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The understanding of the behavior of systems of identical composite bosons has progressed significantly in
connection with the analysis of the entanglement between constituents and the development of coboson theory.
The basis of these treatments is a coboson ansatz for the ground state of a system of N pairs, stating that in
appropriate limits this state is well approximated by the account of Pauli exclusion in what would otherwise be
the product state of N independent pairs, each described by the single-pair ground state. In this work we study
the validity of this ansatz for particularly simple problems, and show that short-range attractive interactions in
very dilute limits and a single-pair ground state with very large entanglement are not enough to render the ansatz
valid. On the contrary, we find that the dimensionality of the problem plays a crucial role in the behavior of the
many-body ground state.
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I. INTRODUCTION

The fact that composite systems made up of an even
number of fermionic constituents behave in practice like
elementary bosons is long known [1–3], but a rigorous under-
standing of this behavior has only been gained recently. Such
advancement has taken place including elements of quantum
information theory, in particular entanglement theory [4,5],
but has been especially accomplished by the development of
coboson theory [6–8]. This formalism, originally designed to
study phenomena such as excitations in a crystalline solid
by means of excitons or superconductivity through Cooper
pairs, dealing with pairs of fermions as compound bosons [8],
was also successfully applied to a larger variety of systems
[9], including molecular Bose-Einstein condensates (BECs)
in ultracold interacting Fermi gases [10–13]. Manifestations
of the effects of Pauli exclusion in composite bosons made of
fermions have been analyzed for thought interference experi-
ments in Refs. [14,15] and for potential implementations with
condensates in Ref. [16]. We note, however, that although the
coboson treatment provides a good approach for the descrip-
tion of Feshbach molecules [10–12], its application for the
understanding of atomic Cooper pairs is nontrivial [17], and
it remains unclear whether the description of the BEC-BCS
crossover in terms of coboson theory is possible.

Precisely because of the relevance of coboson theory and
its success in describing several physical phenomena, an
understanding of its regime of validity is especially desirable.
In particular, it is not evident when a key element of the theory,
namely, the so-called coboson ansatz for the ground state,
provides an appropriate description of the zero-temperature
state of a system of N pairs. The ansatz approximates the
ground state of N composite bosons by a state which is given
by the repeated action over the vacuum of an operator creating
one pair in the single-pair ground state, including a proper

additional normalization to account for the effect of Pauli
exclusion. Loosely speaking, one expects this ansatz to be
valid when the constituent interactions are sufficiently short
ranged, the system is sufficiently dilute, and the ground state
for a single pair is highly entangled [8,11].

In this work we show in a particularly simple example
that these conditions are not sufficient for the ansatz to be
valid, and that the dimensionality of the problem actually
plays a key role. This is due to the fact that one-dimensional
models, even with short-range interactions, can lead to long-
range correlations in the ground states of several pairs. It is
important to stress that coboson theory was not developed for
one-dimensional (1D) problems, and that our observations do
not undermine the importance of the theory. On the contrary,
we expect to contribute to the usefulness of this theoretical
body of work by helping to establish more clearly its limits of
applicability.

In particular, the model we consider was motivated by the
one introduced in Ref. [14], where the coboson ansatz was
taken as the initial state to study the effects of compositeness
in a thought interference experiment. Although the use of
the coboson ansatz in Ref. [14] is not at all essential for
the analysis presented, the article can convey the mistaken
impression that the ansatz is valid for the system consid-
ered, namely, a 1D chain of discrete sites along which the
constituent fermions can hop, and including a short-range
interaction between fermions of different species such that
pairs are always strongly bound.

Here, we analyze this model in the situation where the
coboson ansatz is expected to work best, namely, for max-
imum entanglement between constituents, and focusing on
the simplest case of two pairs. We show that as the particle
density becomes lower, the coboson state does not approach
the true ground state of the system, and indeed the fidelity
decreases, reaching a limiting value of 8/π2. We also show
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that extending this model to a “ladder” with a fixed width
of n sites, to allow pairs to cross each other, does not sig-
nificantly modify this result. The reason for this behavior
is the long-range character of the correlations appearing for
one-dimensional settings, which cannot be captured by the
ansatz. On the contrary, when the system is made truly two
dimensional, the coboson ansatz becomes a good description
of the system as long as it is dilute enough.

