
Two-Valued Weak Kleene Logics

Abstract

In the literature, Weak Kleene logics are usually taken as three-valued logics.
However, Suszko has challenged the main idea of many-valued logic claiming that
every logic can be presented in a two-valued fashion. In this paper, we provide
two-valued semantics for the Weak Kleene logics and for a number of four-valued
subsystems of them. We do the same for the so-called Logics of Nonsense, which are
extensions of the Weak Kleene logics with unary operators that allow looking at them
as Logics of Formal Inconsistency (LFIs) and Logics of Formal Underterminedness
(LFUs). Our aim with this work, rather than arguing for Suszko’s thesis, is to show
that two-valued presentations of these peculiar logics enlighten the non-standard
behavior of their logical connectives. More specifically, the two-valued presentations
of paraconsistent logics illustrate and clarify the disjunctive flavor of the conjunction,
and dually, the two-valued presentations of paracomplete subsystems of Weak Kleene
logics reveal the conjunctive flavor of the disjunction.

1 Background and aim

This paper has three thematic backgrounds: Weak Kleene logics, Logics of Nonsense
and Suszko’s Thesis. By Weak Kleene logics we refer to two different matrix logics, i.e.
(Paracomplete) Weak Kleene logic, symbolized as Kw

3 , and Paraconsistent Weak Kleene
logic, symbolized as PWK. These logics are associated to the 3-element Weak Kleene
algebra WK (due to Kleene in [21], and recently analyzed in [4]) built using the 3-valued
weak truth-tables from Kleene as follows

WK = 〈{t,u, f}, {f¬WK, f
∧
WK, f

∨
WK}〉

where the functions f¬WK, f
∧
WK, f

∨
WK are

f¬WK

t f
u u
f t

f∧WK t u f

t t u f
u u u u
f f u f

f∨WK t u f

t t u t
u u u u
f t u f

What is interesting of this algebra and of the logics defined using it (as we shall see
next) is that they exhibit a peculiar semantic behavior: they have a truth-value (v.g.
the intermediate truth-value u) that is assigned to a compound formula whenever it is
assigned to one of its components. This justifies referring to these logics as infectious,
contaminating, propagating or absorbent systems (see e.g. [16], [20], [35] for these de-
nominations), given they have a value that behaves in this particular way.
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These two different logics are induced by taking the set of designated values—i.e.
the set of values preserved from premises to conclusion—not to include the intermediate
value, in the case of Kw

3 , and to include the intermediate value, in the case of PWK.1 If
we define a logic to be paracomplete whenever the Law of Excluded Middle is invalid in
it, and a logic to be paraconsistent whenever the Principle of Explosion is invalid in it, it
is easy to see that whereas Kw

3 is a paracomplete logic, PWK is a paraconsistent logic.
Some readers, though, might object referring to the latter as Paraconsistent Weak

Kleene logic, for Kleene devised his logics conceiving the intermediate value to be a
truth-value gap or a representative of an indeterminate semantics status. But paracon-
sistent logics are usually identified with the availability of truth-value gluts or truth-values
representing an inconsistent semantic status. Thus, even if the intermediate value from
the 3-element Weak Kleene algebra is considered as a designated value, the resulting
logic should not be called Paraconsistent Weak Kleene, for it does not honor Kleene’s
motivation for entertaining the underlying algebra.

To this we reply by saying that, although we think the best way to interpret PWK
is by taking the intermediate value to be a truth-value glut (as will be clear given the
two-valued semantics we will offer for it in Section 4), nothing said in this paper depends
on calling the resulting system ‘Paraconsistent Weak Kleene’. Nevertheless, we will stick
to the former denomination, for it is by now the standard thing to do in the literature
about this systems (cf. [10], [9], [4], [35]). As part of the present investigation, we will
take into consideration four-valued subsystems of these logics, which also exhibit the sort
of infectious semantic behavior previously discussed. In particular, we will consider the
four-valued logics Sfde,dSfde,S

w
fde, dSw

fde.
2

By Logics of Nonsense we refer to a collection of many-valued systems, developed in
the last century by Bochvar [3] and Halldén [19] (later discussed by Segerberg [31] and
others), in order to design logics where reasoning with nonsensical propositions is possible.
This is done with the help of matrix logics where formulae can be attributed nonsensical
or meaningless semantic values. Notably—as it is well known—the logics Kw

3 and PWK
correspond to the {¬,∧,∨}-fragment of, respectively, Bochvar’s and Halldén’s Logics of
Nonsense.

Furthermore, the distinctive ingredient of the Logics of Nonsense is that they are
equipped with one, or many operations that take every value (including the nonsensical
value u) to either t or f , thereby ‘classicizing’ the formulae to which they are applied.
For example, Bochvar has an ‘external assertion’ operator which represents the idea of
being true within the language, that takes all values except t to f , and naturally takes t
to t (cf. [3]). Halldén, on his own, has a meaningfulness operator which represents the
idea of being either true or false within the language, that takes all values except u to t,
and takes u to f (cf. [19]).

Finally, by Suszko’s Thesis (cf. [33]) we refer to the claim that every Tarskian many-
valued (i.e. matrix) logic can be provided with a two-valued or bivalent semantics. The
further application of this idea to a given many-valued logic, to render the corresponding
two-valued system, is referred to as Suszko’s Reduction.

The aim of this paper is to study Weak Kleene logics and Logics of Nonsense under the
lens of Suszko’s Thesis, and analyze the resulting systems, specially regarding the defined

1For a precise definition of these systems, see Section 2.
2All of these logics are defined in Section 3.2. These systems are referred to, in [35], as the logics Lbe,

Lnb', Lb'e and Leb', respectively.

2



connectives. There are several reasons for having a special interest in the application of
Suszko’s Reduction to these logics. The first is that—to the best of our knowledge—no
analysis of logics presenting an infectious behavior of the aforementioned sort was carried
out in the literature. The second is that Logics of Nonsense in particular were recognized
in [6] and [11] as Logics of Formal Inconsistency and Logics of Formal Undeterminedness
(LFIs and LFUs, hereafter). Usually, LFIs and LFUs are presented in terms of bivalua-
tions or two-valued semantics, but Logics of Nonsense are commonly treated as essentially
many-valued. Thus, the present investigation represents an attempt to bring Logics of
Nonsense closer to the standard formalism entertained when dealing with LFIs and LFUs.

Finally, the main reason for providing suitable two-valued semantics to Weak Kleene
logics is to enlighten some properties of the systems that, we think, are somewhat hidden
in their many-valued presentations. In other words, although [5] offer an algorithm for
obtaining two-valued semantics for a wide range of logics (including the treated here),
our aim here is not to apply this general method, but to provide some specific two-valued
semantics that we think are natural for the logics, and also to analyze the peculiarity of
the systems.3 In this sense, we are particularly interested in studying the behavior of the
connectives in the two-valued systems and its relation with the concepts of paraconsistency
and paracompletness.

To this extent, the paper is structured as follows. In Section 2 we present some pre-
liminaries, related with technical definitions that we assume for the rest of the paper.
Next, in Section 3 we introduce the infectious logics we will work with from a technical
point of view. In particular, in Section 3.1 we present the three-valued Weak Kleene
logics Kw

3 and PWK and in Section 3.2, the four four-valued subsystems of these logics
Sfde,dSfde,S

w
fde, dSw

fde. In Section 4 we will discuss Suszko’s thesis and some of its philo-
sophical consequences. After this, we will proceed in Section 5 to reduce the many-valued
logics above mentioned. Specifically, in Section 5.1 we introduce two-valued semantics for
the three-valued logics. In Section 5.2, we do the same for the four-valued subsystems:
Sfde,dSfde,S

w
fde and dSw

fde. Thorough this section, we not only present the technical
reduction of the logics, but also we discuss the specific behavior of the connectives in
the two-valued systems. Finally, in Section 6, as mentioned before, we consider Logics of
Nonsense from a technical point of view, i.e. as resulting from adding a unary operator
to the three-valued Weak Kleene logics and considering them as LFIs and LFUs. Later,
in Section 6.1, as was done with the other logics, we provide a two-valued semantic for
them. We close the article in Section 7, with a number of concluding remarks.

