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A B S T R A C T

Optimization via Simulation (OvS) is an useful optimization tool to find a solution to an optimization problem that
is difficult to model analytically. OvS consists in evaluating potential solutions through simulation executions;
however, its high computational cost is a factor that can make its implementation infeasible. This issue also
occurs in multi-objective problems, which tend to be expensive to solve. In this work, we present a new hybrid
multi-objective OvS algorithm, which uses Kriging-type metamodels to estimate the simulations results and a
multi-objective evolutionary algorithm to manage the optimization process. Our proposal succeeds in reducing
the computational cost significantly without affecting the quality of the results obtained. The evolutionary part
of the hybrid algorithm is based on the popular NSGA-II. The hybrid method is compared to the canonical NSGA-
II and other hybrid approaches, showing a good performance not only in the quality of the solutions but also as
computational cost saving.

1. Introduction

Optimization via Simulation, also known as Simulated Optimization,
Simulation-Driven Optimization or SimHeuristic, is a handy tool to opti-
mize dynamic systems which are too complicated to model analytically
or algorithmically [1,2]. It consists in solving an optimization problem
in which its objective functions and/or constraints are evaluated using a
simulator. The use of a simulator makes it possible to deal with non-
linearity in a relatively simple way, but its disadvantage is that, in
general, the computational cost of executing a simulation is usually
much higher than the cost of evaluating a set of analytical functions.
OvS has a vast field of application in Operation Research problems,
where usually the type of simulation used is a Discrete-Event Simulation.
Despite this, OvS is a general framework that can be used in any kind of
optimization problem with any simulation paradigm [3–5].

In the multi-objective optimization scene, specifically in the Pareto
Frontiers approximation one, algorithms often require a considerable
amount of objective functions evaluations [6]. Worse, the number of
points needed to represent a Pareto Frontier grows exponentially respect
to the number of objectives [7]. In an OvS scheme, this means a con-
siderable amount of simulations, which implies a high computational
cost. In many occasions, this high cost discourages analysts from using a
methodology like this, and the alternative of using an analytical and
less accurate methodology is sometimes chosen. The most commonly

used way of tackling this difficulty, without resign to use the OvS fra-
mework, is not to carry out all simulations required but try to ap-
proximate them by means of a model of its inputs and outputs (a me-
tamodel) [8–10].

When a metamodel is used in an OvS scheme, on the basis of a set of
inputs and outputs samples of the simulated process, an analytical
model that adjusts inputs with outputs with the slightest error is cal-
culated, allowing the estimation of outputs for new input values.
Experimental data could also be used to improve the accuracy of the
metamodel, but in general, this type of data is not available in an OvS
problem. Regression Models, Neural Networks and Response Surfaces,
among others, are used for this purpose. A prevalent type of metamodel
in the OvS world, which was used in this work, is the one called Kriging
[11–13].

From the wide variety of existing alternatives to implement a multi-
objective OvS algorithm based on metamodels, the use of Genetic
Algorithms represents a very good one due to the evidence of the good
trade-off between quality in the Pareto Frontier approximation and
computational cost that they can reach [14,15]. For instance, the K-
MOGA algorithm uses a scheme of this kind [16].

In this paper, we present a hybrid multi-objective OvS algorithm
based on the Elitist Non-Dominated Sorted Genetic Algorithm (NSGA-II)
and the use of Kriging metamodels. Unlike other methods, in which the
metamodel is used to evaluate the highest number of possible solutions,

https://doi.org/10.1016/j.orp.2019.100098
Received 9 April 2018; Received in revised form 26 November 2018; Accepted 5 January 2019

⁎ Corresponding author.
E-mail addresses: ebaquela@frsn.utn.edu.ar (E.G. Baquela), acolivera@conicet.gov.ar (A.C. Olivera).

Operations Research Perspectives xxx (xxxx) xxxx

2214-7160/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

Please cite this article as: Baquela, E., Operations Research Perspectives, https://doi.org/10.1016/j.orp.2019.100098

http://www.sciencedirect.com/science/journal/22147160
https://www.elsevier.com/locate/orp
https://doi.org/10.1016/j.orp.2019.100098
https://doi.org/10.1016/j.orp.2019.100098
mailto:ebaquela@frsn.utn.edu.ar
mailto:acolivera@conicet.gov.ar
https://doi.org/10.1016/j.orp.2019.100098


here it is used to accelerate the exploration of the solutions space in the
firsts iterations, achieving a good trade-off between computational cost
and quality of the solutions. Our proposal combines the two ways of
using metamodels in a OvS framework (i.e., calculate the metamodel
previously to the optimization process and calculate the metamodel
inside the optimization process) with a last stage which does not require
the metamodel, with the aims of obtaining both, quality in the results
and speed in the calculation process.

The structure of this work is the following: the literature review is in
Section 1.1. Section 2 shows the basis on which the developed algo-
rithm is set: The NSGA-II algorithm and the metamodeling Kriging
method. Section 3 explains K-NSGA-II algorithm, and in Section 4 the
experiments carried out are presented. This work finishes with the
conclusions in Section 5 and the list of all references used in this work.

1.1. Literature review

The multi-objective optimization is a convenient tool to solve pro-
blems from the real world, in which there exist several objectives in
conflict [17]. From the multiple ways of facing this kind of problems,
the search for the Pareto Frontier is the most complex of all but the one
that shows the best degree of flexibility to the decision-maker [18]. The
Pareto Frontier of a problem is the set of solutions that present values in
its objectives in which the unique way of improving an objective is
worsening another. From the decision-making process’ point of view,
all solutions of the Frontier are equivalent among them and are better
than all the rest. There exist three main approaches for the Frontier’s
construction: assigning weights to the objectives iteratively [19,20],
guiding the search with the aim of maximizing some quality indicator
[21,22], or selecting non-dominated solutions [15,23–25]. The last
approach is the one that has got more attention lately. Within this, the
NSGA-II [14] is one of the most popular Pareto Frontier approximation
algorithms.

The OvS is a general optimization methodology that had a sig-
nificant development during the last two decades [1,2,5,11,26,27]. The
use of simulations makes it possible to deal with problems that, ana-
lytically, would be very difficult to address. However, a drawback of it
is that it requires several simulations and, in general, that is expensive,
even more, if the problem to be solved is multi-objective [28]. For that
reason, hybrid versions of OvS algorithms based on metamodels have
been developed with the aim of avoiding the use of simulations
whenever possible [11,29].

Sacks et al. [10] use Kriging metamodels for the first time to ap-
proximate the output of a simulation. A popular OvS algorithm based on
Kriging metamodels is the Efficient Global Optimization algorithm (EGO),
which is an iterative algorithm that seeks the global optimum on the
grounds of the mathematical properties of the metamodel. Knowles
et al. [30,31] developed a multi-objective version of the EGO algorithm
called Pareto Efficient Global Optimization (ParEGO). It is based on the
same principles as EGO, but its objective is to find the Pareto Frontier of
a multi-objective problem. It is a weight-based optimization algorithm
that linearly combines different objectives and tries to find the global
optimum of such combination. ParEGO has received several refining in
order to make it more efficient: Davins et al. [32] use a double-meta-
modeling scheme to accelerate the convergence, Aghamohammadi
et al. [33] study the effects of variables scalarization in the ParEGO
performance, and Hakanen et al. [34] use an interactive approach that
takes into account the user’s preferences. ParEGO, however, suffers
from the basic flaw of the method based on weights: it is extremely
difficult to determine which combinations of weights to choose, which
tends to make the algorithm requires too many iterations.