This article is organized as follows: In Sec. II we introduce
briefly some very basic elements of the coboson formalism. In
Sec. III we give the details of the model under consideration,
the single-pair ground manifold and the effective Hamiltonian
for the ground manifold of N pairs. In Sec. IV we give the
exact solution for the ground state of two pairs and compare
it with the coboson ansatz, observing that the fidelity with the
true ground state decreases as the number of sites is increased.
Section V presents an analysis of the two-dimensional gen-
eralization of the system, showing that the coboson ansatz
behaves well in this case, and in Sec. VI we provide a dis-
cussion of the results and summarize our conclusions. Finally,
in the Appendix we include a short study of the behavior of
the energy of two pairs for the two-dimensional case.

II. THE COBOSON GROUND STATE

We consider a system of identical composite bosons, each
made of two distinguishable fermions. This section provides
a brief overview of the coboson ansatz for the ground state of
N such pairs. For a more complete introduction to coboson
theory, we refer the reader to Refs. [4–6,8,18]. For a given
Hamiltonian corresponding to a single pair, the ground state
|ψ〉 defines the coboson creation operator c†, namely, the
operator which acts on the vacuum creating a single pair in the
ground state, |ψ〉 = c†|0〉. In the Schmidt basis, this operator
can be written as [4]

c† =
S∑

α=1

√
λα a†

αb†
α (1)

with

λ1 � λ2 � · · · � 0 (2)

the Schmidt coefficients satisfying

S∑
α=1

λα = 1 (3)

and S the (finite or infinite) Schmidt rank. The operators a†
α

and b†
α create one particle of kind a or b, respectively, in the

corresponding Schmidt modes α. The operator c obeys the
following commutation relations:

[c, c] = [c†, c†] = 0, [c, c†] = 1 − �, (4)

where

� =
S∑

α=1

λα (a†
αaα + b†

αbα ) . (5)

One can write a normalized state of N composite bosons
obtained after acting N times with the coboson creation

operator in the form [4,6]

|N〉 = (c†)N

√
N!χN

|0〉, (6)

where χN is the compositeness normalization factor
[4,6,18,19] which depends on the Schmidt coefficients and
which accounts for the subnormalization of the state resulting
in adding N bifermions to the vacuum. For composite bosons
made of two fermions the normalization factor takes the form
[4]

χN = N!
S∑

pN >pN−1>···>p1

λp1λp2 · · · λpN , (7)

which is the elementary symmetric polynomial [20]. The idea
that the state |N〉 provides a good approximate description of
the ground state of a system of N cobosons is a key element
of coboson theory, and we refer to this in the following as the
coboson ansatz.

For the case N = 2, the normalization coefficient is equal
to χ2 = 1 − P, with P = ∑

α λ2
α � 1 the purity of the reduced

density matrix of one of the constituent particles of a pair
in the ground state |ψ〉. In general, the behavior of pairs
as approximate elementary bosons can be related with the
normalization coefficients, and bosonic behavior is recovered
when χN/χN−1 � 1 [4,19,21,22].

III. THE MODEL

The problem we consider is a one-dimensional array of L
sites with two species of fermions that can hop along them.
Fermions of different species have a very strong attraction,
so that if the numbers of particles of both species are equal
then the low-energy manifold has all particles in pairs. More
precisely, the Hamiltonian takes the form

H = −U0

L∑
j=1

a†
j a j b†

jb j

+J

2

L∑
j=1

(a†
j a j+1 + b†

jb j+1 + H.c.), (8)

where a j (a†
j ) destroys (creates) a particle of type a in site j,

b j (b†
j) does the same for a particle of type b, and we assume

for definiteness that the operators associated with particles
of different kinds commute (the results are the same if they
anticommute [8]).

