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ABSTRACT
Ultrafast inter-Coulombic electron capture (ICEC) has been established as an important energy-transfer process in open paired-quantum-dot
systems which can mediate between entrapment of free-moving electrons and release of trapped ones elsewhere by long-range electron-
electron interaction within nanowires. Previous studies indicated ICEC enhancement through population and secondary decay of two-center
resonance states, the latter known as inter-Coulombic decay (ICD). This study investigates the quantum-size effect of single- and double-
electron states in an established model of a quasi-one-dimensional nanowire with two embedded confinement sites, represented by a pair
of Gaussian wells. We analyze the ICEC related electron flux density as a function of confinement size and are able to clearly identify two
distinct capture channels: a direct long-range electron-electron impulse and a conversion of kinetic energy to electron-electron correlation
energy with consecutive ICD. The overlay of both channels makes ICEC extremely likely, while nanowires are a strong candidate for the next
miniaturization step of integrated-circuit components.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5095999

I. INTRODUCTION

Size is a key factor in the electronic industry. While screens
get bigger, electronic circuits become gradually smaller. Quantum
effects arise which offer challenges and interesting new possibili-
ties. Semiconductor technology has already grown and shaped elec-
tronics exponentially in the 1960s such that integrated circuits dou-
bled the number of hosted transistors annually.1 Known as Moore’s
Law, this quest for exponential reduction in electronic component
size had already just reached the nanometer scale with commer-
cial transistors of 800 nm size in 19892–4 and has continued to fuel
technological development and progress. Having reached 45 nm
size in 2007,5 current mass-produced transistors for mobile-phone

processors use etched narrow fin-shaped structures approaching
7 nm thickness,6–8 which is only three times the size of human
DNA. Although the reduced size is pursued to achieve lower form
factors of electronic products and higher component density on
the individual integrated circuit, it offers significant technologi-
cal challenges as nanometer-sized electronics leave the regime of
classical physics and become governed by quantum-mechanical
effects.9 The dominating electronic components remain the same
four basic elements of resistor, capacitor (light-emitting), diode,
and transistor, but 100 × 106 of them are assembled on less than
1 cm2.10

Known as the quantum size effect,11–13 the quasicontinuous
band structure of any bulk material splits up into discrete energy
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levels when its size is reduced sufficiently.14,15 Similarly, regions of
crystal defects, impurities, or atoms in contrast to their surround-
ing material can change optical and electrical properties by inducing
quantum effects. Therefore, nanostructured electronic components
which are essentially open quantum systems play a vital role in fos-
tering a wealth of applications: from lasers16 to solar cells,17 from
data storage18 to displays,19 and from their application as sensors20

to their potential as qbits.21

To further miniaturize technology to yet unachieved compo-
nent density, nanowires prove to be strong candidates to reach
the next research-and-development target—the so-called 5-nm
node.22–24 We therefore investigate the confinement-size depen-
dent capture of a free-moving electron through long-range inter-
action with another nearby electron confined in the vicinity as
might be encountered in a device built from two quantum dots, A
and B, within a nanowire.25–28 This process has been discussed as
“environment-assisted electron capture” and as “inter-Coulombic
electron capture” (ICEC). It was predicted with electron dynamics
for pairs of quantum dots29–31 as well as with scattering theory for
pairs of atoms and molecules where it had been called interatomic
Coulombic electron capture originally.32,33 Most recently, ab initio
R-matrix computations demonstrated the importance of ICEC for
Ne+ in He droplets.34 Within ICEC, an electron in an initially
charged confinement B− feels a momentum pressure through long-
range Coulomb repulsion from a moving electron penetrating a
neighboring confinement A. As the incident electron transfers
energy to its distanced partner, it is captured into A and forces the
neighboring electron to leave its respective confinement according
to

e−in + A+B− Ð→ A−+B + e−out . (1)

While the choice of material composition and doping offers
essential control over electronic device performance, it remains lim-
ited by availability, material cost, and technical feasibility. Tuning
the electron confinement size and thereby exploiting the quan-
tum size effect, however, offers an alternative which is easily
portable to industrial scale. This study therefore investigates how
size affects efficiency and selectivity of ICEC. Electron dynam-
ics of ICEC in quantum dots confirmed an energy-selective reac-
tion pathway through decay of a macroscopic two-center reso-
nance state (AB)∗ known by itself as inter-Coulombic decay (ICD),
following

e−in + A+B− ICECÐ→ (A−+B−)∗ ICDÐ→ A−+B + e−out . (2)

Like inter-Coulombic electron capture, inter-Coulombic decay is
mediated through long-range Coulomb interaction of electrons
located on two different partner sites, may it be atoms and molecules
where it was originally called interatomic Coulombic decay35–37

or solid state confinements as quantum dots.38–40 Here, an elec-
tron in the excited state of reaction partner A−∗ relaxes to a lower
energy state as its excess energy becomes available for ionization of
the other partner B−. Compared to the young prediction of ICEC,
however, inter-Coulombic decay is already well established in var-
ious fields, such as helium droplets,41 hollow atoms,42 as well as
biological systems,43,44 and nanostructures as fullerenes45 or quan-
tum films.46,47 Different ways to achieve ICD resonance have been
studied, namely, by radiation37 or impact of ions,48,49 α-particles,44

and ultimately electrons,29,32,50 the pathway we are discussing
hereafter.

The full electron dynamics of the ICEC process is going to
be calculated in a charged quantum-dot-pair model of two Gaus-
sian binding potentials.29–31 In this comparably small system, it
is possible to solve the time-dependent Schrödinger equation at a
high level of numerical accuracy regarding electron-electron cor-
relation by using the multiconfigurational time-dependent Hartree
(MCTDH) approach51,52 with fermionic antisymmetrization of
a discrete-variable-represented (DVR) wavefunction as imple-
mented in the Heidelberg software suite.53,54 This gridlike approach
bears the merit of offering access to the full electron dynamics
while treating continuum states on the same footing as bound
ones which is not usually achieved with many other theoretical
methods.

While it was previously shown that ICD can enhance the over-
all ICEC probability in comparison with a direct ICEC without
ICD,29–31 we show in this study that the two reaction pathways
are distinct in their energy signature, a broadband energy transfer
echoing the incoming electron in the case of direct ICEC against
energy selection through resonance criteria of ICD. As a conse-
quence of the quantum-size effect, ICD and ICEC must depend
on the size of the electronic confinements which has been inves-
tigated in the case of ICD.55,56 Here, we intend to use the effect
to study the particular interplay between ICD and ICEC, whereas
a following empirical high-throughput study on ICEC in quan-
tum dots will disentangle the particular dependence of maximal
ICEC probability density on eigenenergy interrelations.57 The pri-
mary interest in the present study is the electron flux associated
with a successful inter-Coulombic electron capture in a nanowire-
embedded pair of quantum dots at different confinement sizes and
constant initial states. Though theoretical in nature, our investiga-
tion mimics the experimentally known and easiest access to energy-
level variation of quantum dots via the well known quantum-size
effect.

In order to analyze the individual contributions of the inter-
Coulombic electron capture channels, we describe the general evo-
lution and kinetics of free-moving Gaussian wavepackets in Sec. II A
and generic decaying quantum states in Sec. II B, before intro-
ducing the paired-quantum-dot model (Sec. II C) and deducing
expectations toward ICEC dynamics of individual reaction channels
and their distinguishability in the electron flux density (Sec. II D).
Related computational details are comprised in Sec. III. To dissect
the size dependence of ICEC, we start the discussion of numer-
ical results by characterizing the traditional quantum-size effect
of monoelectronic and dielectronic eigenenergies to which there
has not been any analytical solution found (Sec. IV A). Conse-
quently, we explain an example of the evaluation of the undertaken
dynamics calculation in Sec. IV B before eventually concentrat-
ing on the size dependence of the individual reaction pathways of
ICEC.