3As pointed out by an anonymous reviewer, two-valued semantics for the Weak Kleene logics have
been presented in [27] and more recently in [36]. The main difference between these works and our is in
the way in which such semantics are presented. In the case of Szmuc and Omori’s papers a two-valued
presentation is arrived at by implementing a particular sort of relational semantics called plurivalent
logics after Graham Priest’s paper [29], while in our case a two-valued presentation is arrived at through
functional semantics in the spirit of bivaluations. There is, though, the possibility of translating the
bivaluations presented here to a relational semantics, in the vein of what is pointed out in [36, fn. 15],
i.e. a sort of Dunn-semantics where truth and falsity conditions are independently provided for each
connective. However, even in this case, the kind of two-valued relational semantics that one would arrive
at would be of a radically different type than those discussed in [27] and [36]. The reason for this is that
truth and falsity conditions are not provided independently in the context of plurivalent semantics, but
are systematically induced for all the connectives—as explained in [20]—by the operations of the power
algebra of the two-element Boolean algebra.
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2 Technicalities

Definition 2.1. Let Prop be a denumerable set of propositional variables and let Σ =⋃
n∈N

Σn be a propositional language, such that each Σn is a set of connectives, for which

Σn ∩ Σm = ∅, if n 6= m. Σn is the set of n-ary connectives. In particular, the elements
of Σ0 are usually called constants. FOR(Σ) is the absolutely free algebra of formulae
generated by Σ over Prop, whose universe we denote by FOR(Σ).

Definition 2.2. A Tarskian consequence relation over a propositional language Σ is a
relation ` ⊆ ℘(FOR(Σ))×FOR(Σ) obeying the following conditions for all A ∈ FOR(Σ)
and for all Γ,∆ ⊆ FOR(Σ):

1. Γ ` A if A ∈ Γ (Reflexivity)

2. If Γ ` A and Γ ⊆ Γ′, then Γ′ ` A (Monotonicity)

3. If ∆ ` A and Γ ` B for every B ∈ ∆, then Γ ` A (Cut)

Additionally, a (Tarskian) consequence relation ` is substitution-invariant whenever if
Γ ` A, and σ is a substitution on FOR(Σ), then {σ(B) | B ∈ Γ} ` σ(A).

Definition 2.3. A Tarskian logic over a propositional language Σ is an ordered pair
〈FOR(Σ),`〉, where ` is a substitution-invariant Tarskian consequence relation.

Definition 2.4. For Σ a propositional language, a Σ-matrix is a structureM = 〈V,D,O〉,
such that 〈V,O〉 is an algebra of the same similarity type as Σ, with universe V and a set
of operations O, and D ⊂ V.

Notice, in the first place, that the set O includes for every n-ary connective � in the
language Σ, a corresponding n-ary truth-function f�M : Vn −→ V. With regard to these,
when context allows it, we will sometimes identify the connectives themselves (which
are linguistic items), with their corresponding truth-functions in a given matrix. In the
second place, notice that typically, when dealing with non-classical logics, the set V is
taken to be a superset of {t, f}.

Definition 2.5. For M an Σ-matrix an M-valuation v is an homomorphism from
FOR(Σ) to V respecting that for all f�M ∈ O:

v(f�M(v1, . . . ,vn)) = f�M(v(v1), . . . , v(vn))

for which we denote by v[Γ] the set {v(B) | B ∈ Γ}, i.e. the image of v under Γ. When
V = {t, f} we call the valuation Boolean or, alternatively, we refer to it as a bivaluation.
The set of all M-valuations is denoted by VM.

Definition 2.6. A logical matrix M = 〈V,D,O〉 induces a substitution-invariant conse-
quence relation �M by letting

Γ �M A ⇐⇒ for every valuation v ∈ VM, if v[Γ] ⊆ D, then v(A) ∈ D

Whence, the pair 〈FOR(Σ),�M〉, is a substitution-invariant Tarskian consequence rela-
tion, to which we might refer as the matrix logic L induced by or associated to M.
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Moreover, when some logic L is induced by a single matrixM, we may interchangeably
refer to �M as �L and replace talk of M by talk of L and viceversa.

Now, from the immense set of matrix logics, in this paper we decided to focus in a
proper and peculiar subset, to which the Weak Kleene logics belong: that of the infectious
logics. Intuitively, infectious logics are matrix logics where a compound formula receives
a given truth-value if some of its components receives that truth-value, first.

Definition 2.7. We say that a matrix logic L = 〈FOR(Σ),�M〉 is infectious if and only
if there is an element x ∈ V such that for every n-ary operator � and for all v1, . . . ,vn ∈ V

if x ∈ {v1, . . . ,vn}, then f�M(v1, . . . ,vn) = x

As advertised, from these infectious logics, we will be furthermore interested in two
particular cases: the 3-valued (Paracomplete) Weak Kleene and Paraconsistent Weak
Kleene logics. Therefore, we proceed to present these systems in their corresponding
matrix settings.

3 The Logics

3.1 Weak Kleene Logics

Definition 3.1. The internal propositional language ΣI is defined by:

ΣI
0 = ∅ ΣI

1 = {¬} ΣI
2 = {∧,∨} ΣI

n = ∅, for each n > 2

Definition 3.2. For X ∈ {Kw
3 ,PWK}, a 3-valued X-matrix is the following ΣI -matrix,

where where 〈{t,u, f}, {f¬WK, f
∧
WK, f

∨
WK}〉 is the 3-element Weak Kleene algebra

MKw
3

= 〈{t,u, f}, {t}, {f¬WK, f
∧
WK, f

∨
WK}〉

MPWK = 〈{t,u, f}, {t,u}, {f¬WK, f
∧
WK, f

∨
WK}〉

Definition 3.3. For X ∈ {Kw
3 ,PWK}, the 3-valued logic X = 〈FOR(ΣI),�X〉 is

defined as follows, letting V X be the set of MX -valuations

Γ �Kw
3
A ⇐⇒ for every valuation v ∈ V Kw

3 , if v[Γ] ⊆ {t}, then v(A) ∈ {t}

Γ �PWK A ⇐⇒ for every valuation v ∈ V PWK, if v[Γ] ⊆ {t,u}, then v(A) ∈ {t,u}

Along with Kw
3 being a paracomplete and PWK being a paraconsistent logic, i.e.

with it being the case that

B 2Kw
3
A ∨ ¬A A ∧ ¬A 2PWK B

it is also the case that these logics are subclassical in yet another more profound sense:
they invalidate some characteristic classically valid inferences regarding, respectively, dis-
junction and conjunction. Namely,

A 2Kw
3
A ∨B A ∧B 2PWK B

which makes it fair pointing out that these logics count with rather weak disjunctions and
conjunctions. In Section 5, we will discuss some conceptual or philosophical reasons for
such failures, which will also be incarnated in our clauses for disjunction and conjunction
in the two-valued presentations for Kw

3 and PWK that we will advance later on.
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3.2 Four-valued subsystems of Weak Kleene Logics

Some of the four-valued subsystems of Weak Kleene Logics that we are about to present—
to be precise, those that are subsystems of Paracomplete Weak Kleene—were introduced
many times in the literature, independently by many authors and at very different given
times. More recently, they were discussed (together with many more systems) in [35].