We consider that the interaction energy is much stronger
than the hopping, i.e., U0 � J . We then study this prob-
lem analytically using perturbation theory. As shown in the
following, the restriction to the limit when particles always
tunnel in pairs makes our system an instance of the hard-core
Bose-Hubbard model, which is equivalent to the Heisenberg
model [23–26]. We note that this limit of very strongly bound
pairs is the one studied in Ref. [14], and it is also particularly
relevant for our interests since it is the situation where the
coboson description should be most appropriate. We remark
that the problem considered in Ref. [14] includes also site-
dependent energies, as a free parameter to control the amount
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of entanglement in the single-pair ground state. Here for
simplicity we focus on the case where the coboson ansatz
is supposed to work best, namely, when the entanglement is
maximum. This corresponds to the translation-invariant case
with all site energies equal and periodic boundary conditions.
In the following we derive the effective Hamiltonian for the
lowest-energy manifold in this model, for a single pair and for
N pairs.

A. Single-pair basis: Ground manifold

The Hilbert space of a single pair of particles, one of
each kind, divides into a ground manifold composed by the
states where the particles are paired (i.e., occupying the same
site), containing L states, and an excited manifold where the
particles are not paired, with dimension L2 − L. The ground
manifold energy, to zeroth order in the hopping, is −U0,
while the excited manifold has zero energy up to the same
order. Using perturbation theory, we can find the approximate
eigenstates within each of these highly degenerate manifolds.

As already explained in Ref. [14], to first order the hopping
Hamiltonian for the ground manifold vanishes, so that the first
nonzero correction is of second order and has the form

Hg � −U0 − Pg
H2

J

U0
Pg, (9)

where Pg is the projector onto the ground manifold, and HJ is
the hopping part of the Hamiltonian. It is straightforward to
see that this gives (for the case of a single pair)

H (1)
g � −U0 − Jeff − Jeff

2

L∑
j=1

(| j, j〉〈 j + 1, j + 1| + H.c.)

(10)

so that particles always tunnel in pairs. Here, the effective
tunneling constant is given by

Jeff = J2

U0
. (11)

We note that the effective Hamiltonian is independent of the
sign of J; indeed, a change of sign in J in the original Hamil-
tonian (8) can be reabsorbed by a sign flip in the creation and
annihilation operators corresponding to all odd (or all even)
sites, and this sign flip becomes irrelevant when only pairs
can tunnel.

It is also easy to diagonalize this Hamiltonian with a
Fourier transformation. The coboson operators which create
the single-pair eigenstates within this manifold are thus found
to be of the form

c†
k = 1√

L

∑
j

e−2π ik j/La†
j b

†
j (12)

with corresponding energies

Ek = −U0 − 2Jeff cos2(kπ/L), (13)

where k runs from 0 to L − 1. Except for the lowest state
within this manifold (and for even L also the highest), the
eigenstates are doubly degenerate.

The single-pair ground-state energy is thus

E0 = −U0 − 2Jeff , (14)

and the ground state is

|G〉N=1 = 1√
L

∑
j

| j, j〉 , (15)

with the ground-state coboson creation operator given by
c† = c†

0. This greatly simplifies some calculations, because
all Schmidt coefficients of this state are equal to 1/L, and
it is straightforward to compute the form of the coboson
ansatz for the ground state of N pairs and the corresponding
normalization factors (see Sec. IV). We note also that in this
case S = L, and the entanglement between the components of
a single pair in the ground state is characterized by the purity
P = 1/L, corresponding to a maximally entangled state for
each fixed number of sites.

B. Effective Hamiltonian for the ground manifold of N pairs

Following similar lines as before, one can use perturbation
theory for the effective Hamiltonian of the ground manifold
for the case of several pairs. Once more, it is trivial to see
that the ground manifold is formed by the states in which all
particles are paired, and to zeroth order in the hopping the
energy of this manifold is −NU0. In the following we analyze
the corrections when second-order terms in the hopping are
introduced.