II. THEORETICAL BACKGROUND
A. Free wavepackets

A free particle moving through a medium can be described by
a Gaussian wavepacket of initial average position Z, initial group
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velocity p0/m∗, and initial uncertainty in position σz . At this point,
we wish to consider one spatial dimension only which is to be
denoted by z and reads

⟨z, t0∣�⟩ ∶= ( 1
2πσ2

z
)

1
4

exp[−1
4
( z − Z
σz

)
2

+
i
h̵
p0(z − Z)]. (3)

Although the expected position of the particle is determined up
to some uncertainty at initial time t0, it becomes less certain where it
may be found as time evolves or where it would have been found at
a preceding point in time. In other words, the wavepacket at t0 has
minimum uncertainty, while more generally speaking, uncertainty
σz(t) and average position Z(t) of the wavepacket depend on time
according to

σ2
z(t) = σ2

z(t0) +
ih̵

2m∗
(t − t0), (4)

Z(t) = Z(t0) +
p0

m∗
(t − t0). (5)

Furthermore, we can deduce the initial distribution in momen-
tum space by the Fourier transformation of Eq. (3),

⟨p, t0∣�⟩ = (2σ2
z

πh̵2 )
1
4

exp[−(σz
h̵
)

2
(p − p0)2 +

i
h̵
Z(p − p0)]. (6)

By expressing the momentum in terms of energy ε as
p = −

√
2m∗ε for p ≤ 0 and p =

√
2m∗ε for p > 0 in the nor-

malization integral, 1 = ∫∞−∞ dp∣⟨p, t0∣�⟩∣
2, and then identifying the

integrand as the particle’s initial energy distribution by D�(ε), we
find

D�(ε) = (m
∗σ2

z

πh̵2 )
1
2

(ε)−
1
2 ( exp[−2(σz

h̵
)

2
(
√

2m∗ε − p0)
2
]

+ exp[−2(σz
h̵
)

2
(
√

2m∗ε + p0)
2
]). (7)

B. Decaying states
In contrast to the state ∣�⟩ of a free wavepacket, one can also

consider an arbitrary metastable quantum state ∣µ⟩ of some sort
which is to be characterized by a decay in time t > t0 with decay
rate Γ/(2h̵), energy expectation value Eµ, and initial space-time-
dependent amplitude ⟨z, t0∣µ⟩ and reads

⟨z, t ≥ t0∣µ⟩ ∶= exp[− Γ
2̵h(t − t0) − i

̵hEµ(t − t0)]⟨z, t0∣µ⟩. (8)

By Fourier transforming this equation, we can express the decay-
ing state in terms of the complex Siegert energy Eµ − i Γ2 as quantum
amplitude of energy E,

⟨z,E∣µ⟩ = ( h̵Γ
4π

)
1
2 i⟨z,Eµ∣µ⟩
E − (Eµ − i Γ2)

, (9)

at the spatial position z with respect to the reference amplitude
⟨z,Eµ∣µ⟩ at energy expectation value Eµ.

It is well-known and apparent that the energy distribution
Dµ(E) of such a metastable state is given by the Cauchy-distribution
probability-density function

Dµ(E) = ( h̵
πΓ

) Γ2

Γ2 + 4(E − Eµ)2 , (10)

often referred to as the Lorentzian function or Breit-Wigner dis-
tribution of the resonance energy Eµ and the full-width at half-
maximum Γ.58

C. Model system
We consider charge carriers moving along a nanowire with an

embedded pair of quantum dots. This provides an example of a
quasi-one-dimensional open quantum system,23,29 where electrons
can enter, pass through, and leave the medium. It allows a treatment
of reduced dimensionality as carrier transport through the wire is
predominantly bound to one spatial dimension.

Solid state physics generally accounts for collisions of moving
charge carriers with the medium’s crystal structure and other related
resistant effects. This is done by assigning a material-dependent
effective mass m∗ to the charge carrier. By this so-called “effec-
tive mass approximation,” the carrier in the medium may then
be treated analogously to a particle in free space as discussed in
Sec. II A. Although the effective mass is dependent on material and
other experimental conditions, the mathematical treatment becomes
independent from the medium described. Consequently, it is pos-
sible to define effective units in analogy with the free-space enti-
ties. “Atomic units” define the fundamental quanta of electron mass
me, elementary charge e, action h̵, and Coulomb force constant
(4πε0)−1 as respective units of reference, that is, [1 a.u.] each. In
dependence on the material, one can thus define an effective Bohr
radius,59

a∗B = 4πεh̵2

m∗e2 , (11)

as the length of reference as well as an effective energy E∗H = ̵h2

(m∗a∗B
2
)

as reference energy analogously to the Hartree energy59,60 and,
accordingly, time scales in units of h̵/E∗H and momentum in units of
h̵/a0. This takes material-dependent quantities such as dielectric per-
mittivity ε and effective carrier mass m∗ into account. Note that the
reference scale for electric charge could similarly be adapted to the
particular charge carrier considered but shall remain the elementary
charge e for the purpose of this study.

In such an effective-mass description, a local change in mate-
rial or local defect in crystal structure may trap the charge beyond
the statistical average. This can be described by an appropriate bind-
ing potential. The embedding of a material within another medium
is thereby often modeled by a finite square box potential. Nev-
ertheless, a different choice of potential might also account for
effects like Schottky barriers,61 energy band bending in junctions
of n- and p-doped materials,62,63 atom diffusion and wetting layer
effects,64 Fermi level unpinning,24,65 or tilted potentials inducing
charge separations as found in superlattices of zinc-blendes and
wurtzites.66,67

J. Chem. Phys. 150, 224105 (2019); doi: 10.1063/1.5095999 150, 224105-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

The nanostructure we intend to consider in this study thus
consists of a virtually infinite semiconducting wire with two embed-
ded regions of confinement at center-to-center distance R. Assum-
ing injected electrons as charge carriers to be described, one might
talk of a p-type host material in junction with two n-type regions
in the form of a pair of PNP heterojunctions. We denote the lon-
gitudinal transport direction of the wire as z and distinguish the
quantum dots as the “left” or “right” one of respective confine-
ment length LL or LR and band steps VL/R with respect to the
surrounding wire. The smooth potential VQD for this quantum-dot
pair can then be modeled by the following equation which describes
a pair of Gaussian wells shown as a blue line in the bottom of
Fig. 1:38

VQD(z) ∶= −DL exp
⎡⎢⎢⎢⎢⎣
−2(

z + R
2

LL
)

2⎤⎥⎥⎥⎥⎦
−DR exp

⎡⎢⎢⎢⎢⎣
−2(

z − R
2

LR
)

2⎤⎥⎥⎥⎥⎦
. (12)

We define the single-electron Hamiltonian ĥ of longitudinal
kinetic energy and quantum-dot potential operator VQD(z) as

ĥ ∶= − h̵2

2m∗

∂2

∂z2 + VQD(z). (13)

It gives rise to a set of eigenenergies {En}n and associated eigenstates
{∣n⟩}n according to

ĥ ∣n⟩ =: En ∣n⟩ ∀n. (14)

For simplicity, we restrict our system to cases of a single bound
state ∣R⟩ of the right quantum dot, as well as a ground and a sin-
gle excited state of the left quantum dot, ∣L0⟩ and ∣L1⟩, respectively.
As localization should be distinguishable in appropriately separated
quantum dots, we choose to label single-electron bound eigenstates