Definition 3.4. The 4-element algebra SWK4 is defined as

SWK4 = 〈{t, i,u, f}, {f¬SWK4
, f∧SWK4

, f∨SWK4
}〉

where the functions f¬SWK4
, f∧SWK4

, f∨SWK4
are

f¬SWK4

t f
i i
u u
f t

f∧SWK4
t i u f

t t i u f
i i i u f
u u u u u
f f f u f

f∨SWK4
t i u f

t t t u t
i t i u i
u u u u u
f t i u f

Definition 3.5. For X ∈ {Sfde,dSfde}, a 4-valued X-matrix is the following ΣI -matrix,
where 〈{t, i,u, f}, {f¬SWK4

, f∧SWK4
, f∨SWK4

}〉 is the 4-element algebra SWK4

MSfde
= 〈{t, i,u, f}, {t, i}, {f¬SWK4

, f∧SWK4
, f∨SWK4

}〉

MdSfde
= 〈{t, i,u, f}, {t,u}, {f¬SWK4

, f∧SWK4
, f∨SWK4

}〉

Definition 3.6. For X ∈ {Sfde,dSfde}, the 4-valued logic X = 〈FOR(ΣI),�X〉 is defined
as follows, letting V X be the set of MX -valuations

Γ �Sfde
A ⇐⇒ for every valuation v ∈ V Sfde , if v[Γ] ⊆ {t, i}, then v(A) ∈ {t, i}

Γ �dSfde
A ⇐⇒ for every valuation v ∈ V dSfde , if v[Γ] ⊆ {t,u}, then v(A) ∈ {t,u}

In particular, the logic Sfde was first discussed by Harry Deutsch in [15] as the first-
degree fragment of his intensional logic S, designed with the aim of modelling analytic
inferences. This logic was later rediscovered by Melvin Fitting in [17] as a four-valued
generalization of Paracomplete Weak Kleene Logic, motivated by Fitting’s epistemic un-
derstanding of truth-value gaps and truth-value gluts as modelling cases in which qualified
experts expressed no opinion (neither positive nor negative), and where they expressed
an inconsistent opinion (both positive and negative) towards a certain issue. It was also
rediscovered by Carlos Oller, who proposed it in [26] as a logic that solved some of the
“paradoxes” of Parry’s analytic implication, presented in [28]. Finally, it was recently
reconsidered by Graham Priest in [29] as the logic induced by Priest’s generalized pluri-
valent semantics, which allow sentences to receive more than one truth-value of a given set
and, in this generalized setting, allow also sentences to receive no truth-value of a given
set. If, along the previous lines, we think of Sfde as a logic counting with both truth-
value gluts and truth-value gaps, such that the latter are infectious, while the former are
not, then validity in this logic can be standardly understood as truth-preservation from
premises to conclusion.

The logic dSfde has not received such an extensive discussion in the specialized liter-
ature, although some works analyze it under the lens of both Fitting epistemic semantics
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and Priest’s plurivalent logics, i.e. [35] and [27], respectively. Drawing the analogy with
the previous case, we can think of dSfde as a logic having both truth-value gluts and
truth-value gaps, such that the former are infectious, while the latter are not. In this
vein, validity in this logic can also be standardly understood as truth-preservation from
premises to conclusion. This is, in fact, the reading assumed throughout [14], were these
systems are put to use in the analysis of semantic paradoxes.

Moreover, in [35], two additional subsystems of three-valued Weak Kleene Logics were
discussed, the systems Sw

fde and dSw
fde.

Definition 3.7. The 4-element algebra WK4 is defined as

WK4 = 〈{t,u1,u2, f}, {f¬WK4
, f∧WK4

, f∨WK4
}〉

where the functions f¬WK4
, f∧WK4

, f∨WK4
are

f¬WK4

t f
u1 u1

u2 u2

f t

f∧WK4
t u1 u2 f

t t u1 u2 f
u1 u1 u1 u2 u1

u2 u2 u2 u2 u2

f f u1 u2 f

f∨WK4 t u1 u2 f
t t u1 u2 t

u1 u1 u1 u2 u1

u2 u2 u2 u2 u2

f t u1 u2 f

Definition 3.8. For X ∈ {Sw
fde,dSw

fde}, a 4-valued X-matrix is the following ΣI -matrix,
where 〈{t,u1,u2, f}, {f¬WK4

, f∧WK4
, f∨WK4

}〉 is the 4-element algebra WK4

MSw
fde

= 〈{t,u1,u2, f}, {t,u1}, {f¬WK4
, f∧WK4

, f∨WK4
}〉

MdSw
fde

= 〈{t,u1,u2, f}, {t,u2}, {f¬WK4
, f∧WK4

, f∨WK4
}〉

Definition 3.9. For X ∈ {Sw
fde,dSw

fde}, the 4-valued logic X = 〈FOR(ΣI),�X〉 is defined
as follows, letting V X be the set of MX -valuations

Γ �Sw
fde
A ⇐⇒ for every valuation v ∈ V Sw

fde , if v[Γ] ⊆ {t,u1}, then v(A) ∈ {t,u1}

Γ �dSw
fde
A ⇐⇒ for every valuation v ∈ V dSw

fde , if v[Γ] ⊆ {t,u2}, then v(A) ∈ {t,u2}

If validity is taken to be truth-preservation, then these logics can be interpreted as
systems with infectious truth-value gaps and infectious truth-value gluts, such that in
the case of Sw

fde gaps are “more infectious” than gluts, and in the case of dSw
fde gluts are

“more infectious” than gaps. This is, again, the route taken in [14].
To close this preliminary section, we provide a few examples of the inferential failures

provoked by the peculiar behavior of the logical connectives in these Weak Kleene logics.

Kw
3 PWK Sfde dSfde Sw

fde dSw
fde

B � A ∨ ¬A × X × × × ×
A � A ∨B × X × X × ×

A ∧ ¬A � (A ∧ ¬A) ∨B X X × X × X
A ∧ ¬A � B X × × × × ×
A ∧B � A X × X × × ×

(A ∨ ¬A) ∧B � A ∨ ¬A X X X × X ×
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4 Suszko’s Thesis and Suszko’s Reduction

In the last section we introduced a number of Weak Kleene logics characterized in terms
of many-valued semantics. So, in this context, one could ask whether or not it is possible
to give two-valued semantics for these logics, or if they are irreducibly many-valued.

More generally, one might be interested to know whether or not it is possible to give
two-valued semantics for any many-valued logic whatsoever. The Polish logician Roman
Suszko thought the answer to this last question is, indeed, positive. Thus, in [34] he
proposed the so-called Suszko’s Thesis stating, as Carnielli, Caleiro, Coniglio and Marcos
say in [5], that “there are but two logical values, true and false”. This thesis implies, as
Tsuji puts it in [37], that “many-valued logics do not exist at all”, meaning that they
are not genuinely many-valued. In fact, in his original paper, Suszko argues against
 Lukasiewicz4 claiming that he

is the the chief perpetrator of a magnificent conceptual deceit lasting out in
mathematical logic to the present day ([34, p. 377])

Roughly speaking, Suszko’s idea is to distinguish between algebraic values and logical
values. In this sense, when a logic is characterized by a many-valued matrix these values
are playing a merely algebraic role. On the other hand, once we turn our attention to
philosophical or ontological notions, there are only two logical values: truth and falsity,
represented by the set of designated and undesignated values, respectively. Thus, he
claims that algebraic valuations and logical valuations “are functions of quite different
conceptual nature” ([34, p. 378]), given logical valuations relate formulas with truth or
falsity, while algebraic valuations represent reference assignments.

Furthermore, this thesis is sustained with the so-called Suszko Reduction: every
Tarskian many-valued logic can be characterized with a bivalent semantics. Intuitively
speaking, the main idea of the reduction consists in dividing the set of semantic values
between designated and non-designated ones, and so identifying the concept of designated
with truth and non-designated with falsity.

Following this idea, Suszko claims that three-valued logics such as  Lukasiewicz three-
valued logic  L3 have just two logical values, but can be characterized by means of 3-
element algebras, i.e. structures with three algebraic elements. Although Suszko showed
in [33] how to build a 2-valued semantic for  L3, it is not the aim of this section to give
a detailed proof of this reduction, but just an intuitive idea. In order to do so, however,
we need to introduce the logic  L3.

