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Anisotropy and spin-fluctuation effects on the spectral properties of Shiba impurities
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We theoretically consider a quantum magnetic impurity coupled to a superconductor and obtain the local
density of states at the position of the impurity taking into account the effect of spin fluctuations and single-ion
magnetic anisotropy. We particularly focus on the spectrum of subgap Yu-Shiba-Rusinov (YSR or Shiba)
states induced by a quantum impurity with easy- or hard-axis uniaxial anisotropy. Although this is a relevant
experimental situation in, e.g., magnetic adatoms on the surface of clean metals, it is customary that theoretical
descriptions assume a classical-spin approximation which is not able to account for single-ion anisotropy and
other quantum effects. Here, quantum fluctuations of the spin are taken into account in the equations of motion
of the electronic Green’s function in the weak-coupling limit and considerably modify the energy of the Shiba
states compared to the classical-spin approximation. Our results point towards the importance of incorporating
quantum fluctuations and anisotropy effects for the correct interpretation of scanning tunneling microscopy
(STM) experiments.
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I. INTRODUCTION

The competition between superconductivity and mag-
netism at the atomic scale gives rise to interesting and exotic
quantum phenomena [1,2]. Magnetic impurities adsorbed on
the surface of clean superconductors are a physical realization
where this competition can be studied experimentally using,
for instance, low-temperature scanning-tunneling microscopy
(STM) techniques. The local STM differential conductance
dI/dV near the impurity reveals the presence of the so-called
Yu-Shiba-Rusinov, or simply Shiba, states which emerge due
to the disruption of the superconducting state produced by the
local exchange field of the impurity. Originally predicted in
seminal papers [3–5], Shiba states appear as resonances in the
STM differential conductance, symmetrically located around
the Fermi level at energies within the superconducting gap
�, and localize around the impurity [6]. Recent progress in
STM techniques has shown a surprisingly complex behavior
of Shiba states, as a result of the interplay between quan-
tum fluctuations, Kondo screening, single-ion anisotropy, etc.
[7–16].

Due to their fascinating properties, Shiba states have been
the focus of a growing number of experimental and theoretical
works. Since they are naturally protected from decoherence
by the presence of the superconducting gap [17], they have
become increasingly attractive from the point of view of novel
quantum information and quantum processing technologies.
In addition, recent theoretical proposals made the striking
prediction that hybridization of Shiba states can lead to “Shiba
bands” with nontrivial topological character and to the emer-
gence of Majorana zero modes in one-dimensional chains of
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magnetic atoms [18–21]. Subsequent STM experiments real-
ized on Fe atomic chains deposited on top of superconducting
Pb(111) or Pb(110) surfaces have revealed intriguing zero-
bias peaks in the dI/dV signal, consistent with the Majorana
zero-mode scenario [22–24].

When considering a magnetic impurity in a superconduc-
tor, it is customary to make the simplifying assumption that
the impurity spin S is a classical object (essentially, a point-
like magnetic field with no internal dynamics), a situation
which is physically expected in the large-spin limit S → ∞.
However, it is well known that the classical-spin approxima-
tion cannot describe the experimentally observed Kondo ef-
fect [10–13], an inherently quantum many-body phenomenon
[25,26]. Phenomenologically, in the case of an isotropic spin
S coupled to a single-band superconductor, the ground state
of the full system (superconductor plus impurity) depends
on the competition between the Kondo effect and pairing
correlations [10,27–30]. When the Kondo temperature TK �
�, the many-body ground state is a Kondo-screened state
with total spin ST = S − 1/2 and odd-fermion parity. The
first excited (many-body) state corresponds to an unscreened
ST = S multiplet with even fermion parity. This situation is
reversed when � � TK . A quantum phase transition (QPT)
between these two ground states occurs at TK ∼ 0.3� [29–32]
and is signalled by the crossing of the Shiba states at the
Fermi energy, a feature that allows its experimental detection
by STM techniques [10,12]. This transition is also known as
the “0 − π” transition in the context of electronic transport
through quantum dots attached to superconducting leads [33].

Single-ion magnetic anisotropy is another effect that pro-
foundly modifies the behavior of quantum impurities at
low temperatures [34,35]. It arises due to the presence of
strong spin-orbit coupling and lack of inversion symmetry
at the surface of clean metals, and therefore it is ubiquitous
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in magnetic-adatom systems studied with STM techniques
[7–9,12,14,15]. These experimental systems show a complex
subgap electronic structure with multiple Shiba states and
demand for theoretical approaches that can go beyond the
classical-spin approximation for their understanding. In that
respect, it is interesting to mention recent works which con-
sider the quantum nature of magnetic impurities, either by
using the exact, but numerically costly, numerical renormal-
ization group (NRG) method [34–37], or perturbation ap-
proaches in the parameter U of the Anderson model [38–40],
which limited their attention to the ideally isotropic case. The
Anderson model in a superconducting host has also been stud-
ied by means of the quantum Monte Carlo method [41], but
its intrinsic difficulty to perform the analytical continuation
to real frequencies prevents the use of this technique in this
case, where the sharp Shiba resonances need to be resolved.
In fact, there are actually few theoretical methods that can
reliably account for experimentally relevant effects, such as
spin fluctuations, anisotropy, and temperature.

In this work we study a fully quantum spin S coupled to
a superconducting host via a s-d exchange coupling term and
consider the effect of uniaxial anisotropy and finite tempera-
ture. We implement a novel decoupling scheme of the equa-
tions of motion for the electronic Green’s function, formally
valid in the unscreened regime TK � � where the coupling
to the superconductor is weak. Our results are consistent
with previous works [34,35] and point to the importance of
quantum fluctuations and anisotropy for the low-temperature
properties of Shiba impurities. For an impurity with easy-axis
anisotropy, when either the spin S → ∞ or the anisotropy
parameter D → ∞, the classical limit for the Shiba-state
energy is recovered. However, for realistic values of S, the
position of the Shiba state strongly depends on the value
of D and can differ considerably from the value predicted
classically. Moreover, when D < 0 (hard-axis anisotropy) the
impurity never reaches the classical limit, since the impurity
spin becomes effectively Seff → 0 for integer spins (Seff →
1/2 for half-integer spins) at low temperatures, contradicting
the “large” spin hypothesis. Finally, at finite temperatures
important deviations from the classical value are obtained,
an effect that cannot be reproduced within the classical-spin
approximation.