Other developments in metamodeling have been focused on im-
proving the quality of the metamodel itself. For example, Zhao et al.
[35] proposed a Dynamic Kriging methodology in which different sets of
estimation functions are used in different sets of points in order to
manage the non-linearity of the model space. This method has shown

very good results in complex optimization problems [36]. Volpi et al.
[37] developed an algorithm based on Dynamic Radial Functions and
compared it with a Dynamic Kriging algorithm, finding good results in
high dimensional problems. Gu et al. [38] proposed an optimization
algorithm which automatically selects appropriate metamodeling
techniques during the searching process with the aim of improving
searching efficiency. Yang et al. [39] used an adaptive version of Kriging
model which upgrade the model with new points on each iteration,
increasing in this way the quality of the estimations. Iuliano [40] ex-
plore several adaptatives strategies. And Diez et al. [41] designed a
method where a Dynamic Radial Basic Function is combined with an
adaptive sampling method with the aim of improving not only the
current solution but also the metamodel.

A natural solution that makes it possible to use the vast develop-
ment in the metaheuristics area consists in using the metamodels
combined with multi-objective evolutionary algorithms [8]. Bittner
et al. [42] suggest combining the use of Kriging metamodels with a
multi-objective version of the well-known Particle Swamp Optimization
(PSO). Todoroki et al. [43] use metamodels to evaluate the objectives in
a Multi-Objective Genetic Algorithm (MOGA). Husain et al. [44] combine
different metamodeling techniques with the well-known NSGA-II to
solve a design problem in a heat sink, concluding that the Kriging me-
tamodel shows the best performance when it is combined with this
optimization algorithm. Choi et al. [45] create a metamodel and sub-
sequently look for the metamodel’s Pareto Frontier through NSGA-II, but
they cannot correctly approximate the Pareto Frontier of the aeronautic
design problem under study (because the model is not recalculated).
Voutchkov et al. [46] combine Kriging with NSGA-II, calculating the real
value (i.e., the one generated by the simulation) of the solutions se-
lected as the best ones in each generation with a simulation, obtaining
good results but high calculation time. Regis [47] developed an evo-
lutionary algorithm which recalculates the metamodel in each iteration.
Li et al. [16] develop the K-MOGA algorithm, an adaptive algorithm
which uses a modified version of the Non-Dominated Sorted Genetic Al-
gorithm (NSGA) combined with Kriging and uses the calculation of the
metamodel variance to determine when it is necessary to recalculate it.
K-MOGA gets a very good approximation in the problems under study,
making in some cases around half of the simulation executions re-
garding the case of not using metamodels. Work carried out by Choi
et al. [45], Li et al. [16], Yang et al. [39], Regis [47] and Diez et al. [41]
conclude that, in the general case, to design a metamodel in advance
does not ensure good results and it is convenient to refine the initial
model as the optimization model is being executed.

One problem that the approaches which combine evolutionary al-
gorithms and Kriging have to deal with is to decide when it is convenient
to recalculate the model and how many samples must be used in such
recalculation. If it is not frequently adjusted, the convergence to the
Pareto Frontier is not so good, but if it is frequently modified, several
additional simulations are required (and the computational cost rises).
In general, the decision is made by using the statistical properties of it,
detecting if the error in the calculation is significant (e.g., it is the
method used by Li et al. [16] to recalculate the metamodel as the op-
timization process progresses). However, this becomes a tautology in
which the model is used to make predictions about itself.

In this work, we develop a three-stage adaptive metamodel-based
optimization algorithm called K-NSGA-II that combines Kriging with a
modified NSGA-II in which the metamodel is improved in each gen-
eration. Additionally, the recalculation of such metamodel is de-
termined by random sampling and the elitism operator is modified to
avoid premature convergence. A deep analysis of our proposal is carried
out in order to explore its potential. Seventeen literature benchmarks
are used for comparison between Canonical NSGA-II, K-MOGA, K-
NSGA-II (our first approximation) and K-NSGA-II-S3 based on K-NSGA-
II with a tuning stage to improve the convergence.

The main contributions of our approach are the following:
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• Development of a three-stage algorithm in which the metamodel is
used to discard solutions far from the Pareto Frontier.

• Creation of a method to determine the need for metamodel re-
calculation not based on the model properties but through random
sampling of simulations.

• Introduction of a Negative Elitism operator that decreases the prob-
ability of premature convergence.

2. NSGA-II and metamodels

In this section, the bases of the K-NSGA-II algorithm are presented:
the canonical NSGA-II and the Kriging-typemetamodels’ construction for
simulation outputs’ estimation.

2.1. Canonical NSGA-II

The NSGA-II is an algorithm that belongs to the Genetic Algorithms
family adapted to the multi-objective optimization [14]. It aims to
achieve an approximation to the problem’s Pareto Frontier as near as
possible.

Unlike canonical genetic algorithm, in which each individual’s fit-
ness coincide with the value of the objective function, the criterion of
non-dominance and the Crowding Distance (CD) are used here to de-
termine when a solution is better than another. Each individual is
qualified in relation to the position it has in the non-dominance hier-
archy and, for those elements in the same level, in relation to the clo-
seness to other solutions.

In each algorithm iteration, the values of all objectives of each in-
dividual are calculated and, based on these results, the non-dominance
or Pareto ranking is built among all individuals. For this purpose, each
individual is compared to the rest of the population so that it can be
determined if it is dominated by any other individual. It if is not
dominated by any, a ranking value 1 is assigned to it. After all in-
dividuals are compared, all non-dominated ones (the ones with ranking
1) are temporarily removed from the population, and then the process
is repeated with the remaining individuals. Non-dominated individuals
of this iteration are assigned value 2 in the ranking and are temporarily
removed from the population. The process is repeated until every in-
dividual is assigned a value in the ranking. Each set of individuals
carrying the same ranking value represents equivalent solutions that
dominate all the ones with higher ranking and are dominated by all the
ones with a lower ranking. With the aim of having an order criterion
among solutions with the same ranking value, the crowding distance of
each solution is calculated. For this purpose, solutions are ordered in-
creasingly for each objective and, for each solution, the average dis-
tance to those solutions immediately before and immediately after is
calculated.

A comparison operator ≺n called Crowded-Comparison Operator can
be constructed with each individual ranked and with an assigned
crowding distance in order to determine when a solution is better than
another. Assuming that it is a minimization problem, ≺n is defined
according to Eq. (1), where irank and jrank are the Pareto Ranking values
corresponding to the individuals i and j whereas icrownDist and jcrownDist
are the Crowding Distances of such individuals.

≺ < = >i j if i j or i j and i j( ) [( ) ( )]n rank rank rank rank crownDist crownDist (1)

NSGA-II is similar to a Genetic Algorithm with tournament and
elitism. In a generation m, the starting point is a population Pm with a n
size and each individual is evaluated, the Pareto Ranking values, as well
as the Crowding Distance, are calculated. Then, the Qm descendants
population is created by selecting individuals through a binary tour-
nament, crossover, and mutation. A new population = ∪R P Qm m m is
defined according to these two populations and the best n elements of
Rm are selected using the operator ≺n. These individuals form the +Pm 1

population. The process is repeated until the number of maximum
generations or other defined termination criterion is reached.

2.2. Kriging-type metamodels

Kriging-type metamodels were developed by Krige and Matheron
[12,13] in order to model problems belonging to the field of geosta-
tistics and space data modeling and were implemented as a tool to
model simulations by Sacks et al. [10]. In this type of metamodels, the
function to be modeled (ideally, a simulation) is represented as a
Gaussian stochastic process in the way it is presented in Eq. (2)

∑= +
=

Y x β f x Z x( ) · ( ) ( )
j

k

j j
1 (2)

where x is the input received by the simulator, Y is the output generated
by that simulator, f is an adjustment function, β is the weight of f, k is
the number of adjustment functions, and Z(x) is a Gaussian process with
zero mean whose covariance for two different elements (for instance, x
and w) is defined by Eq. (3).