Definition 4.1. The propositional language Σ→ is defined by:

Σ→0 = ∅ Σ→1 = {¬} Σ→2 = {∧,→} Σ→n = ∅, for each n > 2

Definition 4.2. A 3-valued  L3-matrix is the following Σ→-matrix

M L3
= 〈{t,u, f}, {t}, {f¬ L3

, f∧ L3
, f→ L3
}〉

where the functions f¬ L3
, f∧ L3

, f→ L3
are defined as follows:

4Let’s recall that  Lukasiewicz worked on many-valued logics, and, among others, proposed the very
well known system  L3 (cf. [22]), on which more below.
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f¬ L3

t f
u u
f t

f∧ L3
t u f

t t u f
u u u f
f f f f

f→ L3
t u f

t t u f
u t t u
f t t t

Definition 4.3. The 3-valued logic  L3 = 〈FOR(L),� L3
〉 is defined as follows, letting

V  L3 be the set of M L3
-valuations

Γ � L3
A ⇐⇒ for every valuation v ∈ V  L3 , if v[Γ] ⊆ {t}, then v(A) ∈ {t}

So, once the logic is defined, let us informally present how to give a two-valued se-
mantics for it.5 The main idea is to divide the set of semantic values into designated
and non-designated ones. This is done by means of a function tv, transforming e.g. the
3-valued valuations v ∈ V  L3 into bivaluations:

tv(B) =

{
t if v(B) = t

f otherwise

In the particular case of the logic  L3, the function tv : FOR(Σ→) −→ {t, f}, can be
defined by tv(B) = v(¬(B → ¬B)), generalizing this in the intuitive way to tv[Γ] for Γ ⊆
FOR(Σ→). Thus, by looking at the tables it is straightforward to check that ¬(B → ¬B)
always receives a classical value in every v ∈ V  L3 . Finally, it is easy to confirm that

Γ � L3
A ⇐⇒ for every valuation v ∈ V  L3 , if tv[Γ] ⊆ {t}, then tv(A) ∈ {t}

In other words, as Suszko claims,  L3 “may be seen as a two-valued logic” [33, p. 87].
In the next section, we will see in details how this reduction can also be carried out for
Weak Kleene logics and the Logics of Nonsense.6

Finally, let us remark that Suszko’s Thesis and the corresponding reduction have a
quite non-effective or non-algorithmic side to them, for as Caleiro, Carnielli, Coniglio and
Marcos remark

Suszko’s Reduction does not give you any hint, in general, on how a 2-valued
semantics could be determined by anything like a finite recursive set of clauses,
even for the case of logics with finite-valued truth-functional semantics. [5, p.
4, our emphasis]

which motivates the authors to provide, in the cited work, an effective technique to carry
out the reduction, for logics that are sufficiently expressive, i.e. that have means to
“separate” truth-values appropriately.

5Here, we are not following the original notation found in [33], but an adaptation to more contemporary
terminology.

6Let us mention that Malinowski ([23] and [24]) challenged this approach and proposes the so-called
q-consequence relation. In these works, he shows that there exist q-consequences lacking two-valued
semantics and being essentially three-valued. Later on Frankowski ([18]) and Wansing and Shramko ([32])
advanced their proposals of p-consequence relations and k-dimensional consequence relations, respectively,
by means of which logics are said to be also genuinely many-valued. Interesting as these alternatives are,
here we will focus on Suszko’s proposal and we will put aside the arguments spelled out by Malinowski
and others.
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In what follows, though, we will not be pursuing a reduction for Weak Kleene logics
and Logics of Nonsense based on the algorithmic method presented by Caleiro, Carnielli,
Coniglio and Marcos, since we will base our reduction on the intuitive and direct reading
of the connectives. However, we would like to highlight that, from a technical point of
view, an application of such a method to the logics in questions would lead, unfailingly,
to an equivalent outcome.

5 Suszko’s Reduction applied

In this section we will provide two-valued semantics for the logics presented in Section 3
and we will discuss the properties of the obtained systems, focusing on the non-standard
features of their connectives. So, first we will focus on Weak Kleene logics and then we
will turn our attention to Logics of Nonsense, in the next section.

In order to define two-valued versions of the aforementioned logics, it will be important
to consider bivaluations constrained by a number of clauses. These we enumerate in what
follows. For what is worth, most of the denominations are taken from, or inspired by the
ones appearing in, the reference text [6]. In the case of clause (vNeg)’ is the converse
of clause (vNeg) appearing in [6], but is not mentioned throughout that text. Finally,
clauses (vOr∗) and (vAnd∗), as well as the clauses (vOr∗∗) and (vAnd∗∗), refer to
the non-standard clauses for disjunction and conjunction in Weak Kleene Logics that are
original to the present essay.

5.1 Two-valued Weak Kleene Logics

Let us consider (Paracomplete) Weak Kleene logic first. With regard to this system
we have already seen, in previous sections, that its disjunction works in a pretty odd
or strange way, by invalidating e.g. the inference usually regarded as ∨-Introduction:
A � A ∨B.

The most straightforward explanation for this is due to Bochvar himself. Bochvar con-
sidered that sentences could be one of true, false and neither-true-nor-false and—more
importantly—thought that neither-true-nor-false sentences were nonsensical, thereby tak-
ing any sentence which had a neither-true-nor-false component to be classified in that way,
too. In addition to that, he took valid inferences to be characterized by truth-preservation;
in other words, an inference was taken to be valid by Bochvar if and only if it had a true
conclusion whenever it had true premises.

Thus, it is e.g. Ferguson’s understanding that disjunction in paracomplete infectious
logics—such as Weak Kleene logic—has a conjunctive flavor. By this he means that, in
Bochvar’s case, a disjunction is true if and only if at least one of its disjuncts is true and
none of its disjuncts is neither-true-nor-false, i.e. an admittedly conjunctive requirement
that is stronger than the classical truth-condition for disjunction.

Now, if we take truth-value gaps (i.e. neither-true-nor-false-sentences) to be repre-
sented in a two-valued setting by sentences such that A and ¬A are false, the Bochvar-
Ferguson reading of disjunction in paracomplete infectious logics such as Weak Kleene
becomes the following: a disjunction is true if and only if at least one of its disjuncts is
true and each of its disjuncts is such that either it or its negation is true. It can be easily
observed that this is clearly incarnated in the nonstandard clause (vOr∗) for disjunction
that we propose below.
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Definition 5.1. A bivaluation v : FOR(ΣI) −→ {t, f} satisfying the following clauses is
a 2
∗K

w
3 valuation:

(vNeg)’ v(¬A) = t =⇒ v(A) = f

(vAnd) v(A ∧B) = t ⇐⇒ v(A) = t and v(B) = t

(vOr∗) v(A ∨B) = t ⇐⇒


v(A) = t or v(B) = t, and

v(A) = t or v(¬A) = t, and

v(B) = t or v(¬B) = t

The set of all such valuations is V
2
∗Kw

3 .

Definition 5.2. Let the two-valued logic 2
∗K

w
3 = 〈FOR(ΣI),�2

∗Kw
3
〉 be defined such that

Γ �2
∗Kw

3
A ⇐⇒ for every valuation v ∈ V 2

∗Kw
3 , if v[Γ] ⊆ {t}, then v(A) ∈ {t}

Let us consider Paraconsistent Weak Kleene logic now. With regard to this system
we have already seen, in previous sections, that its conjunction works in a pretty odd
or strange way too, by invalidating e.g. the inference usually regarded as ∧-Elimination:
A ∧B � A.

The most straightforward explanation for this is due to Halldén himself. Halldén
considered that sentences could be one of true, false and neither-true-nor-false, just
like Bochvar, and—more importantly—thought that neither-true-nor-false sentences were
nonsensical, thereby taking any sentence which had a neither-true-nor-false component
to be classified in that way, too. Furthermore (here lies the difference with Bochvar) he
took valid inferences to be characterized by non-falsity-preservation; in other words, an
inference was taken to be valid by Halldén if and only if it had a non-false conclusion
whenever it had non-false premises.

