1 � Fext

nþ1 is obtained. Using a Newton–Raphson

approach, nodal displacement increments Ddðkþ1Þ
nþ1 are estimated

as follows:

Ddðkþ1Þ
nþ1 ¼ �

@R
@d

ðkÞ

nþ1

" #�1

Fint ðkÞ
nþ1 � Fext

nþ1

n o
ð50Þ

Updating nodal displacements as dðkþ1Þ
nþ1 ¼ dðkÞnþ1 þ Ddðkþ1Þ

nþ1 ;Fint can be

recalculated and the iteration process continues until Rðkþ1Þ
nþ1 6 TOL.

As described in ABAQUS/User Subroutines manual, UEL subrou-
tine must compute the contributions of the element to the global
system of equations [35]. For the analysis being described, UEL

must return @R
@d
ðkÞ
nþ1 or an approximation to it in AMATRX array,R

Ve
BTRdV in RHS and update all the internal variables involved in

SVARS. The calculation of the tangent matrix

@R
@d

ðkÞ

nþ1
¼
Xne

e¼1

Z
Ve

BT @R
ðkÞ
nþ1

@CðkÞnþ1

BdV ð51Þ

is needed if quadratic convergence rate is pursued. This calculation
could be cumbersome or even impossible, depending on the com-
plexities involved [45]. Alternatively, quasi-Newton methods could

be used [45]. In this work,
@RðkÞ

nþ1

@CðkÞ
nþ1

is approximated with the secant con-

stitutive tensors updated according to remanent quantities evolu-
tion. As discussed in [46,45], a very attractive alternative is a
numerical evaluation of tangent modulus. The inclusion of this
approach in the proposed formulation is being considered.

Special attention is paid in the load increment marching in order
to reduce errors and minimize convergence issues. A load increment
control and an iterative processes at structural level is performed by
ABAQUS. This iterative process is called outer iteration and is
denoted herein with counter k. On the other side, inside UEL an inner
iteration is performed at each quadrature point when integrating
the constitutive equations. The inner iteration counter is denoted
with i. ABAQUS/UEL PNEWDT parameter is used to enforce a
decrease in load incrementation if PCHM/CPRM algorithms detect
important change in internal variables values or they achieve values
outside valid limits. Moreover, if inner iteration convergence is not
achieved a decrease in load increment is imposed too.

For each load increment n and outer iteration k, nodal mechan-
ical displacements and electric potentials / are calculated by

ABAQUS. Inside UEL, strains and electric field C ¼ fe;EgT are calcu-
lated for each quadrature point. If the material used is a piezoelec-
tric composite a sequence of decomposition followed by the
integration of the constitutive equation (CE) and finally a
re-composition is triggered. If, on the other side, the material is
monolithic ferroelectric, the CE is integrated directly.

4.2. Piezo-composite homogenization model calculation sequence

As stated in Section 3.1, the composite being modeled in this
work is considered as built in three stages (A, B, and C) algorithmi-
cally denoted as (s ¼ 1;2;3). Each stage has two constituents (c1

and c2). Only stage A (s ¼ 1) has two pure constituents, i.e. pure
matrix and pure piezoelectric fiber. For stages B and C, c1 corre-
sponds to matrix pure material and c2 is the sub-composite of
the precedent stage.

When the PCPIE material is used in a FE model, C ¼ fe;EgT

obtained from Eq. (48) corresponds to the homogenized material
and the decomposition process described in Section 3.2 is used
to determine Cs¼1

c1
and Cs¼1

c2
for each pure constituent of stage

s ¼ 1 � A. After decomposition process, the constitutive model of
each pure material is used to calculate stresses r and electric
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displacements as well as remanent quantities Cr
s¼1
c2

and other
internal variables corresponding to component 2. Finally, a recom-
position process is performed to obtain the homogenized compos-
ite properties and, R ¼ fr;DgT . The Decomposition/Composition
(D/C) process is depicted in Algorithm 1. Herein it is assumed that
an initial composition has been made at loading increment n ¼ 0 in
order to obtain a starting piezo-composite material. Algorithm 1
corresponds to a intermediate loading increment n and outer iter-
ation k, not included to simplify the notation.
Algorithm 1: Decomposition/Composition (D/C) process.
4.3. Cutting plane return mapping algorithm