=V w x σ R w x( , ) · ( , )2 (3)

where V(w, x) is the covariance between w and x, σ2 is the variance of
the random process Z (estimated from the sample’s variance), and R(w,
x) the correlation matrix of such process (square and with =rank n0).
There are several alternatives to choose matrix R, but a typical selection
is the one shown in Eq. (4) [16].
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(4)

with Θ a vector of Θn parameters to calculate. The main idea after the
modeling through Eq. (2) is that the original process can be interpreted
as a random way around a regression of its inputs. The objective is to
find the most appropriate β, fj and Z(x) based on a set of training data.
Unlike the least squares method, the aim is not to minimize the cal-
culation error in the training set but to make this error be zero for any
point in the training set [9,11]. Assuming functions f as constant
[10,16], the response y for any input x* can be predicted by ŷ through
Eq. (5), where =f fc is a vector with all its components equal to 1 and r
the correlations vector of element x* with each element of the training
set (Eq. (6)).

= + −−y β r x R y f β^ ( *) ( )t
c

1 (5)

= …r R x x R x x[ ( *, ), , ( *, )]n1 (6)

As R only depends on the observations set x and the unknown
parameter Θ, β can be expressed according to them through Eq. (7),
being the one expressed in Eq. (8) the best estimator of Θn.

= − − −β f R f f R y( )c
t

c c
t1 1 1 (7)

= − +max n σ RΘ [ ln( ) ln( )]
2n

0
2

(8)

To calculate Θ exactly (and R as a consequence) is usually complex;
for this reason, numerical procedures and/or metaheuristics are used to
carry out such calculation [11]. Genetic Algorithms and Newton Methods
are usually chosen.

The main theoretical characteristic of the resulting metamodel is
that it is an exact estimator for the x values used in training, whereas for
those values internal to the Hypervolume defined by the most extreme x
values, it works as an interpolator. This interpolation works quite well
unless there exist very strong gradient change points among the
training points. In practice, due to Θ is not calculated precisely, the
quality of the resulting model strongly depends on the running time
allowed for doing calculations, the characteristics of the original model
and the method used to optimize the metamodel.
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3. K-NSGA-II

In this section, our proposal is shown. Section 3.1 starts by showing
the general structure of the K-NSGA-II algorithm, and Sections 3.2, 3.3
and 3.4 describe the three algorithm stages, respectively. Within the
second stage description, Section 3.3.1 explains how metamodels are
used in the K-NSGA-II algorithm, and Section 3.3.2 proposes an addi-
tional elitism procedure to avoid premature convergence.

3.1. K-NSGA-II Structure

The general structure of the K-NSGA-II algorithm is based on the
canonical NSGA-II. The modifications of the canonical structure are
done with the aim of adapting its dynamics to the evaluation by means
of metamodels of the objective and constraints functions. The optimi-
zation scheme is divided into three stages:

• The first stage (Stage I) generates the initial metamodel in advance
and carries out the first iteration of the genetic algorithm.

• The second stage (Stage II) consists in taking the Genetic Algorithm
iterations forward, using the metamodel to evaluate the objective
functions. This metamodel is updated at every generation, but the
degree of this update depends on how good the estimations gener-
ated by it are. The result of this stage seems to be a reduction of the
solutions space, with an irregular approximation of the Pareto
Frontier.

• The last stage (Stage III) is a fine-tuning stage in which the objective
functions are not evaluated through the metamodel but through
simulations. Here the irregular approximation of Stage II is taken as
the initial population for a canonical NSGA-II algorithm.

Fig. 1 summarises the sequence of steps to follow at each generation
for each stage. The global structure is similar to a canonical NSGA-II,
but in Stage I a set of metamodels is built and in Stage II, before the
evaluation of all individuals in the current population, there is a test to
decide if evaluate the population using metamodel or by running all
simulations.

The reason for using a metamodel to calculate the value that every
objective takes instead of using the simulator itself is that, although the
construction of such metamodels is expensive regarding computational
issues, the execution of a simulation has a similar or higher cost so,
when avoiding the execution of several simulations, the saving is really
significant (in terms of time and necessary memory) [11]. The optimal
situation would be to construct a good metamodel with few training
data (few simulations) and that its errors are not significant, which is
something that does not usually happen. In general, the calculations are
very good for points close to the training ones, but the error increases as
we move away from such points.

As it will be seen in Section 3.3, K-NSGA-II uses the tendency to the
convergence of Genetic Algorithms. In the first generations, a Genetic
Algorithm is an algorithm mainly exploratory that deals with solutions
which, on average, have a significant distance among them. In this si-
tuation, the prediction errors of the metamodel are not so critical, and
the value of the operator ≺n can be appropriately estimated using me-
tamodels. In the last generations, however, the average distance among
the solutions is much smaller, and the errors in the prediction of ≺n are
more significant, that is why it is preferred to carry out the evaluation
exactly and not approximately (i.e., using simulation).

The scheme used in the K-NSGA-IImerges the three approaches used
for dealing with metamodels: estimate metamodel prior optimization
process, estimate and update metamodel during the optimization pro-
cess, and not to use metamodel in function evaluation.

3.2. K-NSGA-II: Stage I

The first stage consists of the creation of the initial population, the

evaluation of solutions, the calculation of metamodels (one per each
objective) and the creation of the second generation of solutions.
Basically, this stage is a canonical NSGA-II with only 1 generation, plus
the metamodel’s construction.

The generation of the initial population is carried out at random.
Being =p P| |s the selected size of the population, 2ps solutions are
created stochastically, and all of them are evaluated through simula-
tion. With these results, the first metamodel is calculated (hereinafter,
be it noticed that when we say metamodel, we are mentioning the
whole set of metamodels, one associated to each objective and to each
constraint).

Then, from the 2ps-size set, ps solutions are chosen randomly, being
these ones the solutions that form the first generation. The processes of
selection, crossover, mutation, and elitism are applied and as a result,
the second generation is obtained. So as to improve the accuracy of K-
NSGA-II algorithm, the initial population could be created by a more
specific method, like Latin Hypercube.

In this first stage, the selection through the operator ≺n is carried
out exactly, considering that all results of simulations of all solutions to
be evaluated are available. Additionally, a metamodel with a good start
accuracy is reached when considering the double of solutions for its
calculation.

3.3. K-NSGA-II: Stage II

This is the most complex stage and the one that generates more
savings. It consists in moving forward from generation 2 until the be-
ginning of Stage III evaluating the solutions through the metamodel.
Again, it works as a canonical NSGA-II except for the selection proce-
dure and the elitism process. In both, the changes made consist in that
the evaluation is carried out through metamodels and that the elitism is
divided in two, one positive and another negative (prone to include bad
solutions).

3.3.1. Selection
The main idea of K-NSGA-II consists in evaluating the solutions

using a metamodel instead of the original functions but ensuring that
the selection of individuals through the operator ≺n is the same as using
the original functions.

As an approximation model, Kriging has error margin in its calcu-
lation. Even as a sub-product of the metamodel calculation, an esti-
mator for such error is obtained for each solution to be evaluated. Most
optimization algorithms based on Kriging use this estimator to de-
termine when the metamodel prediction is acceptable or not. This cri-
terion is usually necessary in mono-objective optimization, but in multi-
objective optimization, for the purpose of selecting individuals to create
the population of the following generation, the accuracy in the calcu-
lation of the objective functions values is not so important. The im-
portant thing is the calculation of which solution of each pair of solu-
tions is the non-dominated one. So long as the metamodel allows
estimating the result of the operator ≺n correctly, the metamodel is
valid to continue to be used (even if the error margin of each individual
prediction is high); if the calculation of the application of ≺n is in-
correct, the solutions must be evaluated through simulation, and the
metamodel must be recalculated.

