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HIGHLIGHTS:

 Multi-imaging single-shot velocimetry.

 Simultaneous determination of kinematic viscosity and transverse relaxation.

 Rewinding of velocity encoding gradients in each EPI enables long echo train acquisition.

ABSTRACT:

The ability of single-shot NMR imaging methods to follow the time evolution of a velocity distribution 

within an object is strongly limited by the phase errors accumulated as velocity maps are acquired. In 

the particular case of Carr-Purcell based sequences combined with Echo Planar Imaging acquisition, 

phase accumulates through subsequent images, hampering the possibility to acquire several velocity 

maps, which would be useful to determine transient behavior. In this work, we propose the use of a 

rewinding velocity encoding module applied after the acquisition of each image during the CPMG 

echo train. In this way, the first velocity module imparts a velocity dependent phase prior to the image 

acquisition and the second pair cancels this phase out before the next refocusing radiofrequency 

pulse is applied. The performance and limits of this method are studied by acquiring 100 images of a 

co-rotating Couette cell over a period of 1.6 seconds as a function of the rotation speed. The method 

is applied to determine the kinematic viscosity of a water/alcohol mixture, which is a relevant topic in 

many physical, chemical and biological processes.

1. Introduction

Magnetic resonance imaging (MRI) is a well-established method capable of measuring fluid 

motion in complex systems, such as those commonly found in medicine, biology, and engineering 

[1,2]. MRI is able to obtain spatially resolved velocity information in clear or opaque systems in a non-

invasive way without the need for optical access as in laser Doppler anemometry [3] or the use of 

tracer particles as in particle imaging velocimetry [4]. One of the drawbacks of MRI velocimetry is its 

relatively low time resolution compared with other velocimetry techniques [5–7]. This represents an 

important limitation when studying non-stationary systems with transient behavior. In the past years, 

great effort has been put into the development and optimization of fast MRI velocimetry techniques in 

order to reduce the required acquisition time and increase the accuracy of the methods to measure 

velocity [8–13]. Perhaps the fastest velocity imaging sequence yet introduced relies on the use of fast 
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low angle shot trains with sparse acquisition and compressed sensing reconstruction. By using fresh 

magnetization on each echo, individual velocity-encoded images can be acquired [14]. 

Most NMR velocimetry techniques combine a velocity encoding preparation period consisting 

of a pair of bipolar gradient pulses with a subsequent MRI acquisition module, where either a fast or 

a regular imaging technique can be employed, depending on the system under study [15,16]. From 

the available imaging sequences, Echo Planar Imaging (EPI) is one of the fastest techniques [17,18]. 

It was used for the first time to measure velocities in one direction by Firmin et al. [16]. Later, Kose 

proposed a method based on the acquisition of two consecutive EPI images to visualize turbulent 

flow and vortices in rotating samples [19] and circular pipes [20,21]. In order to measure two velocity 

components in the imaged plane in a one-shot experiment, Kose generated two spin echoes in the 

same excitation sequence and acquired one EPI image from each echo. By applying velocity 

gradients with different amplitudes along two perpendicular directions before the acquisition of each 

image, a phase shift proportional to the pixel velocity and the gradient amplitudes was defined for 

each image. By solving a set of two coupled equations, the two components of the velocity in each 

pixel were determined. Additionally, the magnitude of the image was shown to provide information on 

shear because of the signal loss due to a velocity distribution in each voxel [22,23]. 

A method suitable to determine the three velocity components using EPI was first introduced 

by Sederman et al. [24]. The so-called Gradient Echo Rapid Velocity and Acceleration Imaging 

sequence (GERVAIS) uses a train of 180º radiofrequency (rf) pulses to generate multiple echoes and 

acquires one image per echo. To determine the three velocity components, three images were 

acquired by applying velocity gradients along each direction prior to each image without phase 

rewinding after the image. Thus, the phase accumulated by previous images was subtracted 

mathematically. Additionally, the method requires a zero-flow image to be used as a reference image 

necessary to eliminate the systematic phase introduced by the imaging gradients. The method was 

later improved by acquiring a total of five images to generate a 3D velocity map. The so-called single-

shot-GERVAIS (ss-GERVAIS) sequence [25] acquires two images during the first two echoes without 

applying velocity gradients so as to generate two reference images that account for the phases 

introduced by the even-odd behavior in the CPMG sequence. Velocity gradients are applied prior to 
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the acquisition of the last three images without rewinding gradients, just as in the standard GERVAIS 

sequence. In order to produce a three-component velocity map from a single-shot experiment, the 

velocity phase shifts accumulated during the pulse sequence are mathematically treated during data 

post-processing to extract each individual velocity component. With this scheme, the flow field within 

a mobile droplet of oil was determined as it rose through a column of water. 