As stated in Section 3, in this work the model proposed by
Huber and Fleck [34] is used to describe the behavior of piezoelec-
tric fibers. Additionally, a procedure based on a cutting-plane
return mapping (CPRM) method is proposed for integration of
the constituent constitutive equations.

For the load increment nþ 1, the switching condition is checked
at each quadrature point. If Gnþ1 6 Gc , the behavior is linear, on the
other side if Gnþ1 > Gc the material experiences a switching process

and the condition Gðiþ1Þ
nþ1 ¼ Gc has to be restored using an iterative

process. Iteration counter i is used for this process.
The switching condition is expressed as

Gðiþ1Þ
nþ1 � Gc ¼ 0 ð52Þ

Eq. (52) can be linearized as follows,

Gðiþ1Þ
nþ1 ¼GðiÞnþ1þ

@G

@bS
� �ðiÞ

nþ1
: bSðiþ1Þ

nþ1 � bSðiÞnþ1

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

dbS ðiþ1Þ
nþ1

þ @G

@bE
� �ðiÞ

nþ1
� bEðiþ1Þ

nþ1 � bEðiÞnþ1

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

dbEðiþ1Þ
nþ1

þ @G
@Pr

� �ðiÞ
nþ1
� Pr

nþ1
ðiþ1Þ �Pr

nþ1
ðiÞ� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dPr
nþ1

ðiþ1Þ

þ @G
@er

� �ðiÞ
nþ1

: er
nþ1

ðiþ1Þ �er
nþ1

ðiÞ� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
der

nþ1
ðiþ1Þ

ð53Þ
Remanent polarization and strain are updated as follows:

erð Þðiþ1Þ
nþ1 ¼ erð ÞðiÞnþ1 þ Dkðiþ1Þ @G

@bS
� �ðiÞ

nþ1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
der

ð54Þ

and

Prð Þðiþ1Þ
nþ1 ¼ Prð ÞðiÞnþ1 þ Dkðiþ1Þ @G

@bE
� �ðiÞ

nþ1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
dPr

ð55Þ

where Dk ¼ _kDt.
Deviatoric stress and electric field corresponding to the center

of the switching surfaces are updated as follows:

So
ðiþ1Þ
nþ1 ¼ So

ðiÞ
nþ1 þ Dkðiþ1Þ

nþ1 hs erð ÞðiÞnþ1
@G

@bS
� �ðiÞ

nþ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dSo

ð56Þ

Eo
ðiþ1Þ
nþ1 ¼ Eo

ðiÞ
nþ1 þ Dkðiþ1Þhe Prð ÞðiÞnþ1

@G

@bE
� �ðiÞ

nþ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dEo

ð57Þ

Deviatoric relative stress tensor increment dbS is calculated
according to:

dbSðiþ1Þ
nþ1 ¼ dSðiþ1Þ

nþ1 � dSo
ðiþ1Þ
nþ1 ð58Þ

Taking into account Eqs. (1) and (56), the increment of the rel-
ative deviatoric stress is calculated as

dbSðiþ1Þ
nþ1 ¼ Dkðiþ1Þ dev �C :

@G

@bS
� �

� @eT

@Pr

� �
� @G

@bE
� �� �

� hs
@G

@bS
� �� �ðiÞ

nþ1

ð59Þ

Accordingly, relative electric field increment dbE is calculated as,

dbEðiþ1Þ
nþ1 ¼ �dEo

ðiÞ
nþ1 ¼ �DkðiÞnþ1heðPrÞðiÞnþ1

@G

@bE
ðiÞ

nþ1
ð60Þ

The ferroelectric multiplier Dk is calculated by replacing Eqs.
(53)–(60) into Eq. (52), to obtain the following:

Dkðiþ1Þ
nþ1 ¼

GðiÞnþ1�Gc

@G

@bS : dev C : @G

@bSþ @eT

@Pr � @G

@bE
� �

þhs
@G

@bS
� �

þhe
@G

@bE � @G

@bE� @G
@Pr
� @G

@bE
� �ðiÞ

nþ1

ð61Þ

Once Dkðiþ1Þ
nþ1 is calculated, remanent variables er and Pr are

updated using Eqs. (54) and (55).

Relative stress deviatoric tensor bS and relative electric field vec-

tor bE are computed with Eqs. (59) and (60).
After remanent polarization is updated, the corresponding

piezoelectric tensor can be determined using Eq. (3) and the
updated stress and electric displacement is determined.

The process is continued until the following convergence condi-
tions are satisfied:

Gðkþ1Þ � Gc




 



Gc

6 TolG

erðkþ1Þ � erðkÞ


 



esat 6 Toler

Prðkþ1Þ � PrðkÞ



 




Psat 6 TolPr

ð62Þ



(a) Schematic piezoelectric laminae.

Electrode nodes

Fiber

Matrix

(b) Unit cell detailed model (UCDM)
with solid elements.

Fig. 6. Piezo-composite.

Table 3
Phenomenological model parameters for the fibers.

Parameter Value

a ðm4 C�2Þ 0.0011

b ðm4 C�2Þ 0.2

h0e ð105 F�1 mÞ 714

h0e (GPa) 620
ne 1.4
ne 1.4
Gc (MV/m) 0.82
esat (%) 0.465
Psat ðC=m2Þ 0.24

Electrode zone

Electric field

Fig. 7. Electric field inside a unit cell. 75% fiber composite. Dielectric ratio 5.0.
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5. Model validation and practical applications

Before going further into application examples the proposed
homogenization approach is validated. After that, some application
examples are presented.

5.1. Model validation

In order to validate the proposed homogenization model, the
electromechanical response of a piezoelectric simple laminae is
predicted with two approaches, on one side, using the proposed
PCHM and, on the other side, with a micro-electromechanical
detailed model (UCDM) consisting of an explicit finite element dis-
cretization of a representative volume element of the composite
(Fig. 6). The electromechanical responses predicted by both
approaches are then compared.

The PCHM as well as the UCDM use the same constitutive mod-
els for each phase, i.e. Huber and Fleck [34] phenomenological
model for the fiber and linear electroelastic model for the matrix.

It is well known that fiber volume fraction (CFVF), dielectric
permittivity ratio (DPR) and elastic modulus ratio (EMR) between
matrix and fiber drastically affect piezoelectric composites behav-
ior and performance [15,36]. To make sure that the proposed
model is sensitive to those parameters, different values of CFVF,
DPR and EMR are considered and results of both, homogenization
and detailed models are compared.

Fiber material properties are summarized in Table 2.
Since the effect of elastic modulus ratio (EMR) and dielectric

modulus ratio (DPR) between fiber and matrix are analyzed, the
properties of the fiber are left fixed while matrix shear modulus
G and jr are changed by multiplying them by EMR and DPR,
respectively.

Table 3 summarizes parameters used for fiber phenomenologi-
cal model.

Fig. 7 presents the fiber portion of the unit cell analyzed with
the UCDM model and the electric field arising inside it. As it can
be seen, a highly 3D electric field pattern is developed under the
electrode zone, whereas the electric field is almost fully
fiber-wise aligned outside electrodes zone.
Table 2
Material properties for piezoelectric fiber.

Material property Value

Poisson ratio m 0.31
Shear modulus G (GPa) 20.8

jr ð10�7 F=mÞ 2.0

d33 ð10�12 mV�1Þ 2206

d31 ð10�12 mV�1Þ �1103

d15 ð10�12 mV�1Þ 2760
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Fig. 8. Electric displacement. Composite vs detailed model results. 75% fiber
composite. Dielectric ratio 5.0.
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Figs. 8 and 9 show the dielectric and electromechanical
response of both, PCHM and UCDM.