To predict how good the metamodel is, we use a boolean function I
(i, j) which gives back 1 if the result of i≺nj is the same using the me-
tamodel and calculating the value of the objectives for i and j using the
true objective functions (i.e., simulating the solutions). Since I(i, j)
cannot be evaluated for all individuals (as that would require simula-
tion of all solutions), a sample sized kcheck is taken from the current
population. Then, pairs of individuals (i, j) are formed and every pair is
evaluated. As I(i, j) takes the complementary values of I(j, i), the
number of checks to be carried out is of = −N k k*( 1)/2check check check . The
decision of using the metamodel to evaluate or not all solutions is made
according to the proportion of results 1 of the function I(i, j) regarding
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the total amount of analyzed couples (Eq. (9)).

∑ ∑ > I i j

N

( , )i j i

check (9)

If the proportion is higher than a critical value α it is considered that
the metamodel errors are not so significant and the rest of solutions are
not simulated. However, if it is lower than α, all solutions of the po-
pulation are simulated. In both cases, the metamodel is recalculated: in
the first case, the solutions used for the test are added; in the second
case, all the solutions of the population are added. For this reason,
regardless of the result of the current generation, the following one will
use a more accurate metamodel [39].

3.3.2. Negative elitism
The random method of evaluation of the metamodel quality

(Section 3.3.1) has the problem of including a possible bias in the
functioning of the ranking process and solutions selection based on the
individuals selected in the sample. Since the process is random, for the
checking process through the function I(i, j) there is a risk of selecting
only individuals for which the model works well and not evaluating any
in which the model does not work well (or vice versa). This implies that
the process of generation of the new population can discard good so-
lutions and include bad ones. To ease that effect, the process of elitism
is modified in order to include a greater diversity, at the expense of
decreasing the convergence speed [48]. On the basis of the population
Rm, the process to generate +Pm 1 is the following:

1. The population +Pm
good

1 is created by selecting the best −n nea

individuals from Rm through the application of the operator i≺nj.
2. The population +Pm

bad
1 is created by selecting the worst nea individuals

from Rm through the application of the operator i≺nj.
3. It is made = ∪+ + +P P Pm m

good
m
bad

1 1 1

This variation of the conventional elitism has the effect of reducing
the probability of premature convergence of the algorithm.

3.4. K-NSGA-II: Stage III

As it was previously mentioned, Stage II has as its primary goal to
reduce the size of the space of solutions to be explored. In many cases,
the approximation of the Pareto Frontier at the end of such stage is good,
but in other cases, it only takes the form of the Frontier with dominated
solutions or else it cannot even take the form of it. This is due to the
dynamics of the genetic algorithms: the average distance between so-
lutions tends to decrease as the generations move forward and it is more
difficult for the metamodel to achieve a correct prediction. Therefore,
the final population of Stage II is taken as the initial population in Stage
III and few generations of a canonical NSGA-II are executed (with se-
lection without metamodels and traditional elitism). This stage works
as a fine-tuning stage in which a narrowly defined region of the space of
solutions is explored to finish shaping the approximation of the Pareto
Frontier.

In the next section and in Section 5, when it is applied only Stage I
and Stage II we refers to K-NSGA-II and the application of the three
stages is that what we call K-NSGA-II-S3.

Fig. 1. K-NSGA-II stages scheme.
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4. Numerical tests

In this section, all numerical tests to evaluate the performance of
our proposal are described. K-NSGA-II and K-NSGA-II-S3 are compared
against canonical NSGA-II and K-MOGA. K-MOGA, as was indicated in
Section 1.1, is another algorithm based in Genetic Algorithm and Kriging
models, designed with the same purpose of our algorithm.

Section 4.1 describes the optimization problems used in the tests
and how the benchmarks Pareto Frontiers for all of them are generated.
Section 4.2 indicates the metrics used to evaluate how good the ap-
proximations to the Pareto Frontiers are. Section 4.3 shows the config-
uration of tested algorithms. In Section 4.4 is analyzed how many
evaluations without metamodel are required by each algorithm for a
fixed level of performance. Section 4.5 shows an analysis of the effect of
Negative Elitism in the algorithm performance. Section 4.6 contains an
analysis of kcheck and α parameters. Finally, Section 4.7 shows some
guidelines to set the new set of parameters.

4.1. Tested problems

To evaluate the proposed algorithm performance, a set of bench-
mark problems that are popular in the multi-objective optimization
literature were selected to be optimized [14]. Tables 1 and 2 show, for
each problem, the objective functions, the bounds of each variable and
the constraint functions.

To generate the Pareto Frontiers of all benchmark problems, the
following two procedures were performed:

(1) Obtain 1000000 points from the objective space of the target pro-
blem, sampling the decision space using random uniform prob-
ability distributions. In case the point was infeasible, this point is
re-sampled.

(2) Run 100 different NSGA-II instances over the problem, using a
random initial population for each one.

Procedure (1) allows obtaining a large sample of the objective space
and Procedure (2) gives a set of 100 Pareto Frontier estimations. The
final step to obtain the benchmark Pareto Frontier consists on merging
all points obtained in both procedures and recalculating the Pareto
Frontier of this large set of points.

4.2. Metrics for performance measurement

To evaluate the performance of the K-NSGA-II and K-NSGA-II-S3, we
used two types of indicators: quality indicators and cost indicators. As
quality indicators, we have chosen the following four [49–53]:

• Generational Distance

• Generalized Spread

• Dominated Hypervolume

• Epsilon Indicator

The Generational Distance indicator is calculated by averaging the
minimum Euclidean distance of each point of the curve to measure with
the Pareto Frontier used as benchmark curve. Its calculation is shown in
Eq. (10):

=
∑ =GD

d

N
i
N

i1
2

(10)

where N is the number of solutions to be compared with the Pareto
Frontier and di is the minimum distance from solution i to the Pareto
Frontier. The indicator is a measure of closeness to the benchmark
frontier. The smaller it is, more uniformly distributed are the points of
the estimated Pareto Frontier respect to the benchmark curve. That is,
when the value of this indicator is big, the estimated Pareto Frontier has
many points clustered, and it does not approximate the entire bench-
mark curve.

Generalized Spread is calculated by Eq. (11):
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where ei are the M extreme points in the benchmark Pareto Frontier, d
(ei, S) is the minimum Euclidean distance from the curve to measure S
to the point ei, di is the distance between the solution i and the solution

+i 1 from the curve to measure, d̄ is the average of N distances di and
=N S| | is the number of points in the curve to measure. This indicator

measures how much spread the solutions found by the tested algorithm
are. The smaller it is, the more uniformly distributed the obtained so-
lutions are respect to the benchmark Pareto Frontier. The higher it is,
the more clustered the obtained solutions are.

The Dominated Hypervolume is a quality measurement that evalu-
ates, at the same time, the approximate Pareto Frontier distance against
the benchmark Pareto Frontier as well as the space of the calculated
frontier. It condenses the spread and convergence measurements in the
same indicator. This metric calculates the volume of the objectives’
space whose points are dominated by the curve under evaluation. The
higher its value, the better the approximation is. The maximum level of
this indicator is the Dominated Hypervolume by the real Pareto Frontier of
the problem. To calculate it, a point W external to the curve is defined
(the worst solution found, for example), and, per each point i in the
approximate frontier Q, a vi volume hypercube is constructed. The
union of all hypercubes determines the total Hypervolume (Eq. (12)).