The rest of the paper is organized as follows. In Sec. II we
present the theoretical model and provide a short overview
of previous theoretical results. In Sec. III we present our
decoupling scheme for the Green’s functions equations of
motion and give details on its numerical resolution. In Sec. IV
we show our results for the energy of the Shiba states obtained
in different temperature and anisotropy regimes. Finally, in
Sec. V we give a summary and some perspectives.

II. THEORETICAL MODEL AND OVERVIEW
OF PREVIOUS RESULTS

We theoretically describe a magnetic impurity deposited on
top of a clean superconductor by the following Hamiltonian

H = HSC + Hs-d + Hanis. (1)

Here HSC is the BCS Hamiltonian describing a two-
dimensional (2D) s-wave superconducting film

HSC =
∑
kσ

εkc†
kσ ckσ + �

∑
k

(c†
k↑c†

−k↓ + c−k↓ck↑), (2)

where c†
k,σ (ck,σ ) creates (annihilates) an electron in the con-

duction band with 2D quasimomentum k and spin σ = {↑,↓}
along the ẑ axis (assumed perpendicular to the surface), εk is
the dispersion relation of normal quasiparticles, and � is the
superconductor pairing potential, which we take as the unit of
energies in the rest of this work. The assumption of a 2D su-
perconductor is not essential here, but it greatly simplifies the
theoretical description since the translational symmetry along
the ẑ axis is broken by the surface, and the quasimomentum
kz becomes a nonconserved quantity. In addition, we assume a
temperature-independent pairing parameter � [which can be
taken from �(T → 0) in STM experiments] in order to avoid
solving the BCS gap equation at finite temperatures [42]. This
comes at the price of having to restrict the temperature to the
regime T � Tc/2, where Tc is the BCS critical temperature,
where this approximation is well justified. As we will see later,
this limitation is not serious.

The microscopic coupling of the magnetic impurity to
the superconducting film is given by the single channel
anisotropic s-d exchange (or Kondo) Hamiltonian [1,26]

Hs-d = 1

V

∑
k,k′

[
J‖Sz

c†
k↑ck′↑ − c†

k↓ck′↓
2

+ J⊥(S+c†
k↓ck′↑ + S−c†

k↑ck′↓)

]
, (3)

characterized by antiferromagnetic exchange couplings J‖ >

0 and J⊥ > 0, which, respectively, describe classical and
quantum (i.e., spin flip) processes. The Hamiltonians Hs-d and
HSC could be in principle generalized to consider the more
realistic case of many superconducting bands (as in the case
of Pb), but here for clarity in the presentation we only consider
a single band.

Finally, the single-ion magnetic anisotropy term

Hanis = −D(Sz )2 (4)

describes a spin-S impurity with uniaxial anisotropy along
the ẑ direction. Physically, the case of easy-axis anisotropy
(D > 0) favors the maximal Sz projections, i.e., m = ±S,
while the hard-axis case (D < 0) favors an impurity ground
state with projection m = 0 for S integer, or m = ±1/2 for S
half-integer.

In a series of seminal papers, Yu, Shiba, and Rusinov
independently studied the above Hamiltonian in the classical
limit S → ∞, J‖ → 0, such that the dimensionless coupling
parameter

α‖ = 1
2 J‖Sρ0π, (5)

(where ρ0 the density of states at the Fermi energy in the
normal state) is finite [3–5]. The spin-flip term proportional
to J⊥ can be neglected in this limit, and an effectively single-
particle Hamiltonian is obtained, describing a superconductor
with a pointlike Zeeman term which can always be assumed
to point along the z axis. In the limit of an infinitely wide
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conduction band, the Shiba states are located at energies [1–5]

Ecl

�
= ±1 − α2

‖
1 + α2

‖
, (6)

where the ± sign means that they are symmetrically located
around the Fermi energy due to the electron-hole symmetry
of the BCS Hamiltonian (2) (here the subscript “cl” stands for
classical approximation).

A Shiba state can be interpreted as a discrete fermionic
transition between the many-body ground state and the first
excited many-body state, which necessarily must belong to
different fermion-parity subspaces [43]. As the limit α‖ → 1
is approached, these states become closer in energy and ap-
proach the Fermi level. Eventually, when α‖ = 1 they become
exactly degenerate, and the system experiences a parity- and
spin-changing QPT, which is signalled by the crossing of the
Shiba states. In the phase with α‖ > 1, the effective local
Zeeman potential induced by the impurity becomes strong
enough to bind an extra electron, thus changing the fermionic
parity in the ground state [43].

In addition to the classical approximation, the attempts to
introduce quantum effects initiated a long time ago with the
implementation of perturbative approaches [44]. Later, Zit-
tartz and Müller-Hartmann [27,28] studied a Kondo impurity
in a superconducting host, adapting Nagaoka’s decoupling
scheme of equations of motion for the Green’s function [45]
to the superconducting case, and recovered the Shiba states
in the presence of quantum fluctuations. They realized that
the relevant condition leading to the QPT is actually � ≈ TK

[27,28]. The development of the Wilson’s NRG technique
allowed to obtain a detailed description of the full many-body
problem and to precisely obtain the critical ratio T c

K /� (e.g.,
T c

K /�  0.27 for a S = 1/2 impurity). When � > T c
K , the

ground state is an unscreened many-body state with total spin
ST = S and even fermion parity. For � < T c

K , the ground
state is a Kondo screened state with ST = S − 1/2 and odd
fermionic parity [29–32].