As ss-GERVAIS needs less than 100 ms to produce a full 3-component velocity map and the 

echo trains can last longer than a second (depending on T2), one could in principle measure a series 

of 3D maps from the same CPMG echo train. However, the fact that velocity gradients are not 

rewound before the generation of the next echo, gives rise to severe signal attenuation of images 

measured during the same echo train. This is so because the molecules contained inside each pixel 

have a small velocity distribution that generates a phase dispersion when successive velocity maps 

are collected. Additionally, in a general case, this velocity distribution enhances the phase dispersion 

via molecules migrating between pixels during the train. The absence of velocity-gradient rewinding 

also causes signal loss due to B1 inhomogeneity. Moreover, the loss of magnetization determined by 

the inability of the rf pulses to refocus the B0 inhomogeneity also affects the signal amplitude in the 

images. A similar situation was observed for sequences based on the RARE (Rapid Acquisition with 

Relaxation Enhancement) imaging module [26]. In this case, an alternative approach was introduced 

by Amar et al. [12], with the implementation of the Flow Imaging Employing Single-Shot Encoding 

(FLIESSEN) sequence, which accomplishes considerably higher tolerance to the maximum 

acceleration than a single-shot RARE sequence. This improvement was achieved by including 

rewinding velocity gradients after the acquisition of each echo. By updating the velocity information in 

each echo, a three-component velocity map of a levitating toluene drop was acquired in a single 

excitation experiment. Following the same principle, we present in this work a modified EPI 

velocimetry sequence where the velocity phase shift imparted by the velocity gradients applied before 

the image acquisition is removed immediately after it. This improvement to the standard EPI sequence 

enables studies of transient states as long as the system has long T2. We refer to this new technique 

as FLIESSEN-EPI.
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A velocity imaging method able to acquire a series of velocity maps is expected to find 

applications in the study of a non-stationary process. Additionally, it can be combined with rheological 

measurements to determine, for instance, shear banding instabilities [27]. For example, by measuring 

the velocity slow-down dynamics in a liquid system, the viscosity can be determined. When dealing 

with complex systems such as binary or micellar systems, viscosity renders useful information about 

the interactions of the mixture components on a molecular level. The viscosity of binary mixtures of 

water/alcohol has been thoroughly studied in the past [28–34] due to their wide range of applications, 

including fuel-cell technology, as solvents in industrial, environmental and pharmaceutical processes, 

and as model systems in bioscience among others. Due to the heterogeneity of the mixture at a 

molecular level, these solutions exhibit anomalous transport behavior. For example, it has been 

observed that the viscosity of water/alcohol mixtures assumes a maximum with a corresponding 

minimum for the diffusion coefficient for a particular composition [35]. This is due to hydration shells 

of water molecules surrounding the alcohol molecules, leading to the formation of clusters formed by 

hydrogen bonds [36,37]. 

In this work, we apply the new FLIESSEN-EPI sequence to measure the slow-down transient 

velocities of a water/alcohol mixture rotating in a Couette cell. The sequence was applied to acquire 

100 images during a single excitation. The accuracy of the method to produce 20 three-component 

velocity maps reconstructed during this single-shot experiment was first tested using a phantom. 

Finally, the method was applied to determine the kinematic viscosity of a water/alcohol mixture as a 

proof-of-concept.