= =HD volume U v( )i
Q

i1
| | (12)

The Additive Epsilon Indicator gives a factor by which a curve is
worse than other considered all objectives. In our context, the factor

can be considered as a scaling factor to be applied to transform the
curve to measure into the Pareto Frontier. Its calculation is shown in Eq.
(13), where R is the benchmark Pareto Frontier, A is the Pareto Frontier
approximation obtained by the algorithm to test and d the number of
objectives. As smaller is it, better is the approximation of A respect R.

= −+
∈ ∈ ∈

EPS a rmax min max ( )
r R a A i d

i i( )
{1. } (13)

Additive Epsilon Indicator and Hypervolume are indicators that
condense in one value the quality of the Pareto Frontier approximation
respect to the benchmark Pareto Frontier. In most cases, evaluate an
algorithm with one or another allows obtaining the same conclusion.
However, in some cases, Additive Epsilon Indicator and Hypervolume can
trigger different results, ie the first says that curve A approximates the
benchmark curve in a better way than curve B, but the second says the
opposite [51]. So, both indicators have been considered in this analysis.
In regard of the selection of Additive Epsilon Indicator and Hypervolume,
we added Generalized Spread and Generational Distance to our analysis
with the aims to understand where the proposed algorithm performs
better, in the minimization of the distance respect of the benchmark
curve or in the coverage of all benchmark curve.

Respect to cost indicators, we have chosen the number of evalua-
tions of the objective function made without the metamodel. If the
objective function is evaluated without the metamodel, this number is
equivalent to the number of simulations carried out in an OvS scheme.
Depending on the nature of the objectives, all of them could be eval-
uated with the same simulation model, or could need different simu-
lation models for each one. In the tested cases on this works, was as-
sumed that all objectives are evaluated with the same model.

Table 2
Benchmark Problems - Part 2.
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4.3. Algorithms’ configuration

To be able to evaluate the quality of the K-NSGA-II and K-NSGA-II-
S3, its performance was compared with the metaheuristics NSGA-II
[14], and K-MOGA [16]. NSGA-II, as well as K-MOGA, K-NSGA-II and K-
NSGA-II-S3, were executed using stopping criteria consisting in fin-
ishing the optimization when the Dominated Hypervolume of the Pareto
Frontier approximation is greater or equal to 95% of the benchmark
Pareto Frontier. This criterion allows us to compare all algorithms in the
same conditions. In Table 3, the general configuration of the algorithms
is shown. In the case of K-NSGA-II and K-NSGA-II-S3, =k 10,check

=α 0.90 and =n 0.10ea . Finally, for the K-NSGA-II-S3, its number of
generations was estimated in order to use the last 20% generations for
Stage III. To realize the estimation, a set of executions of the algorithm
were done, using different numbers of generations, and the number of
generations to match the goal of the 20% required was interpolated.
Each algorithm run was repeated 100 times, with different random
seeds.

4.4. Algorithms comparison

In this section, the comparison between the algorithms is shown.
The number of true evaluations needed (that is, not through a meta-
model) is shown in Tables 4–11. In these tables, the first column is the
tested function, the second is the indicator name (mean, percentile
0.05, and percentile 0.95), and the columns three to six correspond to
the values reached by NSGA-II, K-MOGA, K-NSGA-II, and K-NSGA-II-S3,
respectively. Values in bold indicate that an algorithm needs the least
number of evaluations to reach the same quality obtained by NSGA-II
for an indicator, and values in italics show the second least number of
evaluations.

Tables 4 and 5 show the estimated number of function evaluations

needed to reach the 95% of the Dominated Hypervolume of the respective
Pareto Frontier. K-NSGA-II-S3 performs well in problems like Belegundu
and ZDT1, saving almost half of the required evaluations by the cano-
nical NSGA-II. In Belegundu, canonical NSGA-II performs satisfactory,
requiring a small number of evaluations to obtain the Hypervolume goal.
However, K-NSGA-II-S3 performs betters, using a smaller set of eva-
luations to reach the same goal. ZDT1 requires a lot of evaluations in
both algorithms, but K-NSGA-II-S3 still performs better than canonical
NSGA-II.

On the other side, K-NSGA-II-S3 performs as NSGA-II, or slightly

Table 3
Algorithms’ parameters.

Parameter Value

Population size 50
Tournament size 2
Crossover probability 0.8
Mutation probability 0.1
Elitism 0.1

Table 4
Number of evaluations to reach the 95% of Pareto Frontier’s Dominated
Hypervolume - Part 1.

Function Measure NSGA-II K-MOGA K-NSGA-II K-NSGA-II-S3

Belegundu Percentil 0.05 348 204 218 192
Mean 397 245 226 207
Percentil 0.95 421 293 287 248

Binh1 Percentil 0.05 753 625 536 573
Mean 1520 681 799 630
Percentil 0.95 2474 763 948 775

Binh2 Percentil 0.05 691 554 548 502
Mean 759 603 626 588
Percentil 0.95 854 691 703 624

Binh3 Percentil 0.05 1417 1309 1539 1106
Mean 1752 1486 1805 1308
Percentil 0.95 2003 1960 2158 1897

Deb3 Percentil 0.05 368 415 507 395
Mean 401 507 703 413
Percentil 0.95 487 670 878 481

Fonseca1 Percentil 0.05 806 437 1047 478
Mean 1483 574 1378 515
Percentil 0.95 2521 807 2042 759

Fonseca2 Percentil 0.05 742 591 1329 382
Mean 1461 854 1787 462
Percentil 0.95 1763 1203 2177 703

Table 5
Number of evaluations to reach the 95% of Pareto Frontier’s Dominated
Hypervolume - Part 2.

Function Measure NSGA-II K-MOGA K-NSGA-II K-NSGA-II-S3

Hanne1 Percentil 0.05 948 608 836 535
Mean 1104 745 973 623
Percentil 0.95 1572 871 1168 715

Hanne2 Percentil 0.05 857 948 1045 801
Mean 1073 902 1231 865
Percentil 0.95 1298 1036 1318 960

Hanne3 Percentil 0.05 1063 976 1202 905
Mean 1136 1085 1382 993
Percentil 0.95 1504 1135 1567 1076

Hanne4 Percentil 0.05 939 746 978 675
Mean 1076 940 1024 710
Percentil 0.95 1194 1029 1130 885

Hanne5 Percentil 0.05 852 817 934 827
Mean 968 986 1056 956
Percentil 0.95 1143 1114 1148 1089

Jimenez Percentil 0.05 564 742 789 675
Mean 767 825 934 734
Percentil 0.95 1273 1087 1240 948

VNT Percentil 0.05 309 390 643 376
Mean 543 603 751 538
Percentil 0.95 875 859 881 923

ZDT1 Percentil 0.05 1308 1204 1335 1034
Mean 1793 1407 1593 1152
Percentil 0.95 2367 1838 2071 1354

ZDT2 Percentil 0.05 862 738 1154 704
Mean 1457 963 1265 835
Percentil 0.95 2054 1266 1749 1176

ZDT3 Percentil 0.05 1375 1070 1290 932
Mean 1865 1291 1493 1049
Percentil 0.95 2459 1522 1757 1168

Table 6
Number of evaluations to reach NSGA-II Additive Epsilon Indicator value - Part
1.