III. EQUATIONS OF MOTION AND DECOUPLING
SCHEME

We now outline our theoretical framework. We define the
fermionic propagators in imaginary time 0 � τ < β (with
β = 1/T since we are taking units where kB = 1) [46]

gk,k′ (τ − τ ′) = −〈Tτ ck↑(τ )c†
k′↑(τ ′)〉 (7)

fk,k′ (τ − τ ′) = −〈Tτ ck↑(τ )c−k′↓(τ ′)〉 (8)

f̄k,k′ (τ − τ ′) = −〈Tτ c†
−k↓(τ )c†

k′↑(τ ′)〉 (9)

ḡk,k′ (τ − τ ′) = −〈Tτ c†
−k↓(τ )c−k′↓(τ ′)〉, (10)

where Tτ is the imaginary-time ordering operator. Here,
gk,k′ (τ − τ ′) and fk,k′ (τ − τ ′) are, respectively, the normal
and anomalous fermionic correlators. Using the SU(2) sym-
metry of our model (1), we have dropped the spin indices in
Eqs. (7)–(9), as the correlators satisfy the relations

−〈Tτ ck↑(τ )c†
k′↑(τ ′)〉 = −〈Tτ ck↓(τ )c†

k′↓(τ ′)〉 (11)

−〈Tτ ck↑(τ )c−k′↓(τ ′)〉 = −〈Tτ ck↓(τ )c−k′↑(τ ′)〉. (12)

Introducing the Fourier representation

gk,k′ (iνn) = 〈〈ck↑; c†
k′↑〉〉(iνn),

=
∫ β

0
dτ e−iνn (τ−τ ′ )gk,k′ (τ − τ ′), (13)

[and similarly for the other correlators (8)–(10)] where νn =
π (2n + 1)/β are the fermionic Matsubara frequencies, we can
compactly express the fermionic Green’s function using the
Nambu-matrix notation:

G(iνn) =
(

g(iνn) f (iνn)

f̄ (iνn) ḡ(iνn)

)
,

= 1

V

∑
k,k′

(
gk,k′ (iνn) fk,k′ (iνn)

f̄k,k′ (iνn) ḡk,k′ (iνn)

)
. (14)

In particular, the knowledge of the local correlator g(iνn)
allows us to obtain, upon analytical continuation to real fre-
quencies iνn → ω + iε, the local density of states

ρ(ω) −−→
ε→0

− 1

π
Im[g(ω + iε)], (15)

which is related to the STM differential conductance
dI/dV (ω) at the position of the impurity (see, e.g., Ref. [47]).
The individual components of the Nambu matrix Eq. (14)
satisfy the relation

[G]AB(z) = −[G]BA(−z), (16)

where A, B are the fermionic operators entering the definitions
(7)–(10) [27,28].

In the absence of the Hs-d term, the unperturbed propaga-
tors have a closed analytical form, which can be expressed as
[1,42,46]

g(0)
k,k′ (iνn) = δk,k′

[
u2

k

iνn − Ek
+ v2

k

iνn + Ek

]
(17)

f (0)
k,k′ (iνn) = δk,k′

[
2ukvk

iνn − Ek
− 2ukvk

iνn + Ek

]
, (18)

where u2
k = 1

2 (1 + εk
Ek

) and v2
k = 1

2 (1 − εk
Ek

) are, respectively,
the electron and hole weights of the Bogoliubov quasiparticle

γk,↑ = ukck,↑ + vkc†
−k,↓ and Ek =

√
ε2

k + �2 its eigenenergy
[42,46]. The delta function δk,k′ appears since in the absence
of the Hs-d term, the translational symmetry in the 2D plane
is preserved and therefore the 2D quasimomentum k is a con-
served quantity. Replacing Eqs. (17) and (18) into Eq. (14),
and performing the sum over momenta as an integral over a
flat conduction band, i.e., 1

V

∑
k → ρ0

∫ W
−W dε, the analytical

expression of the unperturbed local propagator is

G(0)(iνn) =
(

g(0)(iνn) f (0)(iνn)

f̄ (0)(iνn) ḡ(0)(iνn)

)
,

=
−2ρ0 tan−1

(
W√

�2−(iνn )2

)
√

�2 − (iνn)2

(
iνn �

� iνn

)
, (19)

with W half the bandwidth related to ρ0 through the normal-
ization condition ρ0 = 1/2W .
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The first step to obtain the Nambu Green’s function G(iνn)
in the presence of the term Hs-d is to obtain the equation of
motion for the fermionic operator ∂τ ck,σ (τ ) = [H, ck,σ (τ )].
Replacing this result in the definitions (7)–(10) and passing to
Matsubara-frequency representation, we obtain the expression

[27,45,48,49]:

G(iνn) = G(0)(iνn) + G(0)(iνn)T(iνn)G(0)(iνn), (20)

where

T(iνn) ≡ J2
‖

4V

∑
q,q′

(
〈〈Szcq↓; Szc†

q′↓〉〉(iνn) 〈〈Szcq↓; Szcq′↑〉〉(iνn)

〈〈Szc†
q↑; Szc†

q′↓〉〉(iνn) 〈〈Szc†
q↑; Szcq′↑〉〉(iνn)

)
+ J2

⊥
4V

∑
q,q′

(
〈〈S−cq↓; S+c†

q′↓〉〉(iνn) 〈〈S−cq↓; S+cq′↑〉〉(iνn)

〈〈S−c†
q↑; S+c†

q′↓〉〉(iνn) 〈〈S−c†
q↑; S+cq′↑〉〉(iνn)

)
.

(21)

is the t matrix of the problem, which contains all the effects
of the magnetic impurity. This expression is formally exact,
provided we know the exact form of the correlators

〈〈
Saηqσ ; Sbη′

q′σ ′
〉〉

(iνn)

=
∫ β

0
dτ e−iνn (τ−τ ′ )〈Tτ Sa(τ )ηqσ (τ )Sb(τ ′)η′

q′σ ′ (τ ′)〉,
(22)

with Sa(b) = {S+, S− or Sz}, and ηqσ = {cqσ or c†
qσ }. How-

ever, due to the many-body nature of the problem, an infinite
hierarchy of higher-order correlators must be known to have
a closed expression for Eq. (22) [45]. Therefore, in order to
make progress, a truncation of this hierarchy of correlators
must be introduced. Here we propose the following approxi-
mate decoupling:

〈Tτ Sa(τ )ηqσ (τ )Sb(τ ′)η′
q′σ ′ (τ ′)〉

≈ 〈Tτ Sa(τ )Sb(τ ′)〉 × 〈Tτ ηqσ (τ )η′
q′σ ′ (τ ′)〉, (23)

which is valid in the weak-coupling limit {ρ0J‖, ρ0J⊥} → 0,
i.e., when both spin and electron subsystems evolve more or
less independently. Consequently, in the rest of this work we
will focus on this regime of parameters, which corresponds
to the “unscreened” region of the quantum phase diagram
TK � �. Due to this limitation, Kondo correlations cannot be
recovered within our approach. Nevertheless, the decoupling
(23) is still very useful, as it allows us to close the set of
equations of motion and to obtain an integral equation for the
Nambu Green’s function G(iνn) with meaningful information
about spin fluctuations in the presence of anisotropy.