2. Materials and methods 

2.1 Magnetic Resonance Imaging: The FLIESSEN-EPI sequence 

EPI schemes rely on the generation of a train of gradient echoes by reversing the sign of the 

read gradient pulses and sampling the phase direction from negative to positive values in a sequential 

way. By combining it with a velocity-encoding module applied prior to the imaging period, EPI has 

proven to be one of the fastest velocity imaging sequences with great performance to study transient 

states of rapidly changing systems. Figure 1a shows the ss-GERVAIS pulse sequence [25]. To 
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encode the three orthogonal velocity components, a block of five images is required [26]. The first two 

images are acquired for reference (without velocity gradients) for odd and even echoes, respectively, 

and velocity-gradient pulses are applied subsequently during the last three images (for the sake of 

simplicity Figure 1a shows only the first three). To enable the measurement of transient velocities, 

this block of five images needs to be applied repetitively in a CPMG pulse sequence where enough 

echoes can be generated to accommodate a large number of images. Figure 1b shows a scheme of 

FLIESSEN-EPI, where an extra pair of bipolar gradients is applied after each image acquisition. As 

the polarity of the second pair of velocity-gradient pulses is reversed, the phase spread proportional 

to the velocity of the spins imparted by the first pair applied before the imaging module is simply 

removed before the next 180º pulse. However, if the particle velocity varies with time, as is the case 

with particles in circular motion, a phase shift proportional to their acceleration is accumulated and 

passed on to the next image. 

Figure 1: (a) Modified ss-GERVAIS and (b) FLIESSEN-EPI pulse sequence schemes. The box indicates the 

number of repeated images, which is three in the case of three-component velocity encoding. This block of five 
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echoes may be repeated in order to determine transient velocities. (c) Schematic representation of the co-

rotating Couette cell used in the experiments. Both cylinders rotate at the same frequency.

The experiments presented in this work were carried out at 7.05 T field strength in an Oxford 

superconducting magnet operated with a Kea2 (Magritek GmbH) console. A 3D gradient coil system 

(Bruker GmbH) with a maximum gradient of 1.5 T/m was powered by a set of two dual channel 

Techron LVC5050 audio amplifiers. To excite and detect the NMR signal a 25 mm inner diameter 

birdcage rf coil and a 100 W Tomco radiofrequency amplifier were used. For all imaging experiments, 

the field of view was set to 25 x 25 mm2 and matrices of 32 x 16 points were collected, defining a 

resolution of 780 x 1560 µm2 per pixel. Velocity was encoded with bipolar gradient pulses of = 1 ms 𝛿 

duration and with an observation time of = 1.2 ms. ∆ 

The steady-state and the transient behavior of distilled water inside a co-rotating Couette cell 

were studied. Additionally, the FLIESSEN-EPI technique was applied to describe the transient 

velocities of a 52.7 % mol 2-propanol aqueous solution. The employed echo time for the water sample 

was 16 ms, leading to a total acquisition time of 80 ms to obtain a three-component velocity map. In 

the case of the 2-propanol aqueous solution, a frequency selective pulse of 3 ms duration was used 

to detect water protons only, and an echo time of tE = 18 ms was employed. 

2.2 Couette Cell 

Stationary and transient flow were studied in a custom build co-rotating Couette cell, see 

Figure 1c. Both concentric cylinders were made of acrylic, with the cell’s inner and outer radii being ri 

= 1.5 mm and ro = 7.9 mm, respectively. A home-made rotation transmission system was employed. 

The cell rotation is driven by a 0.5 HP triphasic engine whose rotational frequency and acceleration 

rates were controlled by a Sinamics G110 frequency inverter (Siemens) that can be either manually 

or remotely operated [38]. For transient flow experiments, the frequency inverter was triggered with a 

TTL signal from the NMR console, thus being synchronized with the MRI acquisition. The engine was 

located in a room adjacent to the superconducting magnet, and a horizontal drive shaft made of 

aluminum was connected to a vertical shaft that was attached to the Couette cell by a flexible steel 
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cord. The main reason to use a co-rotating Couette cell is that no instabilities are generated when 

both cylinders rotate at the same angular velocity, independent of the flow’s Reynolds Number [39], 

giving a linear pattern of velocities as a function of the radius, . This makes it an ideal 𝑣(𝑟) = 𝜔𝑟

phantom to test the performance of new velocity-encoding sequences in a wide range of angular 

velocities. For transient flow experiments, an acceleration of 1 rps/s and deceleration of 3.3 rps/s was 

employed for the start-up and the shut-down of rotations, respectively. 

2.3 NMR simulations 

NMR simulations were performed in MATLAB 2012b in order to examine movement related 

errors in the velocity maps obtained with the FLIESSEN-EPI sequence. The sample was rasterized 

using a 2D cylindrical grid, where each element was considered as a volume element with an 

associated magnetization vector. The total NMR signal at the echo maxima was then obtained by 

summation over all the grid points.