FIG. 1. The binding potential VQD (blue solid line) modeling the quantum dot pair as
a function of z is shown in conjunction with the true Coulomb potential VC (brown
dotted line) and the effective Coulomb potential V12 (red dashed line) as a function
of spatial distance z = |z2 − z1| between the electrons.

according to their position. Unbound eigenstates are named by their
free energy ε within the continuum, i.e.,

{∣n⟩}n =: {∣L0⟩, ∣R⟩, ∣L1⟩, {∣ε⟩}ε≥0}. (15)

Assuming a longitudinal setup of the charge carrying medium
in the form of a wire and neglecting direct ionization out of the wire,
the charge carriers are transversally bound. This means the nanowire
acts as a waveguide of transversal oscillator strength h̵ω� to the
particles moving through it. This has successfully been described
by the harmonic potential U� and associated transversal ground
state ∣0⟩

�
,68 where a natural length l is associated to the product of

oscillator strength h̵ω� and material-dependent effective mass m∗

according to the equations

U�(x, y) ∶= h̵ω�(
x2 + y2

2l2
), (16)

⟨x, y∣0⟩
�
∶= (πl2)−

1
4 exp[−x

2 + y2

2l2
], (17)

l ∶=
√

h̵
m∗ω�

. (18)

Generally, the Coulomb repulsion between two electrons is
dependent on the distance between them with the usual 1/r
dependence. The repulsion strength is medium dependent. The
Coulomb potential VC(r⃗1, r⃗2) in three spatial dimensions can there-
fore be expressed in terms of the aforementioned effective medium-
incorporated units of natural scales of energy E∗H and length a∗B
as

VC(r⃗1, r⃗2) = E∗H
a∗B

∣⃗r2 − r⃗1∣
. (19)

We assume energies small enough to keep electrons transver-

sally in their spatial ground-state distribution, i.e., E
!< 3/2 h̵ω�,

while they travel longitudinally through the wire. Under this
assumption, one can average over the transversal contributions to
the full-dimensional Coulomb potential of interaction between a
transversal electron-distribution according to Eq. (17) at longitu-
dinal position z1 and another one at z2. This reduces the prob-
lem under investigation to a quasi-one-dimensional open quantum
system with effective interaction potential

V12(z1, z2) = E∗H
a∗B
l

√
π
2 w(i ∣z2 − z1∣√

2l
) (20)

with w(iz) ∶= (1 − erf[z]) exp[z2] (21)

and has been employed successfully.29,31,40 Note here that w(iz) is the
Faddeeva function,69 and the effective potential V12 thus exhibits a
shape related to the Voigt profile (dashed line in Fig. 1)69 compared
to the diverging profile of the true Coulomb interaction VC(r⃗1, r⃗2)
displayed for x1/2 = y1/2 = 0 (Fig. 1, dotted line).

Due to the fermionic nature of the two electrons investigated
here, their total wavefunction has to obey Pauli’s exclusion princi-
ple. The wavefunction describing an electron in an arbitrary state
∣α⟩ and another in an arbitrary state ∣β⟩ shall hence be given by their
antisymmetric outer product and denoted by ∣αβ⟩,

∣αβ⟩ ∶= 1
√

2
(∣α⟩⊗∣β⟩ − ∣β⟩⊗∣α⟩). (22)
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Accordingly, a projection of the overall wavefunction onto the two-
electron state ∣αβ⟩ is defined by the outer product of a state with itself
and is being denoted

P̂αβ ∶= ∣αβ⟩⟨αβ∣. (23)

Furthermore, we wish to consider a projection P̂α of the two-
electron wavefunction on an arbitrary single-electron state ∣α⟩,
which describes the wavefunction of one electron coinciding with
another one occupying state ∣α⟩. Such a projector is mathemati-
cally described by the symmetric outer product of state ∣α⟩ with the
identity operator 1 as

P̂α = 1
2(∣α⟩⟨α∣⊗1 + 1⊗∣α⟩⟨α∣). (24)

We wish to numerically undertake an ICEC experiment. For
that purpose, we charge the right quantum confinement and send a
free electron toward the paired quantum confinement from the left.
That means we prepare an electron in bound state ∣R⟩ and another
in free state ∣�⟩ according to Eq. (3) at a large distance from the
quantum-confinement region. We then antisymmetrize according
to Eq. (22) to reach the total state ∣Ψ⟩. In general, ∣Ψ⟩ is not separable
into single-electron components due to electron-electron interac-
tion. At an infinite distance, however, the electrons cannot interact
and are effectively independent from each other. This implies the
two-electron wavefunction ⟨z1, z2∣Ψ⟩ can be well approximated by
antisymmetrically combined single-electronic components within
the large-distance limit as

∣Ψ0⟩ ∶= ∣�R⟩ = 1
√

2
(∣�⟩⊗∣R⟩ − ∣R⟩⊗∣�⟩). (25)

As we wish to consider two-electron states from here on, we use
index “1” or “2” to indicate single-electron quantities where appro-
priate. The Hamilton operator ĥ1, for example, shall refer to the
operator sum of quantum-confinement potential VQD and kinetic
energy operator as introduced in Eqs. (12) and (13) which act on the
electron labeled “1.” Furthermore, the electronic interaction poten-
tial V12 is contained. We thereby arrive at the system’s Hamilton
operator

Ĥ = ĥ1 + ĥ2 + V12. (26)

D. ICEC dynamics
Analyzing the evolving state ∣Ψ⟩ at large times, we can assure

that an inter-Coulombic electron capture has taken place if we
observe an electronic current at a large distance from the confine-
ment region coinciding with some occupation of the left-bound
single-electron states ∣L0⟩ and ∣L1⟩. We therefore define the flux
operator F̂ such that its expectation value F(t) as a function of time
describes the electron flux at longitudinal position zF . Similarly, F(E)
describes the energy distribution of the electron flux passing through
longitudinal position zF . Electron flux through zF that coincides with
the simultaneous occupation of the single-electron state ∣L0⟩ is con-
sequently described by applying the operator P̂†

L0 F̂P̂L0 . Its time- or
energy-dependent expectation value is going to be denoted by FL0(t)
and FL0(E), respectively, hence as

FL0(t) ∶= ∣⟨Ψ∣P̂†
L0 ∣t⟩⟨t∣F̂ ∣t⟩⟨t∣P̂L0 ∣Ψ⟩∣, (27)

FL0(E) ∶= ∣⟨Ψ∣P̂†
L0 ∣E⟩⟨E∣F̂∣E⟩⟨E∣P̂L0 ∣Ψ⟩∣. (28)

Because the initial wavefunction is not equally distributed over the
entire energy range, the measured flux will depend on the energy
distribution

DΨ0(E) ∶= ∣⟨Ψ0∣E⟩⟨E∣Ψ0⟩∣. (29)
The probability density for a successful inter-quantum-dot Coulom-
bic electron capture into ∣L0⟩ within the infinitesimal range of total
energy from E to E + dE is hence given by the fraction of measured
electron flux of that energy by available density distribution,

PL0(E) ∶=
FL0(E)
DΨ0(E)

if DΨ0(E) > 0. (30)

Any evolution has to conserve the total energy ET of the system.
So, the energy transferred through a capture into ∣L0⟩ has to equal
the energy difference between right-bound ∣R⟩ and left-bound ∣L0⟩,

pi2

2m∗ + ER = ET , (31)

ET = EL0 + pf 2

2m∗ . (32)

This is diagrammatically presented in Fig. 2(a). Despite the elec-
tronic correlations throughout the process, this means that energy