Some philosophers think, though, that analetheism, i.e. the idea of non-falsity preser-
vation as a motivation for paraconsistent logics (as is the case with Halldén’s motivation
for his logic of nonsense, of which Paraconsistent Weak Kleene is a fragment) is ill-
conceived, because it is in conflict with the idea that truth is the aim of assertion—for
more on this, see the recent debate in [2] and [1]. In line with this, then, we might ask if
it is possible to construct an interpretation of Paraconsistent Weak Kleene that treats the
non-classical infectious value as both-true-and-false. The answer is that this is actually
possible and, moreover, easy to do—as Roberto Ciuni shows in [9].

Thus, it is e.g. Ciuni’s understanding in [9] that conjunction in paraconsistent infec-
tious logics—such as Paraconsistent Weak Kleene logic—has a disjunctive flavor. By this
he means that a conjunction is true if and only if both of its conjuncts are true or some
of its disjuncts is both-true-nor-false, i.e. an admittedly disjunctive requirement that is
weaker than the classical truth-condition for conjunction.

Now, if we take truth-value gluts (i.e. both-true-and-false-sentences) to be represented
in a two-valued setting by sentences such that A and ¬A are true, the Ciuni’s reading
of conjunction in paraconsistent infectious logics such as Paraconsistent Weak Kleene
becomes the following: a conjunction is true if and only if both of its conjuncts are
true or some of its conjuncts is such that both it and its negation are true. It can be

11



easily observed that this is clearly incarnated in the nonstandard clause (vAnd∗) for
conjunction that we propose below.

Definition 5.3. A bivaluation v : FOR(ΣI) −→ {t, f} satisfying the following clauses is
a 2
∗PWK valuation:

(vNeg) v(¬A) = f =⇒ v(A) = t

(vOr) v(A ∨B) = t ⇐⇒ v(A) = t or v(B) = t

(vAnd∗) v(A ∧B) = t ⇐⇒


v(A) = t and v(B) = t, or

v(A) = t and v(¬A) = t, or

v(B) = t and v(¬B) = t

The set of all such valuations is V
2
∗PWK.

Definition 5.4. Let the two-valued logic 2
∗PWK = 〈FOR(ΣI),�2

∗PWK〉 be defined such
that

Γ �2
∗PWK A ⇐⇒ for every valuation v ∈ V 2

∗PWK, if v[Γ] ⊆ {t}, then v(A) ∈ {t}

Are these, then, the two-valued versions of the Weak Kleene logics that we are aiming
at? Not yet. As is noticed by Lucas Rosenblatt in [30], valuations constructed in these or
similar ways do not respect Involutivity for negation, or any of the De Morgan properties
for conjunction and disjunction.

Fact 5.5. There are bivaluations v in V
2
∗Kw

3 and V
2
∗PWK such that

v(¬¬A) 6= v(A)

v(¬(A ∧B)) 6= v(¬A ∨ ¬B)

v(¬(A ∨B)) 6= v(¬A ∧ ¬B)

Proof. We prove the three cases separately.

For v(¬¬A) 6= v(A):

• Let v ∈ V 2
∗Kw

3 and let v(A) = f . This allows v(¬A) = f and, finally v(¬¬A) = t.

• Let v ∈ V 2
∗PWK and let v(A) = t. This allows v(¬A) = t and, finally v(¬¬A) = f .

For v(¬(A ∧B)) 6= v(¬A ∨ ¬B):

• Let v ∈ V
2
∗Kw

3 and let v(A) = f , v(B) = t. This allows v(¬A) = t, v(¬B) = f ,
v(A ∧ B) = f and, finally by (vNeg)’, v(¬(A ∧ B)) = f . In addition, it can be
established by (vOr∗), that v(¬A ∨ ¬B) = t.

• Let v ∈ V 2
∗PWK and let v(A) = f , v(B) = t. This allows to establish by (vNeg)

that v(¬A) = t and v(¬B) = t. Moreover it can be established by (vAnd∗) that
v(A∧B) = t and, finally by (vNeg)’, that v(¬(A∧B)) = f . In addition, it can be
shown by (vOr) that v(¬A ∨ ¬B) = t.
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For v(¬(A ∨B)) 6= v(¬A ∧ ¬B):

• Let v ∈ V 2
∗Kw

3 and let v(A) = f , v(B) = t. This allows to establish by (vNeg)’
that v(¬A) = f and v(¬B) = f . Moreover it can be established by (vOr∗) that
v(A∨B) = f and, finally by (vNeg)’, that v(¬(A∨B)) = t. In addition, it can be
shown by (vAnd) that v(¬A ∧ ¬B) = f .

• Let v ∈ V 2
∗PWK and let v(A) = f , v(B) = t. This allows v(¬A) = t, v(¬B) = f ,

v(A ∨B) = t and, finally by (vNeg), that v(¬(A ∨B)) = t. In addition, it can be
shown by (vAnd∗) that v(¬A ∧ ¬B) = f .

This allows us to establish that the previously defined two-valued logics are indeed
proper subsystems of the 3-valued target systems.

Fact 5.6. 2
∗K

w
3 ( Kw

3

Proof. Assume that Γ 2Kw
3
A and let a Kw

3 -valuation v such that v[Γ] ⊆ {t} and v(A) /∈
{t} witness this fact. Construct a valuation v∗ as follows:

• If v(φ) = u, then v∗(φ) = f

• If v(φ) 6= u, then v∗(φ) = v(φ)

for every propositional variable φ ∈ Prop. By a straightforward induction it can be shown
that v∗ is a 2

∗K
w
3 -valuation such that v∗[Γ] ⊆ {t} and v∗(A) /∈ {t}, witnessing the fact

that Γ 22
∗Kw

3
A. Thus, 2

∗K
w
3 ⊆ Kw

3 .

Now, that 2
∗K

w
3 is a proper subsystem of Kw

3 can be established by, first, noticing
that7 the inference forms of Double Negation and the De Morgan laws, i.e.

¬¬A �� A

¬(A ∧B) �� ¬A ∨ ¬B

¬(A ∨B) �� ¬A ∧ ¬B

hold in Kw
3 , whereas they do not hold in 2

∗K
w
3 , as can be shown by using the valuations

cited in Fact 5.5 above.

Fact 5.7. 2
∗PWK ( PWK

Proof. Similar to the proof of Fact 5.6.

Thus, given the above, it is reasonable to think that restricting the above set of two-
valued valuations to those which respect the following De Morgan properties will suffice
to render two-valued versions of the Weak Kleene Logics.

(vNeg)” v(¬¬A) = v(A)

(vDM∧) v(¬(A ∧B)) = v(¬A ∨ ¬B)

(vDM∨) v(¬(A ∨B)) = v(¬A ∧ ¬B)

7We express the conjoined fact that C � D and D � C symbolizing it as C �� D.

13



That this is, indeed, the case, is verified by the proofs below.

Definition 5.8. We denote by V
2Kw

3 and V
2PWK the proper subset of, respectively,

V
2
∗Kw

3 and V
2
∗PWK valuations, that satisfy—additionally—the De Morgan clauses (vNeg)”,

(vDM∧) and (vDM∨).

Definition 5.9. Let the two-valued logic 2Kw
3 = 〈FOR(ΣI),�2Kw

3
〉 be defined such that

Γ �2Kw
3
A ⇐⇒ for every valuation v ∈ V 2Kw

3 , if v[Γ] ⊆ {t}, then v(A) ∈ {t}

Definition 5.10. Let the two-valued logic 2PWK = 〈FOR(ΣI),�2PWK〉 be defined
such that

Γ �2PWK A ⇐⇒ for every valuation v ∈ V 2PWK, if v[Γ] ⊆ {t}, then v(A) ∈ {t}

Fact 5.11. 2Kw
3 = Kw

3

Proof. The proof of the left to right direction is essentially as in the proof of Fact 5.6.
The proof of the right to left direction goes as follows. Assume Γ 22Kw

3
A. Thus, there

is a 2Kw
3 -valuation v such that v[Γ] ⊆ {t} and v(A) /∈ {t} witness this fact. Construct a

valuation v∗ as follows, letting φ be any atomic formula:

• If v(φ) = v(¬φ), then v∗(φ) = u

• If v(φ) 6= v(¬φ), then v∗(φ) = v(φ)

Again, by a straightforward induction it can be observed that v∗ is a Kw
3 -valuation

such that for every formulae B:

• If v(B) = t, then v∗(B) = t

• If v(B) = f , then either v∗(B) = u or v∗(B) = f

Moreover, it is a Kw
3 -valuation such that v∗[Γ] ⊆ {t} and v∗(A) /∈ {t}, thereby

witnessing the fact that Γ 2Kw
3
A.