The program follows the magnetization evolution of each element of the grid during the 

application of the pulse sequence. In the rotating frame and with the detection frequency set on 

resonance, the magnetization vector of a volume element evolves under the influence of a magnetic 

field gradient , according to the following expression [1]:𝑮

𝑀 + (𝒓,𝑡) = 𝑀 + (𝒓,0) 𝑒 ‒ 𝑖𝛾𝒓 𝑮𝑡,

where  is the gyromagnetic ratio,  is the transverse component of the total 𝛾 𝑀 + = 𝑀𝑥 + 𝑖 𝑀𝑦

magnetization,  is the volume element position, and  is the time during which the gradient is applied. 𝒓 𝑡

Relaxation was included in calculations by means of exponential decays in the magnetization 

evolution. During the application of pulsed gradients and sequence time delays, the position of each 

volume element was constantly updated according to the fluid dynamics of the system, in this case, 

the tangential velocity of spins was set to be proportional to the angular velocity. 

Even though rf pulses were considered to be perfect rotations of the magnetization vector, two 

references, and three velocity-encoded images were recorded for all simulations, in order to compare 

the obtained results with experimental data. The relaxation time T2 was set to 2 s to match the 

experimental conditions, and the same timings as those used in the experiments were employed. 
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Longitudinal relaxation was not considered since all experiments start from equilibrium conditions. 

Phase cycling schemes were not applied as all experiments presented are single-shot 

measurements. 

2.4 Computational fluid dynamics 

Experimental results are contrasted with CFD calculations, from which the viscosity of the 

system can be determined. The numerical results were obtained by solving the lattice Boltzmann 

equation (LBE) [40–42], a particular phase-space and temporal discretization of the Boltzmann 

equation (BE) [43,44]. The BE governs the time evolution of the single-particle distribution function 

f(x, ξ, t) where x and ξ are position and velocity in phase space. In LBE, the variable x is discretized 

and takes values on a uniform grid (the lattice), while ξ is not only discretized but also restricted to a 

finite number Q of values [40]. In an isothermal situation and in the absence of external forces, like 

gravity, the LBE can be written as:

𝑓(𝒙 + 𝐜𝐢𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑓𝑖(𝒙,𝑡) + Ω𝑖,𝑗(𝑓𝑗(𝒙,𝑡) ‒ 𝑓eq
𝑗 (𝒙,𝑡)) ,  𝑖,𝑗 = 0, 1, …, 𝑄 ‒ 1. (1)

Here  is the -th component of the discretized distribution function at the lattice site x, time 𝑓𝑖 = 𝑓𝑖(𝒙,𝑡) 𝑖

t, and discrete velocity . The function is a discrete version of the equilibrium distribution  𝒄𝑖 𝑓eq
𝑗 (𝒙,𝑡) 

function [40] and Ω is a linearized collision operator. In our simulations, we use an MRT model 

(Multiple Relaxation Times) [45,46]. In this case, Ω can be written as , with  a   𝛀 = ‒ 𝐌 ‒ 𝟏𝐒 𝐌  𝑺

diagonal relaxation matrix. The so-called moments are defined by . In these |𝑚(𝒙,𝑡) >  ≡ 𝐌 |𝑓(𝒙,𝑡) >

new variables, the Eq. 1 becomes:

.𝑚(𝒙 + 𝒄𝛿𝑡,  𝑡 +  𝛿𝑡 ) >  = |𝑚(𝒙,𝑡) >  +  𝑺 (|𝑚(𝒙,𝑡) > ‒ |𝑚eq(𝒙,𝑡) > (2)

A time step in lattice Boltzmann methods (LBM) is typically divided into two parts, local 

collision, and the streaming process. If LBM-MRT is used, the collision is carried out using the 

moments, with Eq. 2, while the streaming is carried out using Eq. 1. At each time step, the 

macroscopic variables are recovered as:
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𝜌(𝒙, 𝑡) =
𝑄 ‒ 1

∑
𝑖 = 0

𝑓𝑖(𝐱,𝑡)  ,  𝜌𝒖(𝒙,𝑡) =  
𝑄 ‒ 1

∑
𝑖 = 0

𝒄𝒊 𝑓𝑖(𝒙,𝑡), 

(3)

where  and  are, respectively, the macroscopic fluid density and momentum.𝜌(𝒙,𝑡) 𝜌𝒖(𝒙,𝑡)