FIG. 2. (b) The binding potential VQD modeling the quantum dot pair as a function
of z is shown, and the energy levels of the states L0, R, L1 are indicated. (a) shows
the diagram of direct ICEC in alignment with the binding potentials of (b). Arrows
indicate the electron evolution in space and time with momentum pi / f or only in
time when being in one state of energy EL0 /R. The wiggled lines represent the
transferred energy. (c) The representation of direct ICEC is supplemented with the
representation of the resonant ICEC.
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transfer is solely dependent on single-electron quantities. Under the
assumption that a metastably bound two-electron excited state can
be occupied which might bear at least conceptual similarities with a
state of simultaneously occupied ∣L1⟩ and ∣R⟩ in consequential per-
turbation by respective repulsion, we call this state ∣L1R⟩. If such a
state is to be populated by the evolving state ∣Ψ⟩ at some point in
time t ≥ t0, energy conservation must be ensured equally. As such,
only those fractions of incoming wavepacket can contribute which
are appropriately energetically situated close to the energy difference
[cf. see Eq. (10)] between EL1R and ER, as depicted in diagram (c) of
Fig. 2, i.e.,

pi2

2m∗ + ER = EL1R, (33)

EL1R = EL0 + pf 2

2m∗ . (34)

Similarly, the kinetic energy release coinciding with a residual occu-
pation in L0 depends on the energy difference between EL1R and EL0

as this intermediate state decays by tunneling out of the Coulomb-
induced confinement barriers. Nevertheless, despite its particular
dynamics via ∣L1R⟩, the overall excess kinetic energy remains inde-
pendent of EL1R and depends solely on the single-electron quantities
EL0 and ER.

If we assume ICEC to occur as an elastic scattering in the form
of a direct energy transfer or impulse between the two electrons,
we would expect an electron flux energetically similar to the initial
energy distribution D�(ε). The energy distribution DΨ0(ET) of the
initial state ∣Ψ0⟩ is trivially separable into its electronic components,
as the incoming wavepacket ∣�⟩ and the right-bound electron ∣R⟩ are
at a very large distance from each other and correlative interaction is
negligible,

DΨ0(ET) = D�(ε) × δ(ER − (ET − ε)) for ET =: ε + ER. (35)

Due to Eqs. (7), (14), and (15), we expect the energy distribution
DΨ0(ET) to be a simple superposition of continuous contributions
of free energy ε and discrete eigenenergy ER,

F�L0
(ε)∝ ∣⟨ET − ER∣�⟩∣

2 ∝ p0√
2m∗ε

exp[−2 σ
2
zp

2
0
̵h2 (

√

2m∗ε
p0

− 1)
2
]

1 + exp[−8 σ
2
zp

2
0
̵h2 ]

+
p0√
2m∗ε

exp[−2 σ
2
zp

2
0
̵h2 (

√

2m∗ε
p0

+ 1)
2
]

1 + exp[−8 σ
2
zp

2
0
̵h2 ]

, (36)

where the second term is expected to have a very small contribution
near ε = p2

0/2m∗.
On the other hand, assuming that the kinetic energy of the ini-

tially free wavepacket is transferred into correlation energy between
the electrons, electron capture might occur initially without envi-
ronmental ionization. The interaction between both bound electrons
then allows a secondary energy transfer, resulting in electron tunnel-
ing out of the confinement. As this two-electron bound state thus
decays, we expect the electronic flux to reflect this decay accord-
ing to Eq. (10) and FL1R

L0
(ET) should show a Breit-Wigner shape,

i.e.,

FL1R
L0

(ET)∝ ∣⟨ET ∣L1R⟩∣
2 ∝ Γ2

4(ET − EL1R
)2 + Γ2 . (37)

Consequently, electron capture through both processes, direct
impact of ∣�⟩ on ∣R⟩ and inter-quantum-dot Coulombic decay of
∣L1R⟩, has to show the usual quantum mechanical superposition
of amplitudes resulting in some interference term according to a
complex phase difference ' between both since

FL0(ET)∝ ∣K� ⟨ET − ER∣�⟩ + KL1R
⟨ET ∣L1R⟩∣

2. (38)

We can therefore evaluate the probability density for the infinitesi-
mal energy range ET . . .(ET + dET) for a successful inter-Coulombic
electron capture according to Eq. (30) as

PL0(ET)∝
∣K� ⟨ET − ER∣�⟩ + KL1R

⟨ET ∣L1R⟩∣
2

D�(ET − ER)
, if D�(ET − ER) > 0.

(39)

Numerically, this definition proves to be limited to a certain con-
fidence interval in energy for which the initial energy distribution
D�(ET − ER) is confidently nonvanishing in order to avoid numeri-
cal division by 0. Note that the flux FL0(ET) can also be evaluated for
regions outside the energy confidence interval.

In conclusion, the efficiency of the inter-Coulombic elec-
tron capture within an infinitesimal energy range between ET and
ET + dET is described by the probability density PL0(ET) express-
ing the ratio between successfully ionized electron density through
ICEC and incident electron density within that infinitesimal energy
range. The total efficiency of the device, however, is given by the
direct integral of the flux density of ionized electron density through
successful ICEC,

Ptotal
L0 = ∫ PL0(ET)DΨ0(ET) dET

∫ DΨ0(ET) dET
= ∫ FL0(ET) dET , (40)

where the definition for FL0 according to Eq. (30) and the normal-
ization of the initial energy distribution density, ∫dET DΨ0(ET) = 1,
was applied. While the energy distribution density of the incident
electron is just a free parameter in the initial conditions for a numer-
ical investigation, controlling it in an experiment or a potential
electronic device will be a challenge. The group velocity will pri-
marily be controlled through the external electric field applied to
the nanowire and the charge-carrier mobility of the material. In
addition to being material-dependent, the mobility will also depend
on the operating temperature which is difficult to control in an
electronic device outside the laboratory. Moreover, controlling the
distribution in energy will effectively be limited by noise arising
from various sources of fluctuations due to manufacturing qual-
ity, electrical contacts, material defects, power source, or thermal
fluctuations.

The overall efficiency of ICEC in an electronic device will
depend on the matching or overlap between ICEC probability den-
sity PL0(E) and incident energy distributionDΨ0(E). A narrow prob-
ability profile will need a narrow incident distribution. Likewise,
if the energy distribution is broad due to electronic limitations, a
broad probability density profile will be advantageous to use ICEC
efficiently. In this study, the incident electron is used in a different
way: it is kept constant to probe for FL0(E) and PL0(E) for a range
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of energies. Therefore, we expect the total efficiency Ptotal
L0 to remain

small. Optimizing a real ICEC device for a particular chosen material
would primarily mean optimizing the applied voltage, together with
the width and peak value of ICEC probability density for a device at
specific operating conditions.

III. COMPUTATIONAL DETAILS
We numerically apply the multiconfigurational time-dependent

Hartree (MCTDH) approach with antisymmetrization to describe
and propagate the quantum-mechanical two-electron wavefunction
of the form51,52

Ψ(z1, z2, t) ∶=
N1 ,N2

∑
j1 ,j2=1

Aj1j2(t)χj1(z1, t)χj2(z2, t). (41)

It contains the Hartree product of time-dependent single-particle
functions (SPFs),

χj(z, t) ∶=
M
∑
m=1

c(m)j (t)bm(z). (42)

Their primitive basis, {bm(z)}Mm=1, is given within a sine (Cheby-
shev) discrete variable representation (DVR) of 431 grid points each
between z = −270.0 a∗B and +270.0 a∗B for both electronic z coordi-
nates (see Table I). The configuration space, N1 × N2, taken into
account is of size 14 × 14 for the initial preparation of state and then
reduced to configurations of triplet states by enforcing the identical
nature of both electrons and antisymmetric coefficients through

Aj1j2(t)
!= −Aj2j1(t) ∀t. (43)

While initially separable as both electrons are at large distance
from each other, electron correlation grows with time when the elec-
trons approach each other. Numerically, this means that the wave-
function is initially well-described by a single configuration, while
with increasing time, the configuration space becomes more widely
populated.