Although our approach shares some similarities with Na-
gaoka’s decoupling method [27,28,45], there is a crucial dif-
ference regarding the spin degrees of freedom: In Nagaoka’s
method, the product of spin operators are considered only
at the level of static averages with no intrinsic dynamics,
whereas in our case the spin correlators retain their dynamics,
including the time evolution dictated by the anisotropy term
Hanis.

We note that the full (i.e., “dressed”) spin correlators are
in principle needed in Eq. (23). This introduces an additional
set of equations of motion for the spin correlators, which
must be obtained in order to obtain the electronic propagator,
complicating the application of the method. However, within
the weak-coupling regime, it is rather natural to replace the

full spin correlators by the unperturbed ones, i.e.:

〈Tτ S−(τ )S+(τ ′)〉 ≈ 〈Tτ S−(τ )S+(τ ′)〉0,

〈Tτ Sz(τ )Sz(τ ′)〉 ≈ 〈Tτ Sz(τ )Sz(τ ′)〉0, (24)

which can be computed analytically and allows us to simplify
the problem. Using the Matsubara-frequency representation of
the spin correlators

〈〈Sa; Sb〉〉0(iωl ) =
∫ β

0
dτ eiωl (τ−τ ′) 〈Tτ Sa(τ )Sb(τ ′)〉0, (25)

where ωl = 2π l/β are the bosonic Matsubara frequencies, the
unperturbed 〈〈Sz; Sz〉〉0(iωl ) correlator is

〈〈Sz; Sz〉〉0(iωl ) = βδωl ,0〈(Sz )2〉0. (26)

This is a static quantity since the operator Sz commutes with
Hanis and therefore is conserved in the absence of Hs-d. The
thermodynamical average is easily computed as

〈(Sz )2〉0 =
S∑

m=−S

m2e−β�0
m

Z0
, (27)

where we have defined �0
m ≡ E0

m − E0
min, with E0

m ≡ −Dm2

the eigenvalues of Hanis, and E0
min ≡ min{E0

m}. The quantity
Z0 = ∑S

m=−S e−β�0
m is the spin partition function, computed

up to an irrelevant prefactor.
The (unperturbed) dynamical correlator

〈〈S−; S+〉〉0(iωl ) =
S∑

m=−S

Am

iωl − (
�0

m+1 − �0
m

) (28)

is obtained introducing the Heisenberg representation
S±(τ ) = eHτ S±e−Hτ and the identity operator 1 =∑S

m′=−S |m′〉〈m′| in Eq. (25) and is a crucial quantity in
this work since it encodes the information about the quantum
fluctuations in the system. In Eq. (28) we have defined the
matrix element

Am ≡ S(S + 1) − m(m + 1)

Z0

(
e−β�0

m+1 − e−β�0
m
)
.

Returning to Eq. (21) and implementing the decoupling
(23) along with the approximation (24), the t matrix com-
pactly writes as

T(iνn) = 1

4β

∞∑
ωl =−∞

G(iνn − iωl )
[
J2
‖ βδωl ,0〈(Sz )2〉0

+ J2
⊥〈〈S−; S+〉〉0(iωl )

]
, (29)
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i.e., the t matrix is obtained as a convolution of the electronic
Green’s function and the dynamical spin correlators. There-
fore, Eq. (29) together with (20) describe an integral equation
for the Nambu Green’s function G(iνn)

G(z) = G(0)(z) + G(0)(z)
1

4β

∞∑
ωl =−∞

G(z − iωl )

× [J2
‖ βδωl ,0〈(Sz )2〉0 + J2

⊥〈〈S−; S+〉〉0(iωl )]G(0)(z),

(30)

where we have performed the analytic continuation to com-
plex frequencies iνn → z. In principle, the (2 × 2)-matrix
structure of Eq. (30) implies solving a set of four coupled
integral equations. However, using the Nambu symmetries
of the problem, detailed in Eq. (16), along with the SU(2)
symmetry and the intrinsic particle-hole symmetry of the band
εk, the number of unknown functions can be reduced from
4 to 2 [i.e, particle-hole symmetry implies that g(z) = ḡ(z)
and f (z) = f̄ (z)]. The remaining equations for the Green’s
functions g(z) and f (z) can be further decoupled using the
change of variables g±(z) = 1

2 (g(z) ± f (z)) [27]. In terms of
the dimensionless functions g̃±(z) = g±(z)/ρ0, we obtain two
decoupled scalar equations

g̃±(z) = g̃(0)
± (z) + 4

(
g̃(0)

± (z)
)2

π2

[
α2

‖〈(Sz )2〉0

S2
g̃±(z) + α2

⊥
S2β

×
∞∑

ωl =−∞

S∑
m=−S

Am

iωl − (
�0

m+1 − �0
m

) g̃±(z − iωl )

]
.

(31)

where we have introduced the dimensionless couplings

α‖ ≡ J‖ρ0Sπ

2
, α⊥ ≡ J⊥ρ0Sπ

2
. (32)

Equation (31) is one of the most important results in this work.
It can be interpreted as a generalization of the classical-spin
approximation [1,3–5] that incorporates the effects of quan-
tum fluctuations and anisotropy in the weak-coupling limit.
One can easily check that in absence of the spin-flip term (i.e.,
α⊥ = 0), Eq. (31) indeed reduces to the classical-spin limit
which can be solved analytically [1]. In fact, if we assume
easy-axis anisotropy D > 0, and T → 0, the spin operator Sz

acquires the classical value 〈(Sz )2〉0 → S2, and we obtain

g̃±(z) = g̃(0)
± (z)

1 − 4α2
‖

π2

(
g̃(0)

± (z)
)2

. (33)

The poles of this equation allow us to recover the position of
the classical Shiba states Eq. (6).