In this work, the numerical result is obtained using a quasi-incompressible D3Q19 LBM_MRT 

model (three-dimensional D=3 and Q=19 discrete velocities). The model parameters, such as 

relaxation times in S, transformation matrix M, and equilibrium moments  have been selected 𝑚eq(𝒙, 𝑡)

following those in [45]. The boundary conditions on the cavity boundary are imposed by applying a 

method known as bounce-back [47]. The bounce-back boundary condition allows us to set the spatial 

and temporal boundary velocity profile to represent the cavity walls’ rotation. To simulate the fluid 

problem, we use 100 lattice points along the cavity diameter, and 402 lattice points along the cavity 

major axis. 

 

3. Results and discussion

3.1 Comparison between ss-GERVAIS and FLIESSEN-EPI

In order to study the efficiency of FLIESSEN-EPI on the phase accumulation during a train of 

pulses, 100 images were acquired in the co-rotating Couette cell filled with distilled water, where 20 

three-component velocity maps can be calculated. The results from the FLIESSEN-EPI sequence are 

compared to the data acquired with ss-GERVAIS by using the same sequence timings. That is, 

instead of placing the velocity encoding gradient pulses around the 180º rf pulses as in the original 

publication, we use a pair of bipolar pulses prior to image acquisition in each echo. While the original 

ss-GERVAIS would require a slightly shorter echo time a negligible effect was observed. Figure 2a 

shows the first and last images acquired with a CPMG sequence from the static cell. The normalized 

intensity evolutions of different regions of interest are shown in Figure 2b, corresponding to pixels 

close to the inner cylinder (Px 1), the central region (Px 3) and the outer cylinder (Px 6). The 

performance of both sequences is very similar. The limiting factor is transverse relaxation, if for 

instance toluene was used, longer echo trains could be acquired. 
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When the cylindric cell rotates at 2 rps, the images produced with the ss-GERVAIS sequence 

become seriously degraded as the image number increases, while no appreciable distortions are 

observed for FLIESSEN-EPI (see Figure 2c). Figure 2d shows the intensity of Px 1, Px 3 and Px 6 

where it can be observed that for FLIESSEN-EPI the intensity of the last image decreases only from 

ca. 0.4 to 0.35. On the other hand, the echo train for ss-GERVAIS starts to degrade as of image 

number 10, which is clearly observed in the intensity drop of Px 6. The presence of the oscillation is 

due to uncompensated phases during the echo train. A period of 16 images is observed, which for 

this rotation speed corresponds to half of a complete turn. It must be pointed out that even for long 

echo trains, the signal is still above the noise level (0.1 compared to 0.005). The dependence of the 

signal loss with the velocity is more clearly observed in Figure 3, where the image intensity is plotted 

for seven pixels equally distributed along the x-axis going from the inner cylinder to the outer one at 

four times during the echo train. For the first echo (tE = 16 ms) both pulse sequences show similar 

signal intensities under static or rotating conditions, however, as the echo number increases, the 

signal amplitudes on the images produced by the ss-GERVAIS get more and more attenuated 

compared with the intensities on the images produced with the FLIESSEN-EPI. This signal loss gets 

more pronounced for pixels at larger radii, where the velocities are higher.
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Figure 2: (a) Comparison of the signal intensity for images 1 and 100 (FOV = 25 × 25 mm2 and resolution of 

781 × 1560 m2) acquired with ss-GERVAIS and FLIESSEN-EPI pulse sequences without motion and (c) with 

the Couette cell rotating at 2rps. (b) Normalized signal intensities for three representative pixels, Px 1 close to 

the inner cylinder, Px 3 in the central region, and Px 6 close to the outer cylinder for static and (d) rotating 

conditions. 
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Figure 3: Signal intensities of the seven pixels marked in Fig. 2 plotted for four different echoes along the echo 

train, corresponding to echo times of 16 ms, 320 ms, 400 ms, and 1280 ms, respectively. Open symbols refer 

to pixels of images acquired with FLIESSEN-EPI and ss-GERVAIS with a static Couette cell, while solid symbols 

refer to a 2 rps rotation frequency. The velocities are 19.6 mm/s for Px 1, 29.4 mm/s for Px2, 39.3 mm/s for Px 

3, 49.1 mm/s for Px 4, 58.9 mm/s for Px 5, and 68.7 mm/s for Px 6.