As described in the theory section, Sec. II [Eq. (25)], the
initial wavefunction is prepared by an antisymmetric superpo-
sition of a free electron wavepacket of Gaussian form and the

bound single-electron eigenfunction of the quantum dot local-
ized at the right ∣R⟩. The Gaussian wavepacket is initially cen-
tered at Z = −125 a∗B with group momentum p0 = 0.335 h̵/a∗B and
root-mean-square (rms) width σz of 10.0 a∗B , where all units are
effective atomic units and scaled with respect to an effective electron
mass of unity. We summarize the employed parameters concisely for
better legibility and reference in Table I.

The transversal oscillator strength of the nanowire is set to
h̵ω� = 1.0E∗H . This implies a natural length scale equal to the
characteristic length scale, a∗B , of the chosen material according to
Eq. (17). The right quantum dot and interdot distance are kept con-
stant throughout this study which ensures a constant initial wave-
function. With a rms width of 1/

√
2 a∗B , such that bR = 1.0 a∗B

−2,
the right quantum dot is set to an effective energy minimum of
DR = 0.60E∗H and at a distance from quantum-dot center to cen-
ter of R = 10.0 a∗B (compare Ref. 31). The left quantum dot is fixed
with an effective binding energy of DL = 0.71E∗H and is being varied
in size between a length (i.e., double rms width) of LL = 3.6 a∗B and
0.7 a∗B .

In order to prevent unphysical reflections of the electron wave-
function at the edges of the grid and to avoid consequent self-
interference, complex absorbing potentials Ŵ with

− iŴ ∶= −iη ( ∣z − zcap∣
a∗B

)
n

×Θ[−k( z − zcap
a∗B

)] (44)

of quadratic order, n = 2, have been placed with the Heaviside func-
tion Θ(z) at zcap = ±168.75 a∗B .70–73 The parameter η is computed
to maximize the absorption and minimize reflection from the edges.
See Table I for details.

IV. RESULTS
In this section, we intend to analyze the inter-Coulombic

electron capture at various sizes LL of the capturing quantum
confinement by calculating the electron dynamics of this long-
range energy transfer to a bound electron in another confine-
ment within a nanowire. Before we analyze the dynamics of ICEC,

TABLE I. Collection of computational parameters of the system.

Incident electron parameters, see Eqs. (3) and (18)
p0 = 0.335 h̵/a∗B Z = −125 a∗B σz = 10.0 a∗B l = 1.0 a∗B

Quantum-dot-pair parameters, see Eq. (12)
LL ∈ {0.7 a∗B , . . . , 3.6 a∗B } DL = 0.71E∗H
LR = 0.707 a∗B DR = 0.60E∗H
R = 10.0 a∗B

DVR type Grid points z range
Sine 431 −270.0 a∗B +270.0 a∗B

SPF configurations 14 × 14, id

CAP zcap η n k
−168.75 a∗B 5.79 ⋅ 10−6 E∗H 2 −1
+168.75 a∗B 5.79 ⋅ 10−6 E∗H 2 +1
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we need to characterize the variation of static quantities with the
confinement size. In Sec. IV A we thus wish to study the observed
changes in single-electron eigenenergies EL0 and EL1 first. In accord
with the nomenclature for single-electron bound states ∣L0⟩, ∣R⟩,
and ∣L1⟩, we distinguish the states ∣L0R⟩ and ∣L1R⟩ of two elec-
trons bound within the pair of quantum confinements. We intend
to discuss the electron-electron correlation energies and distances
for those two-electron states. With that at hand, in Sec. IV B we plan
to explain an example of the undertaken flux analysis on the full elec-
tron dynamics and eventually show six different cases of ICEC flux
profiles indicating the contributions via direct ICEC and secondary
ICD.

A. Quantum-size effect of stationary quantities
In the investigated range of sizes between LL = 0.7 a∗B and

3.6 a∗B , the numerical results of the dependence of single-electron
eigenenergies EL0 , ER, and EL1 are depicted in Fig. 3(a) as lines in vio-
let with diamonds, in blue with triangles, and in turquoise with pen-
tagons. As the right quantum dot has not been changed throughout,
ER is constant over the whole range of LL, whereas both left quan-
tum dot energies decrease monotonically with increasing LL. Note
that the quantum dot contains a second L1 level only for LL ≥ 0.9a∗B
and that the drop in EL1 is slow in the beginning until it starts to
follow that of EL0 from approximately LL ≥ 2.2a∗B onward.

We find that the observed trend is empirically well-described
by a second-order polynomial of powers of square-roots of length,
ELk(LL) = P(k)(

√
LL) = a(k)0 + a(k)1

√
LL + a(k)2 LL, for both left-

located eigenenergies ELk available in the regime. In fact, due to the
limited range of bound L1 in our sampling, the linear offset energy,
a(1)0 , can be set to zero and the two parameters, a(1)1 and a(1)2 , suffice
to describe the size effect efficiently for the 11 data points of negative
EL1 with a relative uncertainty of less than 1.3% in either parame-
ter and a root-mean-square residual of 1.5 × 10−3E∗H . We find thus
a(1)1 = 0.289(4)E∗H/

√
a∗B and a(1)2 = −0.199(3)E∗H/a∗B

2. Similarly, the
21 data points for L0 are empirically described by parameters a(0)0

= 0.472(4)E∗H , a(0)1 = −0.864(5)E∗H/
√
a∗B , and a(0)2 = 0.184(2)E∗H/a∗B

2

with respective relative uncertainties below 1.0% rms residual of
0.7 × 10−3E∗H .

While known analytical solutions to eigenvalue problems of
quantum mechanical potentials—such as the quantum-harmonic
oscillator, the infinite or finite square well, and the Pöschl-Teller
or Morse potential—suggest an expansion in powers of n and L−1

L
rather than square roots of length, such a second order polynomial
only yields a rms residual of 3.2× 10−3E∗H for the quantum size effect
in L0 and deviates from the numerical results in its behavior which
is particularly perceptible at lower sizes around 1.0 a∗B . A third order
term is able to correct this behavior and to reduce the rms residual
to 0.2 × 10−3E∗H for L0. It also allows a smoother transition of the L1
eigenenergy toward zero. Nevertheless, this suggested otherwise lit-
tle advantage over the simpler description in orders of

√
L for the

investigated size range.
In Fig. 3(a), we also depict the constant total ⟨ET⟩ [green line

with hollow squares, cf. Eqs. (31) and (25)] as well as the energy dif-
ference ⟨ET⟩ − EL0 (red line with circled pluses) and the unchanged
initial momentum p0 (yellow triple line with circled crosses). From
all the curves together, we can make out distinct crossing points. Just

FIG. 3. The key quantities of the system of two quantum dots in a nanowire are
displayed as a function of LL in a∗B . (a) Energy and momentum contributions are
shown. For the single-electron energies, lines with violet diamonds represent EL0 ,
with blue triangles ER, and with turquoise pentagons (setting on for LL ≥ 1.84 a∗B )
EL1 . The constant transferred energy ⟨ET⟩ is shown as a green line with hollow
squares. The range of available final energies ⟨ET⟩ − EL0 is indicated by a red
line with circled pluses, and adjacent red lines mark three standard deviations
σ±ε = h̵/(2m∗σz)(p0 ± h̵/(4σz)). The unchanged initial kinetic energy
p2