Fact 5.12. 2PWK = PWK

Proof. Similar to the proof of Fact 5.11, with the only difference that in the above proof
we need to change the clauses for the construction of v∗ in the obvious way, and we get
that:

• If v(B) = f , then v∗(B) = f

• If v(B) = t, then either v∗(B) = u or v∗(B) = t
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5.2 Two-valued subsystems of Weak Kleene Logics

In this subsection, we will provide two-valued semantics for the four-valued subsystems
of Weak Kleene Logics above presented: Sfde,dSfde,S

w
fde and dSw

fde. We begin with the
first two.

Definition 5.13. A bivaluation v : FOR(ΣI) −→ {t, f} satisfying the clauses (vOr∗),
(vAnd), (vDM∧), (vDM∨) and (vNeg)” is a 2Sfde valuation.

The set of all such valuations is V
2Sfde .

Definition 5.14. Let the two-valued logic 2Sfde = 〈FOR(ΣI),�2Sfde
〉 be defined such

that

Γ �2Sfde
A ⇐⇒ for every valuation v ∈ V 2Sfde , if v[Γ] ⊆ {t}, then v(A) ∈ {t}

Definition 5.15. A bivaluation v : FOR(ΣI) −→ {t, f} satisfying the clauses (vOr),
(vAnd∗), (vDM∧), (vDM∨) and (vNeg)” is a 2dSfde valuation.

The set of all such valuations is V
2dSfde .

Definition 5.16. Let the two-valued logic 2dSfde = 〈FOR(ΣI),�2dSfde
〉 be defined such

that

Γ �2dSfde
A ⇐⇒ for every valuation v ∈ V 2dSfde , if v[Γ] ⊆ {t}, then v(A) ∈ {t}

It’s worth mentioning that the clauses for the valuations of 2Sfde are a proper subset
of the clauses given for 2Kw

3 . In fact, from a two-valued perspective, the only difference
between these two logics has to do with negation: whereas the valuations of 2Kw

3 are
restricted by the clause (vNeg), 2Sfde lacks such a restriction. This is due to the fact
that sentences in Sfde are allowed to be such that both them and their negations are true
or, alternatively, designated. This shall be modeled in the two-valued semantics for it,
i.e. in the system 2Sfde, by lifting the constraints on negated formulae imposed by clause
(vNeg).

Dually, the clauses for the valuations of 2dSfde are a proper subset of the clauses
given for 2PWK, and, from a two-valued perspective, whereas the valuations of 2PWK
are restricted by the clause (vNeg)’, 2dSfde lacks a similar restriction. Again, this is
due to the fact that sentences in dSfde are allowed to be such that both them and their
negations are false or, alternatively, undesignated. This shall be modeled in the two-
valued semantics for it, i.e. in the system 2dSfde, by lifting the constraints on negated
formulae imposed by clause (vNeg)’.

Therefore, all what we claimed about the behaviour of disjunction in the two-valued
presentation of Kw

3 , and about conjunction in the two-valued presentation of PWK can
be directly extrapolated to the properties of these connectives in 2Sfde and in 2dSfde,
respectively.

As expressed in the following two facts, the two-valued logics we just built are equiv-
alent to the systems induced by the corresponding four-valued presentation.

Fact 5.17. 2Sfde = Sfde.

Proof. To prove the left to right direction, suppose that Γ 2Sfde
A. Therefore, there must

be a Sfde-valuation, v, such that v[Γ] ⊆ {t, i}, but v(A) /∈ {t, i}, witnessing this fact. So,
let’s build a valuation v∗, such that for each propositional letter φ:
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• If v(φ) ∈ {t, i} then v∗(φ) = t.

• If v(φ) /∈ {t, i} then v∗(φ) = f .

By a straightforward induction it can be shown that v∗ is a 2Sfde-valuation, such that
v∗[Γ] ⊆ {t}, but v∗(A) /∈ {t}, and therefore Γ 22Sfde

A.

To prove the right to left direction, suppose that Γ 22Sfde
A. Therefore, there must

be a 2Sfde-valuation, v, such that v[Γ] ⊆ {t}, but v(A) /∈ {t}, witnessing this fact. Thus,
let’s build a valuation v∗, such that for each propositional letter φ:

• If v(φ) = t and v(φ) = v(6= φ) then v∗(φ) = i.

• If v(φ) = f and v(φ) = v(6= φ) then v∗(φ) = u.

• Otherwise, v(φ) = v∗(φ).

Again, by a typical induction, it’s straightforward to check that for every formula B,

• If v(B) = t then v∗(B) ∈ {i, t}.

• If v(B) = f and v∗(B) ∈ {u, f}.

It’s worth noting that the only problematic case in the induction is related with dis-
junction, since the infectious value u is not designated. In other words, given two formulae
B and C, it’s not sufficient that v∗(B) ∈ {i, t} or v∗(C){i, t} in order to guarantee that
v∗(B ∨ C) ∈ {i, t}, since if, for instance, v∗(B) = u then v(B ∨ C) = u, no matter if
v∗(C) ∈ {i, t}. This is solved by clause (vOr∗), which explicitly gets rid of this case.

Therefore, it can be easily shown that v∗ is a Sfde-valuation, such that v∗[Γ] ⊆ {i, t},
but v∗(A) /∈ {i, t}, and thus Γ 2Sfde

A.

Fact 5.18. 2dSfde = dSfde.

Proof. The proof is similar to the proof of Fact 5.17. The main difference is that, in
order to proof dSfde ⊆ 2dSfde, the problematic case in the induction is related with
conjunction, and not with disjunction. However, in the same way as in the previous proof
that was solved by clause (vOr∗), in this case it’s solved by clause (vAnd∗).

So far, both of the two-valued versions 2Sfde and 2dSfde of the logics Sfde and dSfde

were built just deleting one of the clauses of 2Kw
3 and 2PWK, respectively. However,

things are more complicated in the case of the logics Sw
fde and dSw

fde.
As we will see next, we need to make further restrictions in the clauses of the connec-

tives. This is not surprising at all, since both of them are much weaker subsystems of the
usual Weak Kleene Logics. We provide next the technical definitions and later discuss
the extent to which they are philosophically justified.

Definition 5.19. A bivaluation v : FOR(ΣI) −→ {t, f} satisfying (vOr∗), (vDM∧),
(vDM∨), (vNeg)” plus the following clause is a 2Sw

fde valuation:
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(vAnd∗∗) v(A ∧B) = t ⇐⇒



(v(A) = t and v(B) = t, or

v(A) = t and v(¬A) = t, or

v(B) = t and v(¬B) = t)

and

(v(A) = t or v(¬A) = t, and

v(B) = t or v(¬B) = t)

The set of all such valuations is V
2Sw

fde .

Definition 5.20. Let the two-valued logic 2Sw
fde = 〈FOR(ΣI),�2Sw

fde
〉 be defined such

that

Γ �2Sw
fde
A ⇐⇒ for every valuation v ∈ V 2Sw

fde , if v[Γ] ⊆ {t}, then v(A) ∈ {t}

Definition 5.21. A bivaluation v : FOR(ΣI) −→ {t, f} satisfying the following clauses
(vAnd)∗, (vDM∧), (vDM∨), (vNeg)” plus the following clause is a 2dSw

fde valuation.

(vOr∗∗) v(A ∨B) = t ⇐⇒



(v(A) = t or v(B) = t, and

v(A) = t or v(¬A) = t, and

v(B) = t or v(¬B) = t)

or

(v(A) = t and v(¬A) = t, or

v(B) = t and v(¬B) = t)

The set of all such valuations is V
2dSw

fde .