3.2 Errors in the velocity encoding

One of the main questions addressing the performance of the sequence refers to the errors 

expected in velocity determinations with FLIESSEN-EPI. To answer this question, we first center our 

attention on the performance of the sequence as a function of the rotation rates for a single block of 

5 images. Figure 4a shows maps of the velocity components along the x, y and z directions for the 

water-filled Couette cell where inner and outer cylinders rotate at 2 rps. To ensure a steady-state 

rotation, the sample was set in movement 5 minutes before performing the measurement. The 

velocities along the x and y directions depend linearly on the spatial coordinates, while small velocities 

along the axial direction are observed, as expected. The obtained minimum and maximum velocities 

in the x-y plane (19.2 mm/s – 98.1 mm/s) agree within 1% with the expected values determined by 

the cell dimensions. It is worth mentioning that the results shown in Figure 4 are obtained in a single-

shot experiment with a total experimental time of 80 ms. Figure 4b shows the 1D velocity profiles 

along the x-axis of the Vy maps. The rotation frequency calculated from the slope of the data shown 

in Figure 4b agrees with the expected value for three different rotation speeds, as shown in Figure 

4c. The velocity of the fluid between the inner and outer walls is measured with good accuracy for 8 

pixels even when the pixels closest to the cell wall have a much lower signal intensity than the rest, 

as that volume is shared by water and the cell material (see Figure 2a).
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Figure 4: (a) Velocity component maps along the three orthogonal directions measured by the FLIESSEN-EPI 

sequence for water confined in a Couette cell where inner and outer cylinders co-rotate at 2 rps. (b) 1D velocity 

profiles along the x-axis extracted from the y-velocity maps (direction marked as a white solid line on the Vy 

map). As expected, the velocity of the pixels along the x-axis increases linearly with the radius. (c) Rotational 

frequency (rps) calculated from the experiments.

3.3 Velocity encoding during long imaging trains

The study of transient phenomena requires the use of rapid acquisition techniques able to 

accurately map the velocity in the system in real time. To achieve this, we incorporated the concept 

of phase rewinding after the acquisition of each image in the FLIESSEN-EPI sequence presented in 

this work. To update the velocity encoding at each echo, two inverse pairs of bipolar gradients are 

applied. The first one is applied before the acquisition of the image to encode the velocity information, 

and the second one is applied after the acquisition of the image to remove the velocity phase encoded 

by the first one. Although the second pair of bipolar gradients refocuses the velocity phase shift 

inscribed by the first pair, a residual phase due to the acceleration of molecules remains and is carried 

over to the acquisition of the next echo. For our particular setup, 100 images were acquired. During 

this time the signal decays to approximately one-third of its initial value. The limiting factor to acquire 

a large number of images with FLIESSEN-EPI is T2.

Twenty sets of 5 images were acquired in a single excitation experiment taking a total 

acquisition time of 1.6 seconds. During this time the sample was rotating continuously at a constant 

rotation rate of 2 rps. Five profiles along the x-axis extracted from the y-velocity maps at different 
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times along the sequence are shown in Figure 5a. The velocity profiles remain constant within 

experimental error as the acquisition of the velocity maps progress during the echo train. The average 

standard deviation for the velocity maps acquired at a rotation speed of 2 rps is about 7%. The 

experiments revealed that the FLIESSEN-EPI sequence is suitable for the measurement of three-

component velocity maps at a rate of 12.5 frames per second, with a tolerable accumulation of errors 

for this rotation speed. In order to account for velocity errors, the y-velocities encoded in a finite 

volume element close to the outer wall along the x-axis was simulated for a rotational speed of 2 rps 