Function Measure NSGA-II K-MOGA K-NSGA-II K-NSGA-II-S3

Hanne1 Percentil 0.05 348 204 218 192
Mean 397 245 226 207
Percentil 0.95 421 293 287 248

Binh1 Percentil 0.05 753 580 625 546
Mean 1520 681 814 651
Percentil 0.95 2474 763 975 808

Binh2 Percentil 0.05 691 548 554 502
Mean 759 603 626 588
Percentil 0.95 854 691 703 624

Binh3 Percentil 0.05 1417 1309 1554 1136
Mean 1752 1486 1862 1378
Percentil 0.95 2003 1960 2259 1937

Deb3 Percentil 0.05 368 415 507 395
Mean 401 507 703 413
Percentil 0.95 487 670 878 481

Fonseca1 Percentil 0.05 806 437 1047 478
Mean 1483 574 1378 515
Percentil 0.95 2521 807 2042 759

Fonseca2 Percentil 0.05 742 591 1329 382
Mean 1461 854 1787 462
Percentil 0.95 1763 1203 2177 703
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worse, for problems like Deb3, Hanne5, Jimenez, and VNT. Metamodels
could not estimate the new solutions generated in each generation. In
those cases, the metamodels were recalculated in almost all genera-
tions, working the algorithm like a canonical NSGA-II. This behavior,
naturally not good from the saving cost point of view, has a positive
point: in the worst problems tested, where metamodels did not work, K-
NSGA-II-S3 obtains the Hypervolume goal without increasing cost sig-
nificantly respect canonical NSGA-II. That is, at least in the problems
tested in this work, K-NSGA-II-S3 obtains always results equal or better
than canonical NSGA-II.

K-NSGA-II-S3 seems to have a similar degree of randomness than
canonical NSGA-II. Amplitudes between 5% and 95% percentile have
similar value for both algorithms. It is important to notice that, in such
problems where K-NSGA-II-S3 is by far better, ranges −5% 95% are not
overlapped with the same ranges for canonical NSGA-II. That is, the
worse performance of K-NSGA-II-S3 in those problems is better than the
better performance of canonical NSGA-II.

It can be seen how K-NSGA-II (without the Stage III) needs many
calculations to reach the expected value. Cost savings are small or ne-
gatives (that is, the algorithm is more expensive than canonical NSGA-

Table 7
Number of evaluations to reach the same NSGA-II Additive Epsilon Indicator
value - Part 2.

Function Measure NSGA-II K-MOGA K-NSGA-II K-NSGA-II-S3

Hanne1 Percentil 0.05 948 608 836 535
Mean 1104 623 745 642
Percentil 0.95 1572 871 1168 715

Hanne2 Percentil 0.05 857 848 1045 801
Mean 1073 902 1231 865
Percentil 0.95 1298 1036 1318 960

Hanne3 Percentil 0.05 1063 976 1202 905
Mean 1136 1085 1382 993
Percentil 0.95 1504 1135 1567 1076

Hanne4 Percentil 0.05 939 746 978 675
Mean 1076 940 1024 710
Percentil 0.95 1194 1029 1130 885

Hanne5 Percentil 0.05 852 817 934 877
Mean 968 986 1056 956
Percentil 0.95 1143 1114 1178 1089

Jimenez Percentil 0.05 564 742 789 675
Mean 767 825 934 734
Percentil 0.95 1273 1087 1240 1048

VNT Percentil 0.05 309 390 643 376
Mean 543 603 751 538
Percentil 0.95 875 859 1081 923

ZDT1 Percentil 0.05 1308 1234 1335 1034
Mean 1793 1452 1593 1152
Percentil 0.95 2367 1838 2071 1354

ZDT2 Percentil 0.05 862 738 1154 704
Mean 1457 963 1265 835
Percentil 0.95 2054 1266 1749 1176

ZDT3 Percentil 0.05 1375 1070 1290 932
Mean 1865 1291 1493 1049
Percentil 0.95 2459 1522 1757 1168

Table 8
Number of evaluations to reach the same NSGA-II Generational Distance
Indicator value - Part 1.

Function Measure NSGA-II K-MOGA K-NSGA-II K-NSGA-II-S3

Belegundu Percentil 0.05 348 204 218 192
Mean 397 267 226 207
Percentil 0.95 421 306 287 248

Binh1 Percentil 0.05 753 625 536 573
Mean 1520 681 799 630
Percentil 0.95 2474 763 948 825

Binh2 Percentil 0.05 691 554 548 502
Mean 759 603 626 588
Percentil 0.95 854 691 703 624

Binh3 Percentil 0.05 1417 1356 1539 1106
Mean 1752 1503 1805 1308
Percentil 0.95 2003 1984 2158 1897

Deb3 Percentil 0.05 368 415 507 395
Mean 401 507 703 413
Percentil 0.95 487 670 878 481

Fonseca1 Percentil 0.05 806 437 1047 482
Mean 1483 534 1378 515
Percentil 0.95 2521 726 2042 778

Fonseca1 Percentil 0.05 742 591 1329 382
Mean 1461 854 1787 462
Percentil 0.95 1763 1203 2177 703

Table 9
Number of evaluations to reach the same NSGA-II Generational Distance
Indicator value - Part 2.

Function Measure NSGA-II K-MOGA K-NSGA-II K-NSGA-II-S3

Hanne1 Percentil 0.05 948 608 836 535
Mean 1104 623 973 635
Percentil 0.95 1572 871 1168 715

Hanne2 Percentil 0.05 857 848 1045 801
Mean 1073 902 1231 865
Percentil 0.95 1298 1036 1318 960

Hanne3 Percentil 0.05 1063 976 1202 905
Mean 1136 1085 1382 993
Percentil 0.95 1504 1135 1567 1076

Hanne4 Percentil 0.05 939 746 978 675
Mean 1076 940 1024 710
Percentil 0.95 1194 1029 1130 885

Hanne5 Percentil 0.05 852 817 934 827
Mean 968 984 1056 956
Percentil 0.95 1143 1114 1148 1089

Jimenez Percentil 0.05 742 675 789 693
Mean 767 825 934 734
Percentil 0.95 1273 1087 1240 1048

VNT Percentil 0.05 309 390 643 376
Mean 543 603 751 538
Percentil 0.95 875 859 881 923

ZDT1 Percentil 0.05 1308 1107 1335 1034
Mean 1793 1452 1357 1152
Percentil 0.95 2367 1612 2071 1354

ZDT2 Percentil 0.05 862 746 1154 704
Mean 1457 855 952 835
Percentil 0.95 2054 1208 1749 1176

ZDT3 Percentil 0.05 1375 1132 1290 932
Mean 1865 1376 1493 1049
Percentil 0.95 2459 1645 1757 1168

Table 10
Number of evaluations to reach the same Generalized Spread Indicator value -
Part 1.

Function Measure NSGA-II K-MOGA K-NSGA-II K-NSGA-II-S3

Belegundu Percentil 0.05 348 204 232 197
Mean 397 222 238 212
Percentil 0.95 421 258 300 263

Binh1 Percentil 0.05 753 617 586 543
Mean 1520 638 809 644
Percentil 0.95 2474 782 963 789

Binh2 Percentil 0.05 691 513 558 517
Mean 759 595 637 606
Percentil 0.95 854 629 710 633

Binh3 Percentil 0.05 1417 1144 1579 1130
Mean 1752 1336 1831 1347
Percentil 0.95 2003 1920 2185 1932

Deb3 Percentil 0.05 368 400 520 407
Mean 401 424 717 471
Percentil 0.95 487 496 884 519

Fonseca1 Percentil 0.05 806 497 1061 484
Mean 1483 529 1387 570
Percentil 0.95 2521 812 2052 771

Fonseca2 Percentil 0.05 742 390 1335 403
Mean 1461 471 1802 489
Percentil 0.95 1763 754 2185 708
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II). It can be supposed that metamodels are useful in the first genera-
tions, where genetic algorithms have an exploration behavior [7].
There is no need to use a lot of simulations to evaluate the solution, and
also Negative Elitism seems to add a degree of variety in populations that
benefit exploration. However, in the last stages, when exploitation is
the usual behavior, metamodel approximations are not good, and Ne-
gative Elitism could add an unnecessary extra effort to converge to Pareto
Frontier. It is not wrong to suppose that the net effect of Stage II is to
generate a good starting population for the Stage III (in fact, a canonical
NSGA-II running across a small number of generations). That effect can
be interpreted as a type of search space reduction. Due to the fact that
in a Genetic Algorithm each generation is generated through a stochastic
transformation over the previous generation, solutions evaluated in first
generations of Stage III should not have so much diversity as the solu-
tions evaluated in first generations of Stage II.