We now solve Eq. (31) in the presence of quantum fluctu-
ations, which is the most interesting case for our purposes.
The solution in this case is complicated by the fact that
g̃±(z) is nondiagonal in the frequency domain, a consequence
of the dynamical nature of the spin correlator (28) and,
ultimately, a consequence of the many-body nature of the
problem. We first note that for a fixed value of z = ω + iε,
where ε > 0 is infinitesimally small, the imaginary axis can
be discretized according to the Matsubara frequencies as

zk = z − iωk . Then, defining a vector g, whose kth element
is gk ≡ g̃±(zk ), Eq. (31) can be compactly expressed in matrix
form as

gk = g(0)
k +

∞∑
l=−∞

Kkl .gl , (34)

where the elements of the infinite matrix K are defined as

Kkl = 4
(
g(0)

k

)2

π2

[
α2

‖〈(Sz )2〉0

S2
δkl

+ α2
⊥

S2β

S∑
m=−S

Am

iωl − iωk − (
�0

m+1 − �0
m

)
]
. (35)

Although Eq. (34) seems formally simple, the infinite rank of
the matrix K represents a technical complication that must be
addressed previously to attempt a numerical solution of this
problem. To this end, we make use of the asymptotic property
of physical Green’s functions [46]

g̃±(z) −−−→
|z|→∞

W

z
, (36)

to introduce a truncation in (34). We therefore split the sum
into

∑∞
l=−∞ = ∑lmax

l=−lmax
+∑

lmax<|l|, where lmax is an integer
chosen such that for |ωl | > ωlmax we can safely use Eq. (36).
Then, we can write

gk ≈ g(0)
k + Sk +

lmax∑
l=−lmax

Kklgl , (37)

where we constrain the values of iωk on the left-hand side
to be in the range −iωlmax < iωk < iωlmax . In this form, the
original Eq. (31) can be expressed in terms of a finite matrix
K of size lmax × lmax, and an additional vector

Sk = 4α2
⊥
(
g(0)

k

)2

π2S2

S∑
m=−S

1

β

∑
lmax<|l|

W

(z − iωl )

× Am

iωl − iωk − (
�0

m+1 − �0
m

) , (38)

that contains the contribution of all the higher Matsubara
frequencies, and which can be evaluated analytically in terms
of the digamma functions �(z) [see Eq. (A9) in the Ap-
pendix]. We solve Eq. (37) numerically implementing the LU
decomposition, and once we obtain the vector g (computed for
each value of the real frequency ω in z = ω + iε), we extract
the element g0 = g̃±(ω + iε) to obtain the local density of
states at the position of the impurity:

ρ̃(ω) = − 1

π
Im[g̃+(ω + iε) + g̃−(ω + iε)]. (39)

In practice, the asymptotic behavior Eq. (36) is reached
within acceptable error levels in (37) choosing a Matsubara-
frequency cutoff ωlmax ≈ 100�. We have checked that increas-
ing this cutoff does not significatively modify our results.
From here, it follows that the value lmax is determined by the
relation

lmax = 100�

2πT
, (40)
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which means that the size of the matrix K explicitly depends
on the ratio �/T . This feature imposes a minimal temperature
below which the numerical solution of (37) is beyond our
current computational power. At the same time, as mentioned
in Sec. II we must restrict the temperature to the regime
T � Tc/2, in order to avoid the extra self-consistency step
implied in the BCS gap equation at finite temperatures [42].
A “sweet spot” where a good compromise between these
two limits is obtained is 0.05� � T � 0.5�. Taking the
experimental value for the superconducting gap in Pb as � 
1.3 meV from Ref. [13], we obtain the temperature range
0.87 K < T < 8.7 K, which is consistent with the experimen-
tal temperature Texp  1.2 K used in that reference. This is
also a realistic range of temperatures in similar experiments
[7,12,13,15,24,50–52].

IV. RESULTS

From the considerations in previous sections, we expect
that the anisotropy D profoundly modifies the behavior of the
quantum impurity. In the case of vanishing Kondo tempera-
ture TK � �, our results depend strongly on the ratio D/T .
We therefore analyze separately three different regimes: the
case D � T , the case D � T , and the case D  T .

A. Regime D � T

This regime can be either associated to a “high tempera-
ture” situation where all spin states are thermally occupied (in
our case, this situation should be consistent with the require-
ment that T � Tc/2), or to a vanishingly small anisotropy
D → 0, in which case the term Hanis drops. In any of these
cases, the result is the same: The SU(2) symmetry is restored,
and the thermodynamical average Eq. (27) and the dynamical
correlator Eq. (28) become, respectively

〈(Sz )2〉0 −−−−−→
�0

m/T →0

S(S + 1)

3
, (41)

〈〈S−; S+〉〉0(iωl ) −−−−−→
�0

m/T →0

2S(S + 1)

3
βδωl ,0. (42)

Replacing these results in (31), the function g̃±(z) can be
obtained analytically:

g̃±(z) = g̃0
±(z)

1 − 4
π2

S(S+1)
S2

( α2
‖

3 + 2α2
⊥

3

)
(g̃0±(z̃))2

, (43)

where the poles determine the position of the Shiba states
[here we have used the limit of infinite bandwidth W → ∞,
for consistency with Eq. (6)]

EYSR

�
= ±1 − S(S+1)

S2

(α2
‖

3 + 2α2
⊥

3

)
1 + S(S+1)

S2

(α2
‖

3 + 2α2
⊥

3

) , (44)

for g̃+(z) and g̃−(z), respectively. In the fully isotropic case
α‖ = α⊥ = α, Eq. (44) is qualitatively similar to the classical
YSR result Eq. (6), with the difference that the coupling must

be renormalized as α → α̃ = α

√
S(S+1)

S2 (see also Ref. [53]).
This result is physically appealing since the factor S(S + 1)
is the expectation value of the operator S2 in the SU(2)

FIG. 1. (a) Diagram of the experimental setup. (b) Level spec-
trum for easy-axis anisotropy (D > 0). This figure shows the spin
fluctuations from the ground state of the impurity (states m = ±S) to
the first excited state (m = ±(S − 1)) at zero temperature. Here we
defined �̄ ≡ D(2S − 1), see text.

symmetric case. Therefore, the factor
√

S(S+1)
S2 is a quantitative

measure of the amount of quantum fluctuations in the system:
The value 1 corresponds to the classical limit S → ∞, where
Eq. (44) converges to (6), and any value larger than 1 can be
attributed to the effect of quantum fluctuations. In Fig. 2 we
show the position of the YSR states in the isotropic limit α‖ =
α⊥ = α as a function of spin S for α = 0.1, 0.47, and 0.65, and
we compare each case with the corresponding classical limit.
As expected, the classical limit is only recovered when S →
∞, and the lowest-order correction in the small parameter S−1

is

EYSR

�
−−−→
S→∞

Ecl

�
− α2

(1 + α2)2

1

S
+ O(S−2). (45)

Note that due to the slow dependence S−1, the classical result
is recovered only for unphysically large values of S in the fully
isotropic case. This is consistent with recent results obtained
by Žitko using NRG, who studied the quantum-to-classical
crossover in impurities in superconductors (see Ref. [35]).
Through a numerical fit of the NRG results, he obtained a
correction term proportional to S−ν , with exponent ν = 1.1,
very close to our analytical result.