0/(2m∗) ± 3σ±ε with three standard deviations is displayed by a yellow triple
line with circled crosses. (b) Coulomb interaction ⟨V12⟩LkR for ∣L0R⟩ (blue dots)
and |L1R⟩ (red squares) obtained from ELkR − ELk − ER and scaled by 1/R. (c)
Effective distances ⟨R12⟩ = ⟨∣z2 − z1∣⟩LkR for states as in (b). Note the scale
breaking. (d) Maximal flux density Fmax

L0
(turquoise cross symbol with the peak at

LL ≈ 2.6 a∗B ) and integrated flux ∫FL0dE (olive plus symbol with the peak at
LL ≈ 2.45 a∗B ) with distinct scales of the ordinate. (e) Maximal ICEC probability
density Pmax

L0
(purple asterisk) depending on the size LL of the capturing quantum

confinement.

above the selected LL region, the crossing of EL1 and ER as well
as ⟨ET⟩ is expected. Another point that was highlighted in earlier
investigations on ICEC as a function of DL is the crossing of ⟨ET⟩
with EL0 − ER and EL1R all together, where the highest ICEC prob-
ability due to favorable energy conditions for resonance ICEC was
found.31 Here, we only see crossing points near LL = 1.125 a∗B where
the left confinement has only one bound state. EL0 crosses with ER
and ⟨ET⟩ − EL0 with p0. The specialty of the system at this length
can be revealed when considering the two-electron quantities as
well.
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In Fig. 3(b), we plot the expectation values of the interaction
strength, the effective Coulomb energy ⟨V12⟩LkR as a function of
LL. It was calculated according to ELkR − ELk − ER for the two-
electron ground state ∣L0R⟩ (blue dots) and the resonance ∣L1R⟩ (red
squares). In Fig. 3(c), lines with the same color code are used to
depict the respective electron-electron distance ⟨R12⟩LkR from ∣L0R⟩
and ∣L1R⟩ of (b). These quantities have been determined to quan-
tify their difference from the estimate of ⟨V12⟩LkR ≈ 1/R. For the
lowest two-electron bound state of the system, ∣L0R⟩, the average
expectation of ground state interaction strength in our sampling lies
2.75% above the approximation of 1/R = 0.10E∗H . Peaking with
an expectation value of ⟨V12⟩L0R = 0.1136E∗H at a quantum-dot
length LL of 1.13 a∗B around where the single-electronic eigenen-
ergies EL0 and ER cross, the limited resolution suggests a lambda
transitional shape. For a narrow left quantum dot below 1.0 a∗B ,
the expectation value appears to significantly increase as the bound
electron delocalizes due to the close threshold energy. For lengths
above 1.5 a∗B , electronic interaction increases slowly as the sepa-
ration between the quantum dots reduces together while the left
quantum dot grows equally to the left. Within the investigated
range, the minimal interaction strength in the two-eelctron ground
state is found with 0.1017E∗H at a longitudinal quantum-dot size of
1.84 a∗B .

In comparison, the resonance state level ∣L1R⟩ shows a mean
expectation value of interaction strength ⟨V12⟩L1R which is 10.58%
above the approximated 1/R = 0.10E∗H . It deviates from the approx-
imate by the order of the system’s kinetic energy. This estimate
proves therefore only a crude approximation. From its minimal elec-
tronic interaction of ⟨V12⟩L1R = 0.1096E∗H at a left quantum dot
size of LL = 3.24 a∗B , electronic repulsion increases with EL1 as
the quantum dot narrows. It climaxes with ⟨V12⟩L1R = 0.1124E∗H
at a size LL of 2.39 a∗B where the gain in eigenenergy is balanced
by the increasingly available localization range as the quantum dot
potential spreads with length LL. Electronic interaction drops there-
fore steeply around the zero transition of ∣L1⟩ as the wavefunction
extends toward −∞ when the eigenvalue is being pushed out of the
binding potential. Similar to the electronic repulsion in the ground
state ∣L0R⟩, we observe a slow repulsive rise of ⟨V12⟩L1R for larger
sizes LL as the quantum-dot barrier reduces until the quantum-dot
pair amalgamates.

While the electrons are bound by the respective quantum-dot
potentials, we expect electronic repulsion to polarize the individual
quantum dot such that the average electron densities are slightly
shifted and one could naïvely assume the repulsive force to hold
the electrons outwards from their original noninteracting equilib-
rium position, ⟨∣z2 − z1∣⟩ ≳ R. Surprisingly, we find the expectation
value of the interelectronic distance [see Fig. 3(c)] in the ground state
∣L0R⟩ continuously slightly smaller than the distance between the
respective quantum-dot centers with a mean electron-electron dis-
tance ⟨R12⟩L0R of 9.995(12) a∗B with the uncertainty within the last
digits given in parentheses. We particularly observe a general reduc-
tion of electronic distance at LL < 2 a∗B and an intermediate drop at
LL = 1.13(15) a∗B as the left and right-localized eigenenergies cross
and direct tunneling opens up the available space. This behavior of
⟨R12⟩L0R partially counteracts the trend in ⟨V12⟩L0R of Fig. 3(b).

For the two-electron excited state ∣L1R⟩, we find a strong
quantum-size dependence of the expectation value of the

interelectronic distance. We measure an expectation value ⟨R12⟩L1R
of 9.982(4) a∗B at left quantum-dot size LL = 3.50 a∗B and
⟨R12⟩L1R = 10.25(7) a∗B at LL = 2.50 a∗B . Narrowing the left
quantum dot further raises the interelectronic distance with the
eigenenergy EL1 . This opens up a wider range between the poten-
tial reflection points as the potential approaches the continuum such
that ⟨R12⟩L1R = (19 ± 6) a∗B at LL = 2.125 a∗B before the localization
of ∣L1⟩ breaks down. The overall trend is inverse to the behavior of
⟨V12⟩L1R. Only in the range 2.39 a∗B < LL < 3.20 a∗B , interestingly,
the system simultaneously allows an increased expectation value of
the Coulomb interaction ⟨V12⟩L1R > 1

R
despite an expanded expec-

tation value in electron-electron distance ⟨R12⟩L1R > R for most of
the investigated quantum-dot-size range before the vanishing of ∣L1⟩
into the continuum.

Figure 3(d) depicts the integral of FL0(E) with respect to the
energy E, and it represents the overall efficiency of the electronic
device for the chosen initial conditions and geometry. In panel (e),
the maximum probability density of ICEC (obtained for a specific
system energy) is plotted against the quantum confinement LL.
These maximum values can be located in Fig. 5 as the values of
the peaks of PL0 (blue dashed lines, ordinate scale on right) for
the quantum confinements indicated. A detailed discussion of these
curves will follow in Subsection IV B within the context of the ICEC
dynamics.