(Figure 5b), following the description given in Section 2.3. The velocity Vy  was calculated as a function 

of the time during the pulse sequence for the volume element whose position is x = ro and y = 0 and 

it was normalized to the maximum calculated value. As this is a simulation the only expected source 

of errors comes from the acceleration, which causes imperfect phase removal at the end of each echo 

time.  During the evolution of the sequence, the signal at the particular pixel of interest generates from 

voxels with different starting points and different trajectories. As the molecules rotate in a periodic 

motion inside the cell, the acceleration is a periodic function too, so the phase errors accumulated 

during the sequence will add and subtract cancelling each other as the maps are acquired. In this 

way, oscillatory errors are observed. We defined as  the peak to peak velocity error (shown by the 𝜀

dashed lines in Figure 5b) and plotted  as a function of the rotational speed in Figure 5c. The result 𝜀

shows that  grows with the applied rotation rate due to the increasing impact of acceleration, which 𝜀

is not compensated by this sequence. For the present setup we found that if an error of about 5% is 

tolerated then the maximum velocities that the sequence can correctly map can go up to 100 mm/s. 
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Figure 5: (a) Velocity profiles extracted from the velocity maps encoded along the y-direction at different times 

during the sequence: 64 ms (solid squares), 384 ms (empty squares), 784 ms (solid circles), 1184 ms (empty 

circles) and 1584 ms (solid triangles) for a rotation speed of 2 rps. (b) Simulation of the velocity of the volume 

element closest to the exterior wall of the Couette cell (Px 6), normalized to its maximum velocity, for 2 rps, as 

a function of the elapsed time during the proposed pulse sequence. (c) The percentage error in the simulated 

velocity as a function of the applied rotational frequency and the theoretical maximum velocity Vmax for different 

rotation speeds, ranging from 0.5 to 3 rps.

3.4 Flow dynamics during rotations start-up

We start by studying the transient dynamics for the rotation start-up of distilled water inside 

the co-rotating Couette cell. In all experiments, the engine start was triggered by the NMR console to 

a value of 2 rps, and a variable delay was used before the determination of a single set of three-

component velocity maps, comprising the acquisition of five images. The experimental results are 

compared to numerical flow simulations. In this way, the data in Figure 6, which show half of the cell, 

are the result of five independent experiments. Flow profiles obtained with the FLIESSEN-EPI 

experiments are shown in Figure 6a, where a steady state is accomplished after 12 seconds; the grey 

areas represent the inner and outer cell walls. Figure 6b shows the results obtained with numerical 

flow simulations as described in section 2.4, which is in excellent agreement with the experimental 

data. The following fluid properties were used: kinematic viscosity and 𝜈 = 1 × 10 ‒ 6 m2/s  𝜌 = 1000
kg
m3

 For short delays, on the order of hundreds of milliseconds, the start-up impulse gives rise to a .

growing velocity of the fluid in contact with the Couette-cell walls. A stationary linear velocity 

distribution is reached after several seconds. It must be kept in mind that the ability of EPI-based 

sequences to produce images in just tens of milliseconds comes at the expense of spatial resolution. 

It can be observed that for the voxel corresponding to the minimum radius, the velocity is not 

accurately described until the first second. Similar results were obtained by Davies et al. [48], where 

a steady state was reached after a 5 seconds delay time, in which a Couette cell of smaller dimensions 

was employed.    
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Figure 6: (a) Experimental and (b) simulated y-velocity profiles for positive values of x position, after the start-

up of the motor rotations for different experiments with varying waiting times: 0.8 s (solid triangles), 1 s (empty 

circles), 3 s (solid circles), 5 s (empty squares) and 12 s (solid squares). The grey areas represent the cell walls.

3.5 Flow dynamics during rotations turn-down. Viscosity determination.

We now turn our attention to the study of the response to the cessation of rotations. As the 

characteristic time of a deceleration experiment is on the order of two seconds, the FLIESSEN-EPI 

sequence is a suitable tool to study this process in a single-shot experiment. Measurements of 100 

images, generating 20 three-component velocity maps were carried out, with a total observation time 

of 1.6 s. In the first stage, distilled water was employed. After turning on the engine, the sample was 

sheared for 5 s before the deceleration experiments were carried out. As in the previous experiments, 

the engine turn-on and shut-down were controlled by the NMR console ensuring the synchronization 

of image acquisition with the engine shut down. In order to reduce mechanical instabilities, the 

rotations were turned off with a ramp of 3.3 rps/s. Experimental results are shown in Figure 7a and 

numerical simulations in Figure 7b. Similar to the start-up of rotations, the liquid in contact with the 

cylinders is the first to respond and stops its movement immediately, while the water in the cell’s 

center continues moving up to 1.6 s after the cylinder rotations have stopped. Good agreement 

between simulated and experimental data is observed, demonstrating the capability of this technique 

to obtain valuable information about transient behavior, in a single-shot measurement.  