Figs. 8 and 9 reveal that the proposed model is able to predict
the electromechanical response in good agreement with the
detailed model. Differences in results are consistent with the fact
that high electric field in zones near electrodes could introduce
‘‘premature switching’’ that can be captured by UCDM but not by
PCHM which predicts average response.

To study the effect of fiber volume fraction (CFVF) on the com-
posite electromechanical behavior, a CFVF ¼ 40% is considered
next. The results are plotted in Figs. 10 and 11.

Comparison of Figs. 10 and 11 with Figs. 8 and 9 reflect the
‘‘degradation’’ of the composite electromechanical response as
CFVF decrease and, at the same time, a good correlation between
PCHM and UCDM results.

The effect of the dielectric permittivity ratio (DPR) on
piezo-composite electromechanical coupling is investigated.
Results corresponding to DPR = 5, 20 and 100 are presented for
both, homogenization and detailed micro-electromechanical 3D
models. The responses predicted by both approaches for the three
values of DPR considered are presented in Figs. 12 and 13 for
comparisons.

Figs. 13 and 12 suggest that the general behavior is captured by
the proposed piezo-composite model. The greatest difference in
strains values predicted by both models, correspond to voltages
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Fig. 12. Strain butterfly cycle for DPR = 5, 20 and 100. EMR = 100. 75% fiber
composite. Proposed homogenization model results.

Fig. 13. Strain butterfly cycle for DPR = 5, 20 and 100. EMR = 100. 75% fiber
composite. Microelectromechanical model results.
close to ‘‘yield voltage’’. This fact is related to the non-uniform dis-
tribution of the electric field pattern in the electrodes zone as it can
be observed in Fig. 7. Besides, Fig. 13 shows some gradual switch-
ing processes predicted by the micromechanic model while Fig. 12
indicates that the homogenization model predicts the phenomena
in an averaged way.

5.2. Polarization and working life cycle of a piezoelectric patch

A life cycle of a piezoelectric composite patch polarized with
interdigitated electrodes is numerically studied in this application



-8000

-6000

-4000

-2000

0

2000

4000

-500 0 500 1000 1500 2000 2500 3000

ST
R

AI
N

 1
1 

[M
IC

R
O

ST
R

AI
N

]_
__

VOLTAGE [VOLTS]

Initial Polarization

Working cycle

Applied compression
(at zero voltage)
Initial coupling after
depolarization
Working cycle after
repolarization

Initial coupling after 
stress depolarization

Coupling after 
initial polarization

B

C

A

D
E

Coupling after initial 
re-polarization

Fig. 16. Composite response against an initial polarization followed by a working
cycle (A). After that, a compressive stress depolarization takes place and subsequent
re-polarization (C) and working cycle after coupling recovers (B).

322 A.E. Guennam, B.M. Luccioni / Composite Structures 131 (2015) 312–324
example. The life cycle consists of an initial polling, a working cycle
and finally an eventual and non desired depolarization situation
caused by voltages beyond safe operative limits.

Fig. 14 shows that beyond de reversal electric field limit an 85%
coupling loss is predicted for this composite. This is an important
technical issue in piezoelectric actuator applications.

The proposed model is used to analyze the stress induced depo-
larization process in the piezo-composite. The response is pre-
sented in Fig. 15, where electric displacement D and remanent
polarization Pr corresponding to both, UCDM and PCHM are
compared.

The results are encouraging since, as shown in Fig. 15, good
agreement between both approaches is observed. As predicted by
monolithic material models, the composite model reflects the
stress induced depolarization. The fact that a mechanical stress
cannot destroy the polarization is also captured by the model.

The response of the composite after the stress depolarization is
depicted in Fig. 16.