=0.1
=0.47
=0.65

ECl( =0.1)

ECl( =0.47)

ECl( =0.65)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

S

E
YS
R

[
]

FIG. 2. YSR energy EYSR as a function of the spin impurity
S for α = 0.1 (black points), α = 0.47 (blue squares), and α =
0.65 (red triangles). Continuous lines are a guide to the eye. The
classical Shiba energy independent of S are showed as orange dashed
horizontal lines for the corresponding values of α. The arrow marks
the putative quantum phase transition predicted by perturbative
approach.
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Taking S as a continuous variable, Eq. (45) predicts a
QPT as a function of S, which occurs at the critical value
Sc = α2/(1 − α2) (see Fig. 2). This is similar to Ref. [35],
where a critical value Sc is found with NRG. For comparison,
using α = 0.47, in that reference Žitko found a phase
transition between 2 < S < 5/2, whereas in our case we
find the transition for Sc ∼ 0.28 (see blue line in Fig. 2).
This puts in evidence the limitations of our method, which
becomes unreliable near the QPT (i.e., in this case, when
S ≈ Sc). We recall here that the actual transition arises from
the competition between the Kondo correlations, which are
absent in our approach, and �, and therefore is not related to
the vanishing of Eq. (44). In order to ensure the validity of
our approach, we must restrict the value of S to the regime
S � Sc. As can be seen in Fig. 2, the range of values of S for
which this requirement is fulfilled becomes parametrically
larger when α → 0 (see black line, which corresponds to the
value α = 0.1, for which the case of the lowest physical spin
S = 1/2 is already much larger than Sc).

B. Regime D � T

When the anisotropy is larger than the temperature, we
need to distinguish the easy-axis (D > 0) from the hard-axis
case (D < 0): While easy-axis anisotropy tends to favor the
classical limit when D → ∞, this is not the case for hard-axis
anisotropy, where strictly speaking the classical limit for the
model Eq. (1) does not exist. Moreover, in this last case we
still need to distinguish between integer and half-integer spin
S, as the ground states are qualitatively different (nondegen-
erate or doubly degenerate, respectively). Therefore, in what
follows we analyze three qualitatively different situations: (1)
the easy-axis case D > 0, (2) the hard-axis case D < 0 with
half-integer S, and finally (3) the hard-axis case D < 0 with
integer S.

1. Easy-axis case D > 0

The results in this section are depicted in Fig. 3 for D > 0,
both for half-integer S [Fig. 3(a)] and integer S [Fig. 3(b)].
In this case, the ground state of the isolated impurity takes
the maximal Sz projection m = ±S, and therefore when either
S → ∞ or D → ∞, the Shiba state energy converges to the
same classical limit. However, when D is larger than the
pairing term �, spin fluctuations become negligible because
the magnetic impurity needs an energy of the order of �̄ ≡
�0

S − �0
S−1 = D(2S − 1) to be able to flip to the first-excited

states m = ±(S − 1) [see Fig. 1(b)]. Therefore, it is intuitively
clear that the position of the Shiba state will converge faster
to the classical limit S → ∞ when D > 0, as compared to the
isotropic case in the previous section (Sec. IV A). This behav-
ior can be clearly seen in Fig. 3 and can also be understood
directly from Eq. (31), where the spin-flip term

α2
⊥

S2

S∑
m=−S

Am

iωl − iωk − (
�0

m+1 − �0
m

)
−−→
T →0

α2
⊥

S

�̄

(ωl − ωk )2 + �̄2
(46)

tends to zero when either S → ∞ or D → ∞ due to the
presence of �̄ is in the denominator. On the other hand, as

0.4

0.5

0.6

0.7

0.8

0.9

1
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0.5
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0.6
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0.7
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R
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]
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S = 3
Ecl[Δ]
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R
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]

S = 3/2
S = 5/2
S = 7/2

Ecl[Δ]

FIG. 3. YSR subgap-state energy EYSR as a function of the
anisotropy parameter D for (a) S half-integer and (b) S integer. Here
has been used the value α = 0.5.

discussed in the previous section, quantum fluctuations are
enhanced at low temperatures in the absence of anisotropy,
and this has important consequences for the position of the
Shiba state, as can be seen in the sizable deviations from the
classical limit when D → 0 in Fig. 3.

In order to illustrate the experimental consequences of our
findings, in Fig. 4 we show the local density of states at the
impurity site for the specific case S = 1. To minimize the
number of parameters in the model, we have chosen α‖ =
α⊥ = α = 0.5 in order to show the effect of different values
of the anisotropy parameter (here, D = 0.1�, 0.3�, 0.5�,
and 0.7�). An artificial broadening ε = 0.01� in Eq. (39)
has been used for visualization purposes, since the YSR state
appears as a delta peak in the local density of states when
ε → 0. The center of the resonance in the figures is indicated
with an arrow and corresponds to the position of the YSR
state, which shifts as a function of D.

This result is consistent with Ref. [35], where the
main conclusion is that realistic systems of anisotropic
magnetic adsorbates tend to be well described by the classical
approximation, not because of their putatively “large” spin,
but rather because of the energy-barrier effects induced by
the magnetic anisotropy. A good example is Fe deposited on
Cu2N/Cu(100) [54,55], where the classical picture of a static
pointlike magnetic field might be appropriate, but the value of
the spin S = 2 of the Fe atom is still far from the limit where
the spin-flip scattering is negligible for the isotropic case (see
Fig. 2).