B. ICEC dynamics
Having investigated single-electron eigenenergies of the system

and electron-electron correlated two-electron intermediate states as
precursors to analyze the full ICEC dynamics, we would like to dis-
cuss with LL = 2.83 a∗B an exemplary case of the flux analysis at this
point. Investigating the time-dependent spatial probability density
|Ψ(t)|2 based on Eqs. (25) and (41) as depicted in the lower panel of
Fig. 4, we find that for the first times up to 210 h̵/E∗H the incoming
electron approaches the right-bound one coming from the nega-
tive z direction. During this time, we observe a broadening of the
incoming wavepacket in time due to its dispersion. From impact,
we observe a spray of electron probability density leaving in the
positive z direction with increased velocity in comparison with the
incoming one notable at the steeper slope ∆z/∆t. At the same time,
we observe interference ridges in the negative z direction, as frac-
tions of the incoming wavefront are being reflected back to the left
and interfere with fractions still traveling toward the double con-
finement. Note that immediately from the impact, we also observe
a double line at the position of the left quantum dot indicating a
binding to the left-excited state ∣L1⟩. The first wave of right-bound
electron release terminates around 550 h̵/E∗H . We further observe
a revival of a second wave of right-bound electron release around
650 h̵/E∗H to 1050 h̵/E∗H . At the same time, we note a loss of reso-
lution in the left-bound double peak which indicates consecutively
with the simultaneous right-bound ionization an active ICD pro-
cess. Both of those electron probability waves were measurable as
flux of time FL0(t) [Eq. (27) and upper panel of Fig. 4] in coin-
cidence with an occupied left-bound ground state ∣L0⟩ with maxi-
mum at time 550 h̵/E∗H and therefore confirm to be the result of an
inter-quantum-dot Coulombic electron capture.

In order to consequently investigate the confinement-size
dependent ICEC through the measured flux, we Fourier transform
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FIG. 4. Lower panel: evolution of the spatial probability density |Ψ(t)|2 with time
[see Eqs. (25) and (41)]. Upper panel: time-dependent electron flux FL0(t) through
the wire at longitudinal position zF in coincidence with the capture of electron
density in the left quantum dot’s ground state ∣L0⟩ for the case of LL = 2.83 a∗B .

the measured electron release in time to arrive at an energy depen-
dent flux profile FL0(E) [Eq. (38)]. The incident electron possesses an
initial energy distribution (depicted as a black dotted line in Fig. 5)
which is independent of the size of quantum confinement LL. How-
ever, the confinement size affects the available eigenenergies EL0

and EL1 into which the incoming electron can be captured. ICEC
allows the electron capture by transferring the excess energy to a
bound electron on the neighboring quantum confinement. This sec-
ond electron is being released, and the electron flux density FL0(E)
related to a capture into the ground state L0 can be measured in
dependence of the system energy E. Consequently, measuring the
electron flux density FL0 of ionization at occupied L0 is a direct mea-
sure for the inter-Coulombic electron capture and can thus be called
ICEC flux density in brief. The ICEC flux density is shown by a solid
red line belonging to the left ordinate in Fig. 5 for several quan-
tum confinement sizes LL. If ICEC works through direct impulse
transfer between the electrons, one observes an energy distribution
of the released flux density which is of the same character as the ini-
tial distribution. If ICEC goes through a two-center decay process
known as ICD, the measured electron flux density shows a Lorentz
shape. We find that both subprocesses contribute and can fit their

superposition to the measured electron flux density. The fit is shown
by a dark gray dashed-dotted line overlaying the measured electron
flux.

The capturing quantum confinement region in this study can
bind an electron to its ground state ∣L0⟩ or its excited state ∣L1⟩.
The interacting neighbor is initially charged in state ∣R⟩ of energy
ER between EL0 and EL1 . It has been discussed in Sec. II that this
energy transfer enabling capture into ∣L0⟩ leads to the ionization
of the partner electron initially bound in ∣R⟩. It was further shown
theoretically in Sec. II that electron capture into ∣L0⟩ can occur by
direct impulse from the incident electron onto the ionized partner
or by capture into an intermediate state where both electrons are
bound in their respective confinement before decaying by ioniza-
tion through a secondary ICD to a single bound electron in the
state ∣L0⟩. The ionization flux densities related to these subpro-
cesses depend differently on the energy of the system. We expect
the overall ICEC flux density FL0(E) as a function of the total
energy E of the system to show a superposition of both characteristic
contributions.

The initial conditions are determined by the energy density dis-
tribution of the incident electron and the bound electron in ∣R⟩. They
are kept constant, resulting in a constant overall initial energy distri-
bution DΨ0(E). The probability density of successful ICEC within
the infinitesimal energy range E. . .dE of the system is denoted by
PL0(E) and generally given by the ratio of ICEC flux density FL0(E)
by available initial energy density DΨ0(E) [see Eq. (30)]. Neverthe-
less, this definition can only be evaluated for energies with initial
energy density confidently larger than 0 where division by numer-
ically vanishing values can be avoided. The ICEC probability den-
sity PL0(E) ∶= FL0(E)/DΨ0(E) (shown as a blue dashed line with
an associated right ordinate) can be calculated within the signifi-
cant interval of DΨ0 to compensate for the dependence on the ini-
tial energy distribution. The ICEC probability density is dominated
by the contribution from direct impulse for large quantum con-
finements shown in the top left diagram for LL = 2.95 a∗B when
ICD lies outside the significant energy range. ICD grows and dom-
inates within the significant energy range as shown in the bottom
left and the top middle diagram for LL = 2.83 a∗B and 2.77 a∗B ,
respectively. As the confinement size is further reduced, the con-
tributions of ICD and direct impulse superpose constructively to
increase and broaden the probability density distribution shown for
LL = 2.72 a∗B in the middle bottom and LL = 2.54 a∗B in the top
right diagram. Narrowing the quantum confinement further tips
the ICD resonance energy beyond the energy of maximal energy
distribution which broadens the probability density considerably
but impedes its maximum as shown in the bottom right panel for
LL = 2.39 a∗B . Already for the discussed geometry with LL = 2.83 a∗B
in the bottom left panel of Fig. 5, we observe as expected a super-
position in the electron flux profile of a Breit-Wigner resonance
shape (left peak) and an energy distribution related to a normally
distributed momentum (right peak). The flux profile fits expec-
tations according to Eq. (38) (see Fig. 5, gray solid line beneath
the red one, left axis labels). As discussed, we can attribute the
Breit-Wigner or Lorentzian contribution according to Eq. (10) to
a decay process of an intermediate state which energetically bears
the energy signature of a double-electronic occupation of ∣L1R⟩ with
electron-electron correlation energy. We further find that the other
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FIG. 5. Electron dynamics results for the ICEC process are shown for different quantum dot confinement lengths LL with values 2.95 a∗B (top left), 2.83 a∗B (bottom
left), 2.77 a∗B (top middle), 2.72 a∗B (bottom middle), 2.54 a∗B (top right), and 2.39 a∗B (bottom right). ICEC ionizes a nearby bound electron by long-range energy transfer
while capturing the incident electron in energy level L0. This flux of ionization FL0 is measured (red solid line, ordinate scale on the left of each graph) and indicates two
subprocesses centered at different system energies. Accordingly, ICEC can occur by direct impulse between the captured and the ionized electron contributing to FL0 by a
Gaussian (contribution centered at −0.185E∗H clearly visible as a red line for LL above 2.72 a∗B , left panels and the middle top panel), or it can occur by electron capture
into an excited two-electron state with secondary ICD which contributes to FL0 with a Breit-Wigner profile (narrow contribution centered at different energies depending on
the quantum size effect and LL, clearly distinguishable for LL above 2.72 a∗B , left panels and the middle top panel; otherwise superimposed). A fit of this superposition of
both processes is shown as a dark gray dashed-dotted line in agreement with the measured flux (red solid line). In all cases, an incident probing wavepacket of Gaussian
shape is used with energy distribution density DΨ0 as a function of total energy E indicated by a black dotted line (absolute scale) constantly centered at −0.185E∗H .
The ratio PL0(E) = FL0(E)/DΨ(E) is indicated as a blue dashed line and the ordinate axis on the right-hand side of all graphs. It reflects the ICEC probability density
which is numerically well-defined for energy regions of significant incident electron density (−0.23E∗H ≲ E ≲ −0.12E∗H ). Note that the scale of the ICEC probability
density for the left panels is 2 orders of magnitude smaller than that for the other four graphs because the ICD resonance lies at the low-energy edge of the probing
wavepacket.

contribution coincides with the shape of the initial free wavepacket
according to Eq. (7).