As shown in Fig. 16, the initial polling phase is identical to the
former one for life cycle example. After the polling and working
cycle a, compressive stress applied under zero voltage condition
(path EB), causes a permanent deformation. If an electric field is
applied after this point, a new butterfly response is obtained, but
the predicted initial coupling is lower than that corresponding to
the initial working cycle. Fig. 16 also shows that the final coupling
after re-polling is almost equal to the initial coupling cycle along
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Fig. 15. Stress depolarization response.
path EA. However, it is observed that a permanent strain remains
in the device.

Finally, convergence of the numerical models is analyzed in this
application example. For this purpose, the piezoelectric patch is
polarized first and then, a compressive stress of 70 Mpa is applied
using amplitudes shown in Fig. 17.

The number of both, outer (global equilibrium level) as well as
inner (CE integration) iterations required for the convergence of
the pure constituent model corresponding to PCHM and UCDM
are presented in Figs. 18 and 19, respectively. As a reference, in
the second axis the remanent polarization evolution is plotted.
For the UCDM, the results correspond to a Gauss point of element
laying on longitudinal z axis of the unit cell and opposite to elec-
trode zone.

Figs. 18 and 19 show the correlation between switching activity
and inner iterations in the cutting plane algorithm. A total of 2000
load increment was used.

As it can be observed in Fig. 18, outer iterations start sooner
than their inner counterpart. This is due to the non uniform distri-
bution of electric field along the detailed model. According to that,
the switching process starts near electrodes zone while fiber por-
tion near ‘‘z’’ symmetry plane is still in an unpoled condition. As
Fig. 17. Voltage and stress amplitudes.



Fig. 18. UCDM convergence behavior – inner iterations.

Fig. 19. PCHM convergence behavior – inner iterations.

A.E. Guennam, B.M. Luccioni / Composite Structures 131 (2015) 312–324 323
expected, unlike in UCDM, inner and outer iterations in PCHM start
simultaneously, as shown in Fig. 19.

Based on Figs. 18 and 19, the convergence behavior of both
approaches can be compared. As expected, the proposed PCHM
model in conjunction with the cutting plane algorithm needs con-
siderable less iterations than the UCDM to reach convergence.

6. Conclusions

This article presents a non linear homogenization model for
piezoelectric composites polarized with interdigitated electrodes.
The model can be considered as a generalization of an existing
mechanical model for non linear mechanical composites. Starting
from the pure constituents material properties and state, the
model describes the composite electromechanical response. An
existing phenomenological model for ferroelectric/piezoelectric
materials is used for the piezoelectric fibers in this paper.
Nevertheless, it could be stated that the modular design of the
developed numerical tool allows to combine different pure consti-
tutive models with the proposed homogenization model.

A relatively easy implementation within existing finite element
codes represents, from the authors point of view, a substantial
asset of the presented approach. All the numerical experiments
carried out in the scope of this work have been performed with
ABAQUS. Since ABAQUS does not support user defined materials
with electric degrees of freedom, two user defined piezoelectric
elements, namely a solid piezoelectric brick and a piezoelectric
shell were used to host the proposed composite model.

The proposed composite model was tested by comparison with
other numerical model, i.e a detailed model of the representative
elementary volume. Comparisons of results obtained with both
approaches are encouraging. The responses predicted by PCHM
are in good agreement with the detailed FE/UCDM models ana-
lyzed. The proposed model presents a notably advantage regarding
the computational efficiency. Moreover, the composite model is
sensitive to well known composite constructive parameters.
Additionally, the proposed model presents a notably advantage
regarding the computational efficiency.

The application examples presented demonstrate the capabili-
ties of the proposed model to be used as a design tool allowing
to predict important technological issues such as operating range,
linearity limits, non linear response and overall electromechanical
coupling levels of devices using piezoelectric composites with
interdigitated electrodes. These prediction capabilities are of great
importance for the design of electromechanical systems that could
be optimized and tuned up for a variety of working conditions.
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