2. Hard-axis anisotropy D < 0 and S half-integer

As mentioned before, hard-axis anisotropy favors states
with minimal projection of Sz. In addition, when the spin S
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FIG. 4. Local density of states (LDOS) at the site of the impurity
for (a) D = 0.1�, (b) D = 0.3�, (c) D = 0.5�, and d) D = 0.7�,
at temperature T = 0.05�. α = 0.5 and S = 1. The arrows indicate
the center of the YSR resonance. Inset: full spectral density for
D = 0.1�.

is half-integer, the isolated impurity has a doubly-degenerate
ground state spanned by the states m = ±1/2, which implies
that quantum fluctuations subsist even in the limit |D| → ∞.
This means that the classical YSR energy is never achieved
in that limit [see the negative axis in Fig. 3(a)]. Physically,
taking the limit D → −∞ amounts to projecting out the states
|m| > 1/2: The fluctuations between states ±1/2 � ±3/2 �
etc. become negligible, but the fluctuations between states
−1/2 � 1/2 remain. Equation (31) writes in this case:

g̃±(z) = g̃0
±(z) + 4

π2
(g̃0

±(z))2

[
α2

‖
4S2

+ α2
⊥

S2

S(S + 1) + 1/4

2

]

× g̃±(z), (47)

and the original spin S can be mapped onto an effective Seff =
1/2 impurity with renormalized couplings α̃‖ = α‖/(2S) and
α̃⊥ = α⊥

√
S(S + 1) + 1/4/(2S). This result clearly illus-

trates that the classical-spin limit cannot be recovered taking
S → ∞ when D < 0, as the transverse contribution becomes
relatively more important than the parallel (classical) one.
Consistently, when W → ∞ and α‖ = α⊥ = α, the position
of the YSR states as a function of S becomes

EYSR

�
= 1 − α2

2

(
1 + 1

S + 3
4S2

)
1 + α2

2

(
1 + 1

S + 3
4S2

) , (48)

very different from the classical limit Ecl given by Eq. (6)
(note that the case S = 3/2 is an exception, for which acci-
dentally EYSR = Ecl). This behavior is shown in Fig. 3(a) for
D < 0. Note the stark contrast with respect to the case D > 0.
An experimental example of this case (albeit in the absence
of superconductivity) is Co on Cu2N/Cu(100), where the Co
spin is S = 3/2 but effectively it behaves as Seff = 1/2 [56].

3. Hard-axis anisotropy D < 0 and S integer

In Fig. 3(b) we show the YSR energy for D < 0 and spin
S integer. In this case the ground state of the isolated impu-
rity corresponds to m = 0, and therefore the impurity spin
effectively becomes Seff = 0 and eventually decouples from
the superconductor. Only the dynamical term proportional to
α⊥ contributes to Eq. (31), and the system needs an energy of
the order of |D| in order to flip the spin to the states m = ±1
at T = 0. Therefore, when D → −∞ these fluctuations are
forbidden, and the effective coupling between the supercon-
ductor and the impurity tends to zero. Consistently, the YSR
levels shift towards the edge of the superconductor gap: The
system effectively behaves as an unperturbed superconductor.

C. Intermediate regime D � T

Finally, we analyze the solutions of Eq. (31) obtained in
the finite-temperature regime T  D. Our main results are
summarized in Fig. 5, where we show a crossover of the Shiba
peak from the regime T � D to the regime D � T . This be-
havior arises from the interplay between anisotropy, quantum
fluctuations, and thermal effects. As can be seen in Eq. (31),
the temperature dependence of the electronic Green’s function
g̃±(z) arises both from the temperature dependence of the
thermodynamical average 〈(Sz )2〉0 [see Eq. (27)], as well as
from the sum over the bosonic Matsubara frequencies iωl of
the dynamical correlators 〈〈S−; S+〉〉0(iωl ) [see Eq. (28)].

The YSR energies shown in Fig. 5 have been computed
for different values of the anisotropy D = 0, 0.3�, 0.5�,
and 0.7�, and for the specific case S = 1 and α = 0.5. Note
that the existence of anisotropy is a necessary condition to
observe the shift: The constant behavior is recovered in the
limit D/T → 0. This can be intuitively understood, since an
excited spin state lying at an energy �0

m will be thermally
populated with Boltzmann probability ∼e−�0

m/T . Therefore,
new scattering channels, which are forbidden at T = 0, will
be allowed when T  �0

m. Increasing the temperature beyond
T > max{�0

m} implies that the system has enough energy to
explore the whole spin multiplet, and the SU(2) symmetry
is effectively restored. Then, the position of the YSR state
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FIG. 5. YSR subgap-state energy EYSR as a function of the
temperature T , computed for S = 1 and α = 0.5.

becomes described by Eq. (44) in the isotropic limit D → 0
and converges to the value EY SR = 0.386�. On the other
hand, when T � �0

m, the thermal population of the excited
states become exponentially small, and therefore they become
effectively inaccessible. Thus, the system reaches its classical
limit and the YSR energy tends to the classical result EY SR =
0.631� (see dashed lines in Fig. 3). In the limit of infinite
bandwidth the result is given by Eq. (6) and yields EY SR =
0.6�.

This crossover is a feature which could be experimentally
tested in STM experiments and which has not been discussed
before. In the case of the single-orbital impurity Anderson
model (which maps onto the S = 1/2 Kondo impurity) [37],
the single-ion anisotropy has no effect, and therefore no shift
is observed. In addition, in the classical-spin approxima-
tion, the effective one-body description leads naturally to a
temperature-independent energy spectrum [3–5]. Then, these
previous results might give the impression that the position of
the Shiba state does not depend on temperature [13]. However,
based on our theoretical considerations, we claim that this
is not true in the more general case of anisotropic quantum
impurities with S > 1/2. Moreover, we speculate that this
effect might have already been seen in the STM experiments
of Ref. [13] [see Fig. 3(d) in that reference], where the authors
observed that thermal scattering diminishes the effect of the
magnetocrystalline anisotropy.

Besides the shift of the Shiba peaks described in Fig. 5
we do not observe any other qualitative change in the density
of states (e.g., thermal broadening of the resonances) as com-
pared to the regimes D � T or T � D. We believe that this is
a consequence of our approximation (24), which might be too
simplistic to properly describe thermal effects in more detail.
This last conjecture is based on recent NRG results obtained

in the limit D = 0 [37], where the emergence of an intragap
thermal continuum with spectral weight ∼e−�/T around the
Shiba peaks has been reported.

V. SUMMARY AND CONCLUSIONS

We have studied the effect of uniaxial magnetic anisotropy
and quantum fluctuations on the Yu-Shiba-Rusinov states
emerging in systems of magnetic impurities coupled to su-
perconductors. YSR states have become an active area of re-
search in solid-state physics due to their potential applications
in the study of topological phases and in future quantum-
information technologies. However, many theoretical aspects
concerning the effects of anisotropy, temperature, and quan-
tum fluctuations are yet to be understood for the correct inter-
pretation of experiments. In particular, due to its ever-present
nature at the surface of metals with large atomic number (such
as Pb), single-ion anisotropy is an important effect that cannot
be disregarded in realistic theoretical descriptions of YSR
states.