In an analogous manner as in the single-pair case, the
effective Hamiltonian for the ground manifold takes the form

Hg � −NU0 − Pg
H2

J

U0
Pg. (16)

Now the projection to the ground manifold of the term propor-
tional to H2

J has an additional term coming from the fact that
hopping of a particle out of a given site might be forbidden if
there is already a particle sitting there. This leads to the form

H (N )
g � −N (U0 + Jeff ) + Jeff

∑
j

NjNj+1

−Jeff

2

∑
j

(T +
j + T −

j ), (17)

where Nj is the number of pairs in site j, and T ±
j are the

operators that correspond to hopping of a pair from site j to
j ± 1. For the case N = 1 this clearly reduces to the single-
pair effective Hamiltonian of the ground manifold given by
Eq. (10).

One can see from the form of the ground-manifold Hamil-
tonian for N pairs that, as in the single-pair case, there is
a hopping term that will tend to delocalize the cobosons,
but now there is an additional interaction between sites that
will compete with the hopping. This interaction is repulsive,
and therefore one expects that the ground state will have
delocalized pairs but which are unlikely to be found next to
each other. The exact ground state of the effective Hamiltonian
and its energy for the case of two pairs are discussed in
Sec. IV.

C. Relation with the Heisenberg model

Discrete hard-core boson models are equivalent to spin-1/2
systems, and indeed Hamiltonian (17) is equivalent to the
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Heisenberg Hamiltonian for a chain of spins 1/2, by means
of the identifications a jb j ≡ σ−

j , the spin lowering operator,
Nj ≡ (σ z

j + 1)/2. Tunneling terms of the form T +
j + T −

j can
then be written as interactions of the form σ x

j σ
x
j+1 + σ

y
j σ

y
j+1,

while the term of the form NjNj+1 corresponds to an inter-
action through σz plus a global field along the z direction.
In order to obtain the Heisenberg Hamiltonian one has to
additionally apply on every other spin a rotation about the z
axis in order to flip the sign of the corresponding σx and σy

operators. This only works for an even number of sites, but
for big systems we do not expect the parity of the number of
sites to play a crucial role.

The effective ground-manifold Hamiltonian then takes the
form

H (N )
g ≡ −NU0 + Jeff

4
(HH − L), (18)

where HH is the Heisenberg Hamiltonian:

HH =
∑

j

�σ j · �σ j+1. (19)

The ground-state energy for the system of N pairs can be
obtained from the minimum energy of the Heisenberg Hamil-
tonian in the manifold corresponding to N particles, which
fixes the total projection of the spin along z, σ z

T = 2N − L.
This means the problem can be approached with the Bethe

ansatz [25], and its properties have been studied extensively
[26]. In general, it is not possible to find an exact analytical
solution of the Heisenberg model for arbitrary values of N .
However, for the particular case with two particles only, an
exact solution can be written for the ground state, as will be
discussed in Sec. IV.

IV. EXACT GROUND STATE FOR TWO PAIRS, AND
COMPARISON WITH THE COBOSON ANSATZ

For the case of two pairs, the exact analytical solution of
the effective Hamiltonian is known and has the form [25]

|G〉N=2 = A
∑
j1< j2

sin

[
π

d ( j1, j2) − 1/2

L − 1

]
| j1, j2〉, (20)

where A is a normalization factor and d ( j1, j2) is the distance
between the two occupied sites, taken mod L. It is conve-
nient to notice that although the mapping to the Heisenberg
Hamiltonian as described above was valid for even L only,
this expression for the ground state holds also for L odd.

The coboson ansatz for the ground state of a system of
many particles, when the numbers of particles of each kind
are both equal to N , is given by Eq. (6). Given the form of the
operator c†

0 in Eq. (12), the ansatz for this problem leads to

|N〉 =
[(

L
N

)]−1/2 ∑
j1< j2<···< jN

a†
j1

b†
j1

· · · a†
jN

b†
jN

|0〉. (21)

It is straightforward to notice that this ansatz for the ground
state cannot capture at all the effects of the effective repulsion
appearing in the Hamiltonian for the ground manifold of the
N particles. Indeed, it is entirely determined by the hopping
term, since this is the only term in the single-pair Hamilto-
nian. Nevertheless, one could expect that this is still a good
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FIG. 1. Fidelity between the analytical ground state and the co-
boson ansatz for two pairs in the very strongly bound limit, in a one-
dimensional lattice with L sites and periodic boundary conditions.
Inset: Probability to find a pair in each site of the lattice conditional
on having found one pair in the first site, for L = 20, evaluated
over the analytical ground state (20) and over the coboson ansatz,
displayed with violet + and turquoise × symbols, respectively. All
depicted quantities are dimensionless.

approximation in the limit of low densities, for which coboson
theory was developed [8,11,12]. In that limit, two cobosons
are anyway very unlikely to be found next to each other, so
corrections due to repulsion may be negligible. However, this
turns out not to be the case.