Regarding K-MOGA, the algorithm performed well, needing less
number of evaluations than canonical NSGA-II in the same problems
where K-NSGA-II-S3 performed well. However, it required a few more
evaluations than K-NSGA-II-S3 in most cases.

Tables 6 and 7 show the number of evaluations needed to reach the
same Additive Epsilon Indicator value than a canonical NSGA-II running
the same number of evaluations than in the Hypervolume test. The re-
sults reported in the tables demonstrate that K-NSGA-II-S3 reduce the
mean of evaluations significantly in fifteen functions of the seventeen to
obtain the same level of quality in Additive Epsilon Indicator follow by K-
MOGA in twelve of these functions. Moreover, in the two functions that
not obtain the best performance was the second best. It is interesting to
note that for Fonseca1 and Fonseca2 the saving of evaluations reaches
more than 50% in comparison to NSGA-II.

Similar occurs in Tables 8 and 9 for Generational Distance. In fifteen
functions K-NSGA-II-S3 obtains the least number of evaluations follow
by K-MOGA with the second best.

In Tables 10 and 11 for Generalized Spread it can observe differences.
K-NSGA-II-S3 obtains the best saving for nine of the seventeen functions

and the second best for seven functions. It can be interpreted as the K-
NSGA-II-S3 has some bias in its calculation process which induces to
cluster the solution generation and evaluation process.

In order to have a general indication of how good is each algorithm,
the distribution of the global average of mean evaluations was esti-
mated using Bootstrap [54]. It was performed through Monte Carlo Case
Re-sampling with 5000 repetitions over the set of 17 test problem. The
result of this process is an estimation of the probability of each possible
value of the mean of an indicator, under the strong assumption that we
are dealing with a bag of problem containing all tested problems or a
fiction problem which partially averages all characteristics of the tested
problem. It is a biased distribution that clearly does not allow to make
predictions but allows to compare NSGA-II, K-MOGA, and K-NSGA-II-S3
in a cleaner way than only watching an indicator per problem.

For Fig. 2a–d Light-grey histogram and KN boxplot are the K-NSGA-
II-S3 algorithm whereas Grey histogram and KM boxplot represent the
K-MOGA algorithm. Dark-grey bars indicate common values for K-
MOGA and K-NSGA-II-S3. The horizontal axis indicates the value of the
quotient between then mean numbers of evaluation done with the
target algorithm in a bag of problems generated re-sampling the bag of
the tested problems, and the mean of evaluation done by the NSGA-II
for the same bag. For example, a value of 0.7 indicates that the
target algorithm does 70% of the evaluations done by NSGA-II, on
average. Histograms show the frequency of each value, and each box
plot indicates the distribution of the values, with the most improbable
values plotted outside the boxplot itself. Value 1.0 in the horizontal axis
is, by definition, the mean of NSGA-II.

Fig. 2a shows the comparison between K-MOGA and K-NSGA-II-S3
for the Dominated Hypervolume indicator. It can be seen that both al-
gorithms have, in general, a mean behavior better than NSGA-II. K-
NSGA-II-S3 reaches better mean values than K-MOGA. Analyzing box-
plots, it can be seen that, on average, the first 75% of all K-NSGA-II-S3
observation are better than more of the 75% of all K-MOGA observa-
tions. The vertical dash-line indicates the percentile 0.05 of mean
evaluations for NSGA-II. As can be seen, mean values for K-NSGA-II-S3
are significantly betters than mean values of NSGA-II (in fact, only in
Deb3 was registered the opposite situation). Graphical analysis for this
indicator shows similar results for the other indicators. Fig. 2b and c
show that both, Additive Epsilon and Generational Distance, have a si-
milar behavior than Dominated Hypervolume. Both have a better per-
formance than K-MOGA and NSGA-II. But, in the case of Generalized
Spread (Fig. 2d), the differences between K-MOGA and K-NSGA-II-S3
disappear. It could be evidencing some kind of bias in K-NSGA-II-S3.

In general, the four indicators used show a good performance for K-
NSGA-II-S3, but not for K-NSGA-II. Generalized Spread seems to be de-
coupled respect to the other three indicators in its behavior. Also,
compared with NSGA-II, performance is better when problems need
more iterations to be solved. To test this, the correlation between the
following two indicators was calculated:

• −niternsga ii = number of iterations needed by NSGA−II

• − − −niterk nsga ii s3 =
−

number of iterations needed by K−NSGA−II−S3
niternsga ii

Correlation reaches a value of − 0.55 for the case of Dominated
Hypervolume, − 0.52 for Additive Epsilon, − 0.54 for Generational
Distance, and for Generalized Spread a value of − 0.52. These results
imply that, although there are more factors that determine how many
evaluations needs K-NSGA-II-S3, there exists some kind of inverse re-
lation with the effort needed by the canonical NSGA-II. In other words,
as more evaluations needs NSGA-II, more important are the percentual
savings generated by K-NSGA-II-S3.

It is interesting to note that metamodels spare a significant number
of evaluations for ZDT1, ZDT2, and ZDT3 functions. Although they have
a domain of 30 dimensions, the approximation via Kriging allows
modeling the behavior of the objective functions adequately.

Table 11
Number of evaluations to reach the same level as NSGA-II in Generalized
Spread Indicator-Part 2.

Function Measure NSGA-II K-MOGA K-NSGA-II K-NSGA-II-S3

Hanne1 Percentil 0.05 948 650 842 547
Mean 1104 732 979 638
Percentil 0.95 1572 921 1177 725

Hanne2 Percentil 0.05 857 824 1054 813
Mean 1073 878 1237 820
Percentil 0.95 1298 1071 1324 967

Hanne3 Percentil 0.05 1063 945 1219 909
Mean 1136 1061 1410 1030
Percentil 0.95 1504 1183 1604 1097

Hanne4 Percentil 0.05 939 716 1020 693
Mean 1076 798 1060 741
Percentil 0.95 1194 967 1148 904

Hanne5 Percentil 0.05 852 860 963 838
Mean 968 990 1077 927
Percentil 0.95 1143 1152 1184 1131

Jimenez Percentil 0.05 564 706 812 742
Mean 767 794 956 762
Percentil 0.95 1273 1093 1280 1070

VNT Percentil 0.05 309 395 668 408
Mean 543 569 791 567
Percentil 0.95 875 789 951 914

ZDT1 Percentil 0.05 1308 1063 1371 1085
Mean 1793 1285 1620 1140
Percentil 0.95 2367 1481 2097 1390

ZDT2 Percentil 0.05 862 726 1187 735
Mean 1457 857 1293 964
Percentil 0.95 2054 1307 1774 1217

ZDT3 Percentil 0.05 1375 1060 1311 956
Mean 1865 1276 1513 1069
Percentil 0.95 2459 1500 1783 1189
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4.5. Negative elitism analysis

In order to measure the effect of the negative elitism, K-NSGA-II-S3
executes 50 generations for each problem, with and without the usage
of negative elitism, in a new set of numerical tests. Table 12 shows the
mean percentage difference in the Dominated Hypervolume indicator for
the case without Negative Elitism respect the other case. Negative Elitism
was set to values 0.05, 0.10 and 0.20. Its effects appear to be variable.
Firstly, the impact of Negative Elitism seems to be strongly dependent on
the individual characteristics of the Pareto Frontier to estimate. For
example, if nea is set to 0.10, in Fonseca1 the usage of Negative Elitism
reduced the quality of the results, but in ZDT1 it improved the results. It
is interesting to points that, in the set of evaluated functions, mean
improvements caused by Negative Elitism are greater than mean draw-
backs caused by it, when =n 0.10ea . Secondly, the usage of Negative

Elitism in those cases when it has a positive impact should be con-
strained to small values of nea. In all cases, when =n 0.20,ea the results
were worse than =n 0.10ea .