While the panels of Fig. 5 show flux profiles for particular
confinement sizes, Fig. 6 compares their intensities and maximal
positions directly. As we pass through the geometries along decreas-
ing LL, the resonance energy for the ICD decay varies with the
quantum-size effect, while the wavepacket energy distribution is a
constant throughout our study (thin dotted lines in Fig. 5). As a
result, the F(E) maxima of ICD resonances lie at different ener-
gies than the wavepacket maximum but are modulated in maximal
intensity by the underlying shape of the wavepacket.

As the flux profile exhibits the usual quantum mechanical
superposition according to Eq. (38), we note the variation in com-
posed shape of the flux profile as the ICD resonance passes through
the contribution of direct impulse. As both energies get closer, the
process signatures become harder to distinguish as can be seen
from the last three panels of Fig. 5. As they overlap, the flux
profile appears to be of the Breit-Wigner shape at first glance in

accord with former predictions31 but remains a superposition of
both processes. Nevertheless, it is still numerically obvious that a
decay-describing Lorentzian function can only partially account for
the entire shape. We note that the impulse related contribution
exhibits a dispersed root-mean-square width with respect to the
initial minimum-uncertainty wavepacket which we attribute to the
time passed between the release of the initial wavepacket and the
impact on the initially bound electron. Last but not least, we observe
that for the extended range of confinement sizes above LL = 2.83 a∗B
(Fig. 3, top left), major contributions to the flux from the ICD sub-
process lie partially outside the confidence interval provided by the
initial energy distribution. The definition of the electron capture
probability equation (39) shown as a blue dashed line in Fig. 5 with
the ordinate on the right hand side is therefore of limited use in cases
where the flux maximum position differs largely from the energy
distribution maximum. As the capture probability partially encrypts
the signature of the probing wavepacket, so does to a lesser extent
the maximum of released electron flux density. In the overview of
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FIG. 6. The capture of an incident electron into ∣L0⟩ releases a nearby electron
initially bound to the state ∣R⟩ and is characterized by magnitude, shape, and
average energy of the ICEC ionization flux density FL0 (solid lines) as a function of
the total energy E and the size LL shown as consecutive set of curves. The dark
red curve with peak maximum Fmax

L0
= 5.5 %/E∗H barely visible at E = −0.215E∗H

(to the left) belongs to LL = 2.77 a∗B , and the second from the left with peak
maximum Fmax

L0
= 67.1 %/E∗H at E = −0.210E∗H belongs to LL = 2.72 a∗B .

With decreasing confinement sizes LL, the width of the ICEC flux profile FL0(E)
broadens and the peak moves gradually to higher total energies E. The dark blue-
violet curve second from the right with a peak maximum of Fmax

L0
= 33.4 %/E∗H

at E = −0.165E∗H belongs to a confinement size of LL = 2.15 a∗B and the very
right violet line with peak Fmax

L0
= 21.4 %/E∗H at E = −0.162E∗H belongs to LL

= 2.10 a∗B . The maximal peak in ICEC flux is achieved with Fmax
L0

= 379.4 %/E∗H
at E = −0.196E∗H for a confinement size of LL = 2.58 a∗B and shown in orange.
It is offset by −0.011E∗H to the maximum of the initial energy distribution DΨ0

which is indicated in absolute scale by the dashed black line with maximum at
E = −0.185 a∗B .

Fig. 6, we hence used F(E). In addition, in Fig. 3(d), we plot the elec-
tron flux density and its integral as a function of confinement size
LL. One can observe how ICEC becomes negligible outside a cer-
tain region of LL and corresponding energies E. For LL < 2.11 a∗B ,
no ∣L1⟩ level exists and this corresponds to flux maxima at larger
energies E > −0.16E∗H , whereas in the inverse case for LL > 2.77 a∗B
at energies E < −0.21E∗H the two ICEC pathways fail to overlay
in energy. In between, maximal fluxes are reached for energetically
overlapping channels which not only agrees with former results31

but also reveals further the detailed reason. Note that of all quanti-
ties ⟨V12⟩ and ∫FL0(E)dE in Figs. 3(b) and 3(d) align most closely
indicating that the flux probability follows tightly the Coulomb
interaction.

V. CONCLUSION
In this study, we investigated the quantum-size effect of inter-

Coulombic electron capture (ICEC) within an established linear
model of a nanowire. A free-moving electron is hereby being con-
fined into an embedded quantum dot through long-range energy
transfer onto a bound electron in a nearby confinement. We used
electron-dynamics computations to analyze the ionization flux den-
sity coinciding with a ground state population in the capturing quan-
tum confinement region. We were able to identify and distinguish
contributions of direct impulse and conversion of kinetic energy
to correlation energy with secondary intercoulombic decay (ICD).

The significant range of capturing quantum confinement sizes for
successful ICEC lies between 1.8 and 2.8 a∗B . For the established
system and its initial conditions, the maximal ICEC related ioniza-
tion flux density of 379.4 %/E∗H was found at a confinement size of
2.58 a∗B . The maximal overall ICEC related ionization flux of 2.85%
was found at a confinement size of 2.46 a∗B . It was found that ICEC
is very size-sensitive above the optimal confinement size where it
becomes highly energy selective. At the same time, it showed less
sensitivity for confinement sizes smaller than the optimum where it
was generally active for a broader range of incident electron energy
and was therefore less energy selective. The quantum confinement
size for the optimal ICEC probability density has thus been found
to be highly asymmetrical where the ICD resonance lies at slightly
lower energy than the group momentum of the incident electron.
Hence, the highest peak in ICEC probability density is 25.4 %/E∗H at
2.63 a∗B .

The optimal ICEC probability density lies within an energy
range where the incident kinetic energy and the energy of the excited
bound level negate each other. The optimal probability density is
found where ∣EL1 ∣ = εi − 1.5σ−ε in this study. It is yet unclear whether
this indicates a more general criterion for ICEC or a limitation in
resolution by the probing incident electronic wavepacket. Similarly,
the absolute “efficiency” of ICEC remains a multifaceted difficult
question considering a potential electronic device. While the depen-
dence on the initial energy distribution is taken out of the ICEC
probability density, the overall process efficiency remains depen-
dent on the initial conditions. The group velocity of the incident
electron will probably be controllable via voltage and current charac-
teristics of the particular device, but thermal effects as well as noise
from electrical contacts and the power source will limit the possi-
ble control over the energy distribution of the incident electron. In
that case, the overall ICEC efficiency may depend more strongly on
the width of the probability density function than on its particular
maximum.

While the ICEC related electron flux density has served well in
this study to distinguish between the reaction pathways and their
respective contributions at different quantum-dot sizes, its direct
relation to the ICEC probability density is less obvious. Its integral
which represents the total efficiency remains of less interest if the
incident wavepacket is chosen to be broadranged to probe a larger
region of energies. We thus intend to investigate energy relations
optimizing or restricting the ICEC probability density in a following
study.57 The first hint in that direction was already obtained here:
We numerically evaluated the size dependence of single-electron
eigenstates for the investigated confinement sizes, expectation val-
ues of electron-electron distance, and Coulomb interaction energy of
correlation-perturbed doubly bound two-electron states and found
that the Coulomb interaction and the integrated flux density follow
each other.
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