For the particular case N = 2, which is the first nontrivial
scenario to which coboson theory can be applied and for
which the analytical solution of the problem is given in
Eq. (20), one can calculate the fidelity between the exact
ground state and the coboson ansatz. This is defined as

F (|N〉, |G〉N ) = |〈N |G〉N |2 (22)

and one finds that F actually decreases with the number of
sites. The general calculation is cumbersome, but the limit
L → ∞ is particularly simple because a continuum limit
can be taken turning sums over sites into integrals. For an
infinite number of sites, i.e., for pair density tending to
zero, the fidelity approaches the value F∞ = 8/π2 � 0.81.
The behavior of the fidelity as a function of L is shown in
Fig. 1. The high symmetry of our model, resulting from both
the hard-core character of the bosons and the translational
invariance, leads to a fidelity equal to 1 in a lattice with
L = N + 1 for an arbitrary number of pairs, N . It is worth
noting that even though for this particular model the coboson
ansatz works well for small values of L corresponding to a
high-density regime, the ansatz was formulated to work in
very dilute regimes, namely, L � N [8,11,12]. As we are
interested in analyzing the validity of the ansatz we focus only
on the situation for which the coboson formalism has been
developed.

Numerical calculations show that the fidelity between the
coboson ansatz and the ground state obtained numerically
also decreases with the number of sites for larger values of
particles. This is reasonable since the coboson ansatz is not
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expected to improve as the number of particles gets larger
[27]; indeed, in coboson theory the dominant terms in an
expansion in powers of the particle density are determined by
the solutions of the problems of one and two pairs [7,10]. This
is why we restrict our report to the most significant case of two
pairs.

We remark that it is possible to compute analytically the
energy associated with the coboson ansatz for the ground
state, and its value does converge to the right ground energy as
the number of sites increases. Indeed, the ground-state energy
of the effective Hamiltonian for two pairs is equal to

EG,N=2 = −2U0 − 4Jeff cos2

(
π

2(L − 1)

)
, (23)

whereas the coboson ansatz leads to the result

EG,N=2 � 〈2|H (2)
g |2〉 = −2U0 − 4Jeff + 4Jeff 1

L − 1
. (24)

Thus, the two expressions approach each other as L tends
to infinity. However, this is merely due to the fact that the
contribution of the interactions to the energy goes to zero as
the pair density becomes negligible. Indeed, for large L the
ground-state energy of two pairs tends to twice the value of
the single-pair ground-state energy, Eq. (14), as one would
expect.

The reason for the bad performance of the coboson ansatz
can be traced back to the long-range character of the cor-
relations between pairs in the true ground state (20). Given
the translational invariance of the model and the fact that site
occupation is at most equal to 1, the expectation value 〈N1Nj〉
can be related to the conditional probability P( j|1) of finding
one pair in position j given that another pair was found located
at site 1, as

P( j|1) = 〈N1Nj〉
〈N1〉 = L 〈N1Nj〉 = L |〈1, j|G〉2|2. (25)

For the exact ground state (20), the probability P( j|1) is pro-
portional to sin2[π ( j − 3/2)/(L − 1)]; i.e., it varies smoothly
from zero for short distances ( j � 1) to the maximum value
when the pairs are at opposite positions in the chain ( j �
L/2). The coboson ansatz, on the contrary, predicts a flat prob-
ability distribution with equal probabilities for all nonzero
distances between pairs, i.e., P( j|1) = 1/(L − 1) ∀ j �= 1. The
contrast between the spatial correlations present in these two
states is illustrated in the inset of Fig. 1, which shows the
conditional probability P( j|1).