Definition 5.22. Let the two-valued logic 2dSw
fde = 〈FOR(ΣI),�2dSw

fde
〉 be defined such

that

Γ �2dSw
fde
A ⇐⇒ for every valuation v ∈ V 2dSw

fde , if v[Γ] ⊆ {t}, then v(A) ∈ {t}

The rather cumbersome clauses (vAnd∗∗) and (vOr∗∗) are intended to model in a
two-valued setting the peculiar behavior of conjunction and disjunction in the logics Sw

fde

and dSw
fde, respectively. To see this, we should keep in mind the interpretation of Sw

fde

and dSw
fde as logics counting with infectious truth-value gluts and infectious truth-value

gaps, such that gaps are more infectious than gluts in Sw
fde, while gluts are more infectious

than gaps in dSw
fde.

Thus given this reading, on the one hand, clause (vAnd∗∗) of 2Sw
fde represents the

fact that a conjunction is true in Sw
fde if either both conjuncts are true (the classical

case), or one of the conjuncts is a truth-value glut (the PWK case) but the remaining
conjunct is not a truth-value gap. The corresponding two-valued representation of this,
taking truth-value gluts to be true sentences whose negations are also true, and taking
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truth-value gaps to be false sentences whose negations are also false, is clearly the target
clause (vAnd∗∗).

On the other hand, given this reading, clause (vOr∗∗) of 2dSw
fde represents the fact

that a disjunction is true in dSw
fde if either disjunct is true (the classical case) and none

of the disjuncts is a truth-value gap (the Kw
3 case), or alternatively if one of the disjuncts

is a truth-value glut. The corresponding two-valued representation of this, is clearly the
target clause (vOr∗∗).

Again, as expected, in the following facts we show the equivalence between the two-
valued logics and the corresponding four-valued presentation.

Fact 5.23. 2Sw
fde = Sw

fde.

Proof. To prove the left to right direction, suppose that Γ 2Sw
fde
A. Hence, there must be

a Sw
fde-valuation, v, such that v[Γ] ⊆ {t,u1}, but v(A) /∈ {t,u1}, witnessing this fact. So,

let’s build a valuation v∗, such that for each propositional letter φ:

• If v(φ) ∈ {t,u1} then v∗(φ) = t.

• If v(φ) /∈ {t,u1} then v∗(φ) = f .

By a straightforward induction it can be shown that v∗ is a 2Sw
fde-valuation, such that

v∗[Γ] ⊆ {t}, but v∗(A) /∈ {t}, and therefore Γ 22Sw
fde
A.

To prove the right to left direction, suppose that Γ 22Sw
fde
A. Therefore, there must

be a 2Sw
fde-valuation, v, such that v[Γ] ⊆ {t}, but v(A) /∈ {t}, witnessing this fact. Thus,

let’s build a valuation v∗, such that for each propositional letter φ:

• If v(φ) = t and v(φ) = v(6= φ) then v∗(φ) = u1.

• If v(φ) = f and v(φ) = v(6= φ) then v∗(φ) = u2.

• Otherwise, v(φ) = v∗(φ).

Again, by a typical induction, it’s easy to check that for every formula B,

• If v(B) = t then v∗(B) ∈ {u1, t}.

• If v(B) = f and v∗(B) ∈ {u2, f}.

It’s worth pointing out that there are two problematic cases in the induction: the
first one related with disjunction and the other, with conjunction. In both cases, this is
caused by the fact that the infectious value is not designated. In the case of disjunction,
the situation is exactly the same as in the proof of Sfde ⊆2 Sfde (see Fact 5.17). In the
case of conjunction, given two formulae B and C, it’s not sufficient that v∗(B) ∈ {t,u1}
and v∗(C) ∈ {t,u1} in order to guarantee that v∗(B ∧ C) ∈ {t,u1} (clause (vAnd)).
Moreover, it’s easy to check that similarly the clause (vAnd)∗ is not sufficient either.
Thus, it’s straightforward looking at the truth tables that the more restrictive clause
(vAnd)∗∗ does the job.

Therefore, it can be easily shown that v∗ is a Sw
fde-valuation, such that v∗[Γ] ⊆ {u1, t},

but v∗(A) /∈ {u1, t}, and thus Γ 2Sw
fde
A.

Fact 5.24. 2dSw
fde = dSw

fde.

Proof. The proof is similar to the proof of Fact 5.23.
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6 LFIs and LFUs based on Weak Kleene logics

As we remarked, the Weak Kleene logics can be shown to be the {¬,∧,∨}- or the internal
fragments of the the Logics of Nonsense. Therefore, we proceed to present all of these
systems in their corresponding matrix settings.

In what follows we will provide a slightly modified presentation of Bochvar, Halldén
and Segerberg’s Logics of Nonsense. On the one hand, it is a notational variation because,
in Bochvar’s case, we substituted the unary external assertion operator AA with the unary
connective ◦A; in Halldén’s case we substituted the unary meaningfulness operator +A
with the unary connective ◦A; and in Segerberg’s case we substituted the unary external
assertion operator TA for the unary connective ◦A. On the other hand, the following is an
abbreviated presentation of these logics because, in Bochvar’s case, the external negation
operator ∼A is not introduced as primitive, but is definable as ◦¬A. These differences in
the presentation do not imply, however, any substantial modification whatsoever of the
systems that we now introduce.

Definition 6.1. The external propositional language ΣE is defined by:

ΣE
i = ΣI

i , for i = 0 or i ≥ 2 ΣE
1 = ΣI

1 ∪ {◦}

Definition 6.2. Let the functions f◦B3
and f◦H3

defined on the set {t,u, f} be as follows

f◦B3

t t
u f
f f

f◦H3

t t
u f
f t

These functions are referred to as the external assertion operation and the meaningfulness
operator, respectively, in [3] and [19].

Definition 6.3. For X ∈ {B3,H3,S3}, a 3-valued X-matrix is the following ΣE-matrix,
where 〈{t,u, f}, {f¬WK, f

∧
WK, f

∨
WK}〉 is the 3-element Weak Kleene algebra, and moreover

f◦B3
and f◦H3

are as in Definition 6.2, and f◦S3
= f◦B3

.

MB3 = 〈{t,u, f}, {t}, {f¬WK, f
◦
B3
, f∧WK, f

∨
WK}〉

MH3 = 〈{t,u, f}, {t,u}, {f¬WK, f
◦
H3
, f∧WK, f

∨
WK}〉

MS3 = 〈{t,u, f}, {t,u}, {f¬WK, f
◦
S3
, f∧WK, f

∨
WK}〉

Definition 6.4. ForX ∈ {B3,H3,S3}, the 3-valued logicX = 〈FOR(ΣE),�X〉 is defined
as follows, letting V X be the set of MX -valuations

Γ �B3
A ⇐⇒ for every valuation v ∈ V B3 , if v[Γ] ⊆ {t}, then v(A) ∈ {t}

Γ �H3 A ⇐⇒ for every valuation v ∈ V H3 , if v[Γ] ⊆ {t,u}, then v(A) ∈ {t,u}

Γ �S3 A ⇐⇒ for every valuation v ∈ V S3 , if v[Γ] ⊆ {t,u}, then v(A) ∈ {t,u}
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Remark. The logic Kw
3 is the {¬,∧,∨}- or the internal fragment of the logic B3, whereas

the logic PWK is the {¬,∧,∨}- or the internal fragment of the logics H3 and S3.

As noticed in [11] B3 is a Logic of Formal Undeterminedness (LFU, for short), whereas
H3 and S3 are Logics of Formal Inconsistency (LFI, for short). LFUs and LFIs are,
respectively, non-classical logics paracomplete and paraconsistent logics that are endowed
with recovery operators that count with linguistic devices to mark those pieces of language
which can be used to infer classically. The tradition of such well-behavedness operators
goes back to the works of Newton da Costa and his C-systems in [13], [12], but it later
sprung as a field of study in itself, focusing on logics with primitive recovery operators
in the works [8], [7], [25], [6] of e.g. Carnielli, Marcos and Coniglio, among others. These
family of logics can be defined as follows.