4.6. Parameters analysis

K-NSGA-II-S3 introduces several new parameters that need to be
defined before running it. To determine how they impact on the opti-
mization process, all the experiments of K-NSGA-II-S3 were repeated
with different sets of parameters. Table 13 shows the configuration
tested and results are shown in Tables 14 and 15.

Due to kcheck individuals are always evaluated in each generation,
change the value of this parameter has a direct effect on the compu-
tational cost. Decreasing the value of kcheck increases slightly the
number of evaluations needed because of the loss in the model

5

Fig. 2. Comparison of the mean number of evaluation needed to reach the same indicator value.
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accuracy. Increasing the value of this parameters also shows an increase
in computational cost.

Increasing α values implicates more needs of metamodel re-
calculation, which directly impacts on the computational cost. But re-
duce its value also increase the computational cost. In that case, be-
cause more generations are needed to reach the same quality.

Despite the difficulty of estimate these parameters, a procedure like
iRace[55] can be used to define the best parameter selection.

4.7. Parameters proposed values

One drawback that many metaheuristics have, like Genetic
Algorithms, is that the metaheuristic user needs to set the value of all
parameters involved in the algorithm calculations. K-NSGA-II-S3 add a
new set of parameters: kcheck, α, nea, the length of Stage II and the length
of Stage III. Despite the fact that each individual problem has its own set
of optimal parameter values, we ran an iRace [55] procedure over all
tested problem in order to determinate what set of parameters has the

best average behavior across all test set, setting the number of gen-
erations to 50. iRace got this set of values.

• kcheck: 10

• α: 0.90
• nea: 0.10

• Length of Stage III: TotalGenerations · 0.20

• Length of Stage II: − −TotalGenerations LengthofStageIII 1

Said that, we suggest to run, if it is possible, the iRace procedure
over a small instance of the problem to solve, in order to tune the
parameters values to the problem structure.

5. Conclusions

With the aim to accelerate the convergence to the Pareto Frontier in
Multi-Objective Problems solved by means of Optimization via
Simulation, a novel algorithm called K-NSGA-II-S3 was proposed in this
work. K-NSGA-II-S3 achieves satisfactory the trade-off between Quality
Indicators and Number of Evaluations required in the problems ana-
lyzed. In the problems tested, the Quality Indicators reaches a similar
level of what was obtained by the canonical NSGA-II, carrying out 50%
of simulations or less in many cases. Also, in all instances where me-
tamodels could not estimate well the objective functions, the K-NSGA-
II-S3 had a behavior similar to canonical NSGA-II, that is, it needed a
similar amount of evaluations to reach similar results.

Compared to an algorithm that use of genetic algorithms combined
with Kriging (K-MOGA) our proposal overcomes or equalize it for all
instances.

A Negative Elitism procedure was introduced in order to prevent
premature convergence in Stage II of the algorithm. The result of this
procedure seems to have a strong dependence respect to the structure of
the evaluated problem. Due to the absolute value of its effect is greater
in the case where the results are improved than in the opposite case, it
looks like a promissory path of research.

The sample-based process to evaluate if the fit of the metamodel
respect to the real function to evaluate is good or bad had satisfactory
results. With the proposed values of its parameters, this procedure
could decide with a high accuracy when recalculating the model or not.
Evidence of this the upper limit attain for the number of evaluations
needed, similar to the number of evaluations done by the canonical
NSGA-II.

As future work, is pending to analyze the dynamic behind the
Negative Elitism. Due to the incidence of the problem structure on the
behavior of Negative Elitism, how this procedure affects the search in

Table 12
Mean Percentage Variation of Hypervolume when Negative Elitism is not used.

Problem Name =n 0.05ea =n 0.10ea =n 0.20ea

Belegundu − 2% − 2% 5%
Binh1 − 3% − 4% 1%
Binh2 1% 0% 7%
Binh3 1% 2% 12%
Deb3 − 3% − 3% 1%
Fonseca1 2% 7% 22%
Fonseca2 5% 12% 35%
Hanne1 − 2% 1% 6%
Hanne2 1% 3% 11%
Hanne3 0% − 1% 3%
Hanne4 − 2% − 2% 6%
Hanne5 1% 1% 5%
Jimenez 1% 3% 14%
VNT − 6% − 8% − 3%
ZDT1 − 21% − 23% − 17%
ZDT2 − 5% − 9% − 1%
ZDT3 − 11% − 15% − 9%

Table 13
Algorithms’ parameters.

Parameter Value

kcheck {5; 10; 20}
α {0.80; 0.90; 0.95}

Table 14
Number of evaluations needed to obtain a 95% of Dominated Hypervolume for
different values of kcheck.

Problem Name =k 5check =k 10check =k 20check

Belegundu 237 207 312
Binh1 727 651 729
Binh3 1428 1378 1484
Deb3 512 413 503
Fonseca1 606 515 616
Fonseca2 534 462 529
Hanne1 645 623 729
Hanne2 952 847 923
Hanne3 1118 1012 1093
Hanne4 742 724 776
Hanne5 1050 968 1183
Jimenez 795 744 898
VNT 704 562 722
ZDT1 1400 1302 1521
ZDT2 960 846 1025
ZDT3 1276 1121 1274

Table 15
Number of evaluations needed to obtain a 95% of Dominated Hypervolume for
different values of α.

Problem Name =α 0.80 =α 0.90 =α 0.95

Belegundu 263 207 356
Binh1 690 651 1034
Binh2 643 588 723
Binh3 1429 1378 1682
Deb3 491 413 492
Fonseca1 482 515 761
Fonseca2 430 462 608
Hanne1 640 623 735
Hanne2 859 847 1009
Hanne3 1062 1012 1176
Hanne4 703 724 861
Hanne5 1005 968 1247
Jimenez 841 744 1089
VNT 635 562 958
ZDT1 1379 1302 158
ZDT2 889 846 1249
ZDT3 1232 1121 1426
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the solution space should be analyzed.
Performance respect to Generalized Spread have to be analyzed,

because K-NSGA-II-S3 seems to have some type of bias.
This work did not have into account the effect of noise on the

performance of Stage II. This should be analyzed in future work, also
the benefits of using Kriging instead of other methods to build meta-
models.

The mechanism of how Stage II generate a good start point for Stage
III should be studied more, in order to validate that hypothesis. Also,
the length of this stages is currently defined a priori. A dynamic way to
define when finish Stage II and start Stage III could improve the quality
of the algorithm.

Finally, a multidimensional analysis of all parameters involved in K-
NSGA-II-S3 should be done.
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