V. THE TWO-DIMENSIONAL CASE

The failure of coboson theory to give a good approximate
description of the ground state in the 1D toy model studied
is nontrivial, since the interactions are very short ranged,
pairs are strongly bound, and the single-pair ground state
can contain arbitrarily high entanglement. The reason why
coboson theory is not applicable in this model seems to be that
even for very low densities the ground state of two bounded
pairs presents infinite-range correlations between the pairs.
But this, in general, cannot be known until one solves for the
ground state, which is exactly what one wishes to avoid by
using the coboson ansatz. This naturally leads to the question,

is there a key feature of the model that allows one to identify
when coboson theory starts failing? Some rapid conjectures
come to mind: the failure can be due to the 1D character of
the model, the impenetrability of pairs (which can never cross
each other), or the discretization of space. In this section we
analyze some of these possibilities.

We thus consider the simplest extension of the previous
model: another lattice with n×L sites, so pairs can go around
each other. For definiteness, we take periodic boundary con-
ditions in both directions (i.e., a torus geometry). The basis
of states of one fermion of either kind, or of one composite
boson in the strongly bound regime, is given by the set of pos-
sible positions | j〉 = |( jx, jy)〉 with jx = 1, . . . , L and jy =
1, . . . , n. The Hamiltonian is analogous to the one in Eq. (17),
except that interactions and tunneling can involve any pair of
neighboring sites. Without breaking the translational invari-
ance that is key for the simple form of the coboson ansatz and
for the maximum entanglement between pair components, one
can take two different effective tunneling constants, one for
each direction, i.e., Jeff

ν = J2
ν /U0 with ν = x, y. This leads to

the Hamiltonian

H (N )
g � −N

(
U0 + Jeff

x + Jeff
y

)

+
∑
ν=x,y

Jeff
ν

⎡
⎣∑

〈i, j〉ν
NiNj − 1

2

∑
j

(
T ν+

j + T ν−
j

)⎤⎦, (26)

where 〈i, j〉ν denotes pairs of sites that are neighbors along
direction ν, and T ν±

j are the operators that correspond to
hopping of a pair from site j = ( jx, jy) along direction ν in
the sense of increasing or decreasing jν .

The ground state of a single pair in this model is again
uniformly delocalized over all sites; thus, the coboson ansatz
leads once more to a state with a very simple form which for
two pairs in an n×L lattice reads

|2〉 = 1

2

[(
Ln
2

)]−1/2∑
j1 �= j2

a†
j1

b†
j1

a†
j2

b†
j2
|0〉, (27)

where jk = ( jk,x, jk,y) for k = 1, 2. In order to obtain the
ground state of two pairs numerically, we exploit the transla-
tional invariance restricting to the zero-momentum subspace.
By doing this we are able to treat larger systems. The be-
haviors of the numerically obtained energy and the energy as
given by the coboson ansatz for the ground state are shown in
Figs. 6 and 7 (see the Appendix).

The results for the fidelity between the numerical ground
state and the coboson ansatz are shown in Fig. 2, where for
definiteness we take Jx = Jy. In each of the curves, we set n
fixed and decrease the pair density by increasing the value
of L. Once more, the coboson ansatz fails to reproduce the
features of the ground state in the limit of low densities. One
can observe from the figure that, for each value of n, at first
the fidelity increases with L, reaching a maximum value when
L � n. From that point, the fidelity decreases with L, and the
system behaves one dimensionally. We have also analyzed
cases where the tunneling constant is larger in one of the
directions than in the other, and found that the values of the
fidelity may vary with this choice but the decreasing trend of
the fidelity for large L is general.
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As in the previous section, the behavior of the fidelity
can be understood in terms of the presence of long-range
correlations in the positions of the pairs. Indeed, also for the
n×L lattice one observes a pattern in the relative positions that
resembles the 1×L case. As an illustration, Fig. 3 displays, for
the case of equal tunnelings in both directions, the probability
to find one pair relative to the position of the other for a 4×18
lattice, showing that the solution of this model also exhibits
strong and long-range spatial correlations between the two
pairs. On the other hand, the coboson ansatz (27) predicts
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FIG. 3. Correlations between two pairs in the ground state of
the 4×18 lattice with equal tunneling in both directions. Given the
position of one pair at site (1,1), the plot shows the probability to
find the other pair as a function of the position in the same sublattice,
jy = 1 (violet dashes) and in the other three sublattices ( jy = 2, 3, 4,
where cases 2 and 4 are equal for symmetry reasons). Apart from
the region which is closest to (1,1), the probabilities for all four
sublattices are very similar and resemble the sinusoidal distribution
found for the 1×L lattice. All depicted quantities are dimensionless.
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a flat distribution with P( j|(1, 1)) = 1/(Ln − 1) whenever
j �= (1, 1).