JO
URNAL P

RE-P
ROOF

JOURNAL PRE-PROOF

18

One of the main methods used to obtain information on solute-solvent interactions is 

viscometry. The particular thermodynamic and physical properties of water/alcohol mixtures are 

mainly due to the internal solution structure. When dissolved, alcohol molecules locally disrupt the 

tetrahedral water structure, resulting in a growth of the viscosity of the water/alcohol mixtures. Water 

molecules tend to organize around alcohol through hydrogen bonds, forming fairly regular cages 

[30,31]. 2-propanol was recently found to have a greater influence on the water viscosity as a function 

of alcohol concentration than ethanol [31]. In order to show that the proposed technique can be also 

used for the indirect measurement of the viscosity, a 2-propanol aqueous solution of 52.7% mol and 

82.5% volume concentration was employed. The dynamics after turning down the rotations were 

studied through the acquisition of 100 images, resulting in 20 three-component velocity maps, with a 

total observation time of 1.8 s. Figure 7c reports the experimental results, where the velocity profiles 

show the expected deceleration patterns, with a faster decrease near the wall. The maximum velocity 

for the water/2-propanol mixture 1.6 s after the stopping the motor rotations is about 20 mm/s, while 

water shows a velocity of approximately 45 mm/s at the same time. This is due to the increase in the 

viscosity when alcohol is dissolved in water.
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Figure 7: (a) Experimental and (b) simulated y-velocity profiles for water during the shut-down of the motor 

rotations at different times during the pulse-sequence acquisition: 64 ms (solid squares), 304 ms (empty 

squares), 544 ms (solid circles), 1184 ms (empty circles) and 1584 ms (solid triangles). (c) Experimental and 

(d) simulated velocity profiles in the y-direction for the 2-propanol aqueous solution during the shut-down of the 

motor rotations at different times during the pulse sequence acquisition: 72 ms (solid squares), 342 ms (empty 

squares), 522 ms (solid circles), 1242 ms (empty circles) and 1602 ms (solid triangles). 

For a similar 2-propanol aqueous solution, Kuchuk et al. [31] reported a dynamic viscosity of 

approximately  Pa.s, and a density value of 850 kg/m3 for 80% of 2-propanol   η = 3.2 x 10 ‒ 6 ρ =  

volume concentration, resulting in a kinematic viscosity of m2/s. Numerical simulations 𝜈 = 3.8 × 10 ‒ 6 

for a fluid with a kinematic viscosity m2/s and  are shown in Figure 7d. The 𝜈 = 3.8 × 10 ‒ 6 𝜌 = 850
kg
m3

residuals of the difference between experimental and simulated data were minimized, rendering the 
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reported value of kinematic viscosity, with an error lower than 15%. The dependence of the simulation 

results on the fluid density proved to be very low. The water and alcohol measurements were 

compared by plotting the maximum velocity of each profile as a function of time (Figure 8) for 

experimental and simulated data. The difference in the velocity decay between both fluids is clearly 

observed through the change in the slope of the maximum velocities. Further analysis and 

optimization of the fitting routine and experimental protocol to optimize the field of flow, maximum 

initial velocities and other relevant parameters is beyond the scope of this work and will be reported 

elsewhere. 

Figure 8: Maximum velocity as a function of time for water (solid squares) and a 2-propanol aqueous solution 

(empty squares). The solid lines correspond to the maximum velocities obtained with numerical simulations. 

Excellent agreement between experimental and simulated data is observed for both fluids.   

4. Conclusions

In this work, we presented the FLIESSEN-EPI sequence and demonstrated its use for 

acquiring velocity maps in transient states. Two opposite pairs of velocity encoding bipolar gradient 

bracket the spatial encoding in an EPI sequence, in order to minimize the residual motion-induced 

phase prior to the following refocusing pulse. By refreshing the velocity encoding in each echo, long 

trains of echoes could be acquired. In this work, we were able to record transient velocities with up to 

100 images, comprising a span of 1.6 seconds. Additionally, with the aid of numerical simulations, we 

showed that the system response can be accurately measured to determine the viscosity of a mixture 
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of water/alcohol. This tool, in combination with diffusion and relaxation experiments, may prove very 

useful to fully characterize liquid mixtures with a single experimental setup.
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