In this work we have proposed and implemented a novel
decoupling scheme for the equations of motion of the
conduction-electron’s Green’s function, valid in the weak cou-
pling regime TK � � where the impurity spin is unscreened.
This decoupling allows us to go beyond the classical-spin ap-
proximation and to obtain the Green’s function (and the posi-
tion of the YSR states) in the presence of single-ion anisotropy
and quantum fluctuations. For realistic systems, this implies
that our results should be applicable in the unscreened limit of,
e.g., the experiments reported in Refs. [10–13]. In these works
the authors study MnPc organometallic molecules which are
weakly coupled to superconducting Pb surfaces and therefore
could be suitable physical realizations of the systems studied
in this work.

In the idealistic case of an impurity with vanishing
anisotropy (D = 0), the classical limit is slowly reached as
∼1/S (Fig. 2), and we expect that quantum fluctuations re-
main important even for impurities with a relatively “large”
spin. Although the complete absence of anisotropy is an
unrealistic experimental situation, this case is instructive as it
enables an important conclusion: The classical-spin behavior
observed in certain experiments [54] is not originated in
the size of S but rather is a consequence of the magni-
tude of the anisotropy parameter D. This conclusion fully
agrees with recent NRG calculations [37] and constitutes
an important validity check of our approximation in the
case D = 0.

Our main conclusion is that in the absence of other quan-
tum effects (such as the aforementioned Kondo effect), the
YSR states will be strongly affected both by the anisotropy
and the temperature. This prediction is in contrast to the
common belief that YSR states are unaffected by the tem-
perature. In the case of easy-axis anisotropy D > 0, in the
limit T � D our results converge fast to the classical-spin
case [see Fig. 3 and Eq. (46)]. The fact that our calculations
recover the classical limit is an important sanity check. On
the other hand, for D � T where thermal energy effectively
restores the SU(2) symmetry and the quantum fluctuations
remain an important effect, the position of the YSR peak
might deviate considerably from the classical expression. On
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the other hand, for the case of hard-axis anisotropy D < 0, the
nature of the quantum impurity radically changes and strictly
speaking there is no classical limit. Indeed, in the limit D →
−∞ the impurity effectively maps onto a Seff = 1/2 (Seff = 0)
impurity for half-integer (integer) S [56]. Consequently the
position of the YSR peak is not described by the classical
formula (6) but instead is described by Eq. (48) or tends to
EY SR/� → 1, respectively.

From these results, we conclude that the position of the
YSR peaks is the result of a complicated interplay between
quantum fluctuations, anisotropy, and temperature, and that it
is crucial to take all of these effects into account for the correct
interpretation of the experimental STM data. For instance,
in Ref. [13] the authors describe a S = 1 system with an
anisotropy parameter D = 0.33 meV and � = 1.3 meV, with
temperatures ranging from 1 to 10 K (i.e., 0.09 meV to 0.9
meV). This implies that the impurity crosses over from the
regime T  0.27D to the regime T  2.7D. Quite remark-
ably, precisely for T  D, the experimental results show a

qualitative change of behavior and for T > D thermal scatter-
ing seem to diminish the effect of anisotropy, a fact that seems
to be consistent with our prediction in Fig. 5. We believe
that the decoupling method outlined in this work could be
relevant in the field of YSR states studied by STM techniques,
where the inherent many-body nature of the problem and the
unavoidable experimental complexities must be considered
for the correct interpretation of the experimental results.
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APPENDIX: CALCULATION OF THE VECTOR Sk IN EQ. (38)

In this Appendix, we show the details for the computation of the Matsubara sum
∑

lmax<|l| in Eq. (38):

Mm
k = 1

β

∑
lmax<|l|

1

iωl − iωk − (
�0

m+1 − �0
m

) .
1

(z − iωl )
= β

(2π )2

∑
lmax<|l|

1

l − k − β

2π i

(
�0

m+1 − �0
m

) .
1

l − β

2π i z
. (A1)

Splitting the sum into
∑

lmax<|l| = ∑∞
l=lmax+1 +∑−lmax−1

l=−∞ , and performing the change of variable l = l ′ + lmax, we can write

Mm
k = β

(2π )2

∞∑
l ′=1

[
1

l ′ + lmax − k − β

2π i

(
�0

m+1 − �0
m

) .
1

l ′ + lmax − β

2π i z
+ 1

l ′ + lmax + k + β

2π i

(
�0

m+1 − �0
m

) .
1

l ′ + lmax + β

2π i z

]
.

(A2)

The summation has the form
∞∑

l ′=1

[
1(

l ′ + z(m)
1,k

)(
l ′ + z(m)

2,k

) + 1(
l ′ + z(m)

3,k

)(
l ′ + z(m)

4,k

)
]
, (A3)

where

z(m)
1,k = lmax − k − β

(
�0

m+1 − �0
m

)
2π i

, (A4)

z(m)
2,k = lmax − βz

2π i
, (A5)

z(m)
3,k = lmax + k + β

(
�0

m+1 − �0
m

)
2π i

, (A6)

z(m)
4,k = lmax + βz

2π i
. (A7)

Using the result [57] �(1 + z) = −γ + ∑∞
l ′=1

z
l ′(l ′+z) , where ψ (z) and γ are, respectively, the digamma function and the Euler

gamma constant (see Ref. [57]), the sum (A3) yields
∞∑

l ′=1

[
1(

l ′ + z(m)
1,k

)(
l ′ + z(m)

2,k

) + 1(
l ′ + z(m)

3,k

)(
l ′ + z(m)

4,k

)
]

= �
(
1 + z(m)

1,k

) − �
(
1 + z(m)

2,k

)
z(m)

1,k − z(m)
2,k

+ �
(
1 + z(m)

3,k

) − �
(
1 + z(m)

4,k

)
z(m)

3,k − z(m)
4,k

. (A8)

With all these results, finally Eq. (38) is

Sk = 4α2
⊥
(
g(0)

k

)2

π2S2

S∑
m=−S

AmW

(2π )2

(
�

(
1 + z(m)

1,k

) − �
(
1 + z(m)

2,k

)
(
z(m)

1,k − z(m)
2,k

)
/β

+ �
(
1 + z(m)

3,k

) − �
(
1 + z(m)

4,k

)
(
z(m)

3,k − z(m)
4,k

)
/β

)
. (A9)
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