From Fig. 2 one can also observe that the maximum of
the fidelity for each fixed n, found for L � n, increases as
a function of n. This suggests that the coboson ansatz is
satisfactory in the truly two-dimensional case, i.e., when the
low-density limit corresponds to a lattice size that increases in
both dimensions. Figure 4 shows the results for the fidelity in
an L×L lattice as a function of L, for several cases correspond-
ing to equal or different tunneling strengths in each direction.
As can be seen from the figure, in this case the description of
the ground state in terms of the coboson ansatz improves as
the number of sites is increased approaching the very dilute
limit.

We note that all the cases plotted in Fig. 4 display a fi-
delity which increases with decreasing density, and the curves
seem to asymptotically approach unit fidelity. However, the
convergence is very slow and it strongly depends on the
degree of anisotropy. This has a simple interpretation: for each
finite value of L, if the tunneling in one of the directions is
sufficiently large, there is a strong effective repulsion between
pairs along that direction and each array of sites behaves
effectively as a single cell. This makes the correlations in
pair positions equivalent to the one-dimensional case. Nev-
ertheless, fixing the values of the tunneling strengths and
increasing sufficiently the value of L, the two-dimensional
behavior is always recovered, with a characteristic correlation
length along each direction that depends on the corresponding
tunneling strength.

For comparison with the previous cases, Fig. 5 shows
the correlations in the positions of the two pairs for a two-
dimensional lattice with 51×51 sites; more precisely, the
probability distribution for the position of the second pair is
displayed conditioned on the first pair being found in site
(1,1) and for the case when Jx = Jy. It can be seen that
apart from a small region around the first site, the probability
becomes relatively flat, which explains the good agreement
with the coboson ansatz. These results indicate that the failure
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FIG. 5. Probability of finding a pair as a function of position
given that there is a pair on site (1,1), for an isotropic lattice with
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bility becomes relatively flat, allowing for a good description in terms
of the coboson ansatz. All depicted quantities are dimensionless.

of the coboson ansatz observed in the previous section can be
associated with the one-dimensional character of the model
leading to long-range spatial correlations.

VI. CONCLUSIONS

We have studied a toy model consisting of composite
bosons strongly bound and tunneling along sites in a discrete
lattice. Since we restrict to the case when the particles always
tunnel in pairs, the model is equivalent to a hard-core Bose-
Hubbard model, which is in turn equivalent to the Heisenberg
model. The analysis of the one-dimensional case for two pairs
has shown that the fidelity between the true ground state
and the coboson ansatz decreases as the number of sites is
increased. In the predictions of coboson theory for the case of
N pairs the dominant terms in an expansion with respect to
pair density are given by the cases N = 1 and N = 2 [7,10].
This means that whenever the coboson ansatz fails to provide
an appropriate description of the system for two pairs, it will
also fail for higher numbers. Since the translational symmetry
of the model studied makes the ground-state entanglement
between pair constituents maximum, we conjecture that the
coboson ansatz cannot generally be expected to faithfully
describe one-dimensional discrete models. We related this
with the presence of long-range correlations, and verified
that this failure is also found in a slightly more complex
model with an n×L lattice, where the low-density limit is
taken for fixed n and increasing L. The fact that the fidelity
between the true ground state and the coboson ansatz de-
creases with decreasing density was also observed for mod-
els where the tunneling constant was different in the two
directions.