Definition 6.5 ([7]). A logic L is a Logic of Formal Inconsistency if and only if there
is some possibly empty set of formulae ◦(α) depending on α such that the following
conditions are met:

There are some some Γ ⊆ FOR(Σ) and α, β ∈ FOR(Σ) such that:

1. Γ, α,¬α 2 β
2. Γ, ◦(α), α 2 β
3. Γ, ◦(α),¬α 2 β

And for all Γ ⊆ FOR(Σ) and α, β ∈ FOR(Σ):

4. Γ, ◦(α), α,¬α � β

Definition 6.6 ([11]). A logic L is a Logic of Formal Undeterminedness if and only if
there is a possibly empty set of formulae ?(α) depending on α, such that the following
conditions are met.

There are some some Γ ⊆ FOR(Σ) and α ∈ FOR(Σ) such that:

1. Γ 2 α,¬α
2. Γ 2 ?(α), α

3. Γ 2 ?(α),¬α

And for all Γ ⊆ FOR(Σ) and α ∈ FOR(Σ):

4. Γ � ?(α), α,¬α

Finally, let us highlight that the logics Kw
3 and PWK are indeed infectious logics,

while the logics B3, H3 and S3 are not infectious logics. What makes the latter be
non-infectious is, precisely, the fact that they are equipped with the so-called external
connectives that “classicize” every formula they are applied to, thereby taking the alleged
infectious value to some other different value and disrupting its infectious behavior. Thus,
it is right to say that B3, H3 and S3 are, respectively, an LFU and two LFIs defined in
extensions of infectious logics.8

8For more on LFUs and LFIs defined in extensions of infectious logics, see [35].
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6.1 Two-valued Logics of Nonsense

As in the previous section, we take most of the terminology deployed for defining two-
valued Logics of Nonsense from [6]. In this case the clause (vConsCiw) is the combina-
tion of clauses (vCons) and (vCiw), while (vConsCiw∗) is original to this work.

Definition 6.7. A bivaluation v : FOR(ΣE) −→ {t, f} satisfying the clauses (vNeg)’,
(vAnd), (vOr∗), (vNeg)”, (vDM∧), (vDM∨) and— additionally—the following clause,
is a 2B3 valuation:

(vConsCiw∗) v(◦A) = t ⇐⇒ v(A) = t

The set of all such valuations is V
2B3 .

Definition 6.8. Let the two-valued logic 2B3 = 〈FOR(ΣE),�2B3
〉 be defined such that

Γ �2B3
A ⇐⇒ for every valuation v ∈ V 2B3 , if v[Γ] ⊆ {t}, then v(A) ∈ {t}

Notice that the clause (vConsCiw∗) makes sense in a two-valued presentation of
Bochvar’s logic B3, since Bochvar’s interpretation of his external assertion operator, here
represented with the symbol ◦, has it that ◦A is true if and only if A is true, and is false
otherwise.

Definition 6.9. A bivaluation v : FOR(ΣE) −→ {t, f} satisfying satisfying the clauses
(vNeg), (vAnd∗), (vOr), (vNeg)”, (vDM∧), (vDM∨) and— additionally—the fol-
lowing clause, is a 2H3 a valuation.

(vConsCiw) v(◦A) = t ⇐⇒ v(A) 6= v(¬A)

The set of all such valuations is V
2H3 .

Definition 6.10. Let the two-valued logic 2H3 = 〈FOR(ΣE),�2H3
〉 be defined such that

Γ �2H3
A ⇐⇒ for every valuation v ∈ V 2H3 , if v[Γ] ⊆ {t}, then v(A) ∈ {t}

Notice, moreover, that the clause (vConsCiw) makes sense in a two-valued presen-
tation of Halldén’s logic H3, since his meaningfulness operator, here represented with the
symbol ◦, has it that ◦A is true if and only if A is either true or false, in other words, if it
is not nonsensical or meaningless. But given, in our two-valued presentation of Halldén’s
logic, nonsensical sentences are the only sentences which allow for v(A) to be identical to
v(¬A), our target clause does exactly the job we need it to perform.

Definition 6.11. A bivaluation v : FOR(ΣE) −→ {t, f} satisfying satisfying the clauses
(vNeg), (vAnd∗), (vOr), (vNeg)”, (vDM∧), (vDM∨) and (vConsCiw) is a 2S3 a

valuation. The set of all such valuations is V
2S3 .

Definition 6.12. Let the two-valued logic 2S3 = 〈FOR(ΣE),�2S3
〉 be defined such that

Γ �2S3
A ⇐⇒ for every valuation v ∈ V 2S3 , if v[Γ] ⊆ {t}, then v(A) ∈ {t}

Fact 6.13. 2B3 = B3

21



Proof. The proof is similar to the proof of the Fact 5.11. From left to right, assume that
Γ 2B3 A and let a B3-valuation v such that v[Γ] ⊆ {t} and v(A) /∈ {t} witness this fact.
Construct a valuation v∗ as follows:

• If v(φ) = u, then v∗(φ) = f

• If v(φ) 6= u, then v∗(φ) = v(φ)

with φ any atomic formula. By a straightforward induction it can be shown that v∗ is a
2B3-valuation such that v∗[Γ] ⊆ {t} and v∗(A) /∈ {t}, witnessing the fact that Γ 22B3

A.
Among other things, it’s worth noting that the presence of the operator ◦ doesn’t affect
this induction, since f◦B3

(u) = f◦B3
(f) = f . Thus, 2B3 ⊆ B3.

From right to left, assume Γ 22B3
A. Thus, there is a 2B3-valuation v such that

v[Γ] ⊆ {t} and v(A) /∈ {t} witnesses this fact. Construct a valuation v∗ as follows, letting
φ be any atomic formula:

• If v(φ) = v(¬φ), then v∗(φ) = u

• If v(φ) 6= v(¬φ), then v∗(φ) = v(φ)

Again, by a straightforward induction it can be observed that v∗ is a B3-valuation
such that for every formulae B:

• If v(B) = t, then v∗(B) = t

• If v(B) = f , then either v∗(B) = u or v∗(B) = f

Notice that the induction is not interfered by the presence of ◦ since for every valuation
v∗ ∈2 B3, v(◦A) = t if and only if v(A) 6= v(¬A). Therefore, it is a B3-valuation such
that v∗[Γ] ⊆ {t} and v∗(A) /∈ {t}, thereby witnessing the fact that Γ 2B3

A.

Fact 6.14. 2H3 = H3

Proof. Similar to the proof of Fact 6.13, with the only difference that in the above proof
we need to change the clauses for the construction of v∗, as in the proof of Fact 5.12.

Fact 6.15. 2S3 = S3

Proof. Similar to the proof of Facts 6.13 and 6.14.

7 Conclusion

In this paper, we have provided two-valued semantics to some many-valued logics, and
we have analyzed the behaviour of the connectives defined in the resulting systems. In
this sense, firstly, we have focused on Weak Kleene logics (Kw

3 and PWK) and on some
four-valued infectious subsystems of these logics (Sfde,dSfde,S

w
fde and dSw

fde). Next, we
have shown how to provide two-valued semantics to the Logics of Nonsense (B3, H3

and S3), which are proper LFIs and LFUs defined in extensions of the Weak Kleene
logics. All of these systems are usually characterized via 3-element or 4-element algebras
and they are often considered as essentially many-valued logics. Providing a different
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perspective on this issue, we offered alternative two-valued semantics for them and showed
the equivalence between these semantics and the original ones. With these reductions we
think we clarify the non-standard behavior of the logical connectives in Weak Kleene
systems. In particular, two-valued semantics are suitable to enlighten the properties of
paraconsistency and paracompleteness related with the oddity in the definition of the
conjunction and the disjunction, respectively. Finally, our aim here was not to argue
for the two-valued presentations of the systems. On the other hand, we think that both
approaches are complemented and each one is interesting by itself.
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