The same analysis was carried out for a two-dimensional
model corresponding to an L×L lattice with full translational
symmetry. The results for a system of two pairs in this
case show that the fidelity between the numerically found
ground state and the coboson ansatz improves as the density is
decreased, and it seems to approach the ideal unit value as the
number of sites approaches infinity. We note, however, that

the fidelity is strongly dependent on the degree of anisotropy
of the model. Indeed, in systems where the two tunneling con-
stants are very different the coboson ansatz is markedly less
satisfactory than in isotropic models with the same number of
sites.

Our study reveals an aspect which is relevant for the
fundamental understanding of when pairs of fermions are
expected to behave approximately as elementary bosons, but
which has received little attention so far. On top of a high
amount of entanglement between constituents of a single pair,
and a short-range character of the interactions so that for low
densities pairs can be regarded as effectively independent, we
observe a strong impact of the dimensionality of the system.
One-dimensional models, namely, lattices where the number
of sites in one dimension is much larger than in the other,
tend to develop long-range correlations in the positions of the
pairs which cannot be captured by the coboson ansatz. On
the contrary, truly two-dimensional lattices display a behavior
where the pairs can be approximately described as cobosons,
with a fidelity that increases as the system becomes more
dilute.

We note once more that our analysis restricts to the very
strongly bound limit, such that the components of a pair
always tunnel together and are always found in the same
site. Systems of more loosely bound pairs are certainly of
interest and can illustrate the gradual appearance of ef-
fective bosonic behavior. For instance, the one-dimensional
extended Hubbard model, with a tunable nearest-neighbor
interaction, has been the focus of Ref. [28]. Here, however,
we consider only the limiting case of very bound pairs
because it is the one where the conditions which are nor-
mally expected to render the coboson ansatz valid are best
satisfied.

It is important also to stress for clarity that our findings are
not directly connected with the well-known lack of conden-
sation of a gas of noninteracting bosons at finite temperature
and in the thermodynamic limit for less than three dimensions.
Our models are studied at zero temperature and for finite
system sizes. This means there is always a finite gap between
the ground and the excited states for a single coboson. In
an actual experiment, however, the temperature can never be
truly zero, so that thermal effects might mask those purely due
to Pauli exclusion. The analysis of thermal states of composite
bosons is a delicate task due to the overcompleteness of the
coboson basis [7], and lies beyond the scope of the present
work.

Our results thus show that the coboson ansatz must be
used with caution in situations where its validity has not been
tested. We hope that our analysis will spark further interest
in the understanding of the very relevant question of when
composite particles can be treated as elementary.
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APPENDIX: ANALYSIS OF THE GROUND-STATE
ENERGY FOR TWO-DIMENSIONAL LATTICES

For completeness, here we analyze the behavior of the
energy for the n×L and L×L cases discussed in Sec. V. It
is important to emphasize that energy is not a good indicator
of the ansatz validity, since as it was shown in the main text
even in the one-dimensional case in which the ansatz clearly
does not work, the exact and approximated energies approach
each other when L tends to infinity.

It is relatively simple to calculate the approximate value
of the ground-state energy as the expectation value of the
effective Hamiltonian (26) over the coboson ansatz (6). For
a lattice of n×L sites and with effective tunneling constants
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Jeff
ν , ν = x, y, the energy takes the form

EG,N=2 � −2U0 − 4
(
Jeff

x + Jeff
y

) + 4
(
Jeff

x + Jeff
y

) 1

Ln − 1
.

(A1)

In Fig. 6 we display the behavior of the ground-state energy
obtained from numerical diagonalization and that predicted
by the coboson ansatz for the ground state, for two different
choices of n and as a function of L. As in the one-dimensional
case, one can see that even though the fidelity between the two
states does not approach 1, the two predictions for the energy
approach each other as L is increased. This is a consequence
of the fact that as the system becomes more dilute, interactions
become negligible and the total energy of the ground state of
two pairs is well approximated by twice the energy of a single
pair. This observation indicates that the asymptotic behavior
of the energy is not a good measure of the accuracy of the
coboson ansatz. For comparison, Fig. 7 shows the behavior of
the energy obtained numerically and from the coboson ansatz
for the cases of L×L and 1×L lattices.
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