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Acid-mediated tumor invasion as a function of nutrient source location
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Cancer cells have an altered metabolism that increases acid production driving to an extracellular pH
significantly lower than normal. This leads to normal cell death, and extracellular matrix degradation allowing
the formation of an interstitial gap between cancer and healthy cells. In this work, we present a mathematical
model to study the interstitial gap formation and evolution considering a tissue with a non-uniform nutrient
distribution. Our results indicate that the interstitial gap onsets at the region with highest nutrient consumption.
Due to the gap formation, cancer cells near the interface have more nutrient and space availability. This induces
cancer cell reproduction and migration toward the nutrient source. Our simulations suggest a strong correlation
between gap size and the distance to the nutrient source. Although we do not find a correlation between tumor
growth speed and gap size, our results indicate a high risk of metastasis for tumors that develop an interstitial
gap, emphasizing the importance of gap detection as a hallmark for cancer invasion.
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I. INTRODUCTION

It is well known that cancer cells have an altered
metabolism. Warburg was the first who observed that can-
cer cells use the glycolytic pathway, rather than oxidative
phosphorylation, despite sufficient oxygen supply [1]. This
phenomenon is known as the “Warburg effect”. Although
anaerobic glycolysis is very inefficient, since the adenosine
triphosphate (ATP) production per molecule of glucose is
significantly lower compared to the normal oxidation pathway
[2], the acid-mediated tumor invasion hypothesis considers
the Warburg effect as a cancer cell advantage. This is because
the Warburg effect increases acid production in tumor cells
driving to an extracellular pH significantly lower than normal
[3]. This leads to normal cell death, and extracellular matrix
degradation, that would enhance cancer cell migration and
invasion capabilities.

Gatenby and Gawlinski were the first who studied the acid-
mediated invasion hypothesis considering a reaction-diffusion
differential equation system [4]. They found that an interstitial
gap between cancer and healthy cells is established for ag-
gressive tumors. This initial model was the starting point for
more generalized models considering, for instance, the early
stages of cancer growth [5], cooperative interaction between
tumor and stromal cells [6], and acid-mediated tumor cell
death [7]. In general, the presence of a gap at the tumor-host
interface is related with aggressive tumors and this gap is a
consequence of high acidity levels. However, Ref. [6], states
that, in some cases, increasing tumor acidity may prevent
tumor invasion. To understand how this tumor-host interface
is related with tumor progression and the lactate production
has a huge diagnostic potential.

In general, most of the mathematical models consider
homogeneous environment or well-mixed cells [8]. However,
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the effect of inhomogeneities may change tumor shapes and
invasion capabilities [8–11]. In this work, we generalized our
previous model [12] including new rules to introduce acid
production. One of the key characteristics of our approach
is the non-uniform nutrient distribution, since we consider
only one blood vessel at the bottom of the network. Our
results suggest that an interstitial gap is generated along the
tumor-host interface and its size is strongly correlated with
the distance to the nutrient source. Although we do not find a
strong correlation between gap size and speed of growing, the
presence of a gap suggest highly aggressive tumors in terms of
larger metastatic spread probabilities, because there is a clear
privilege direction of growing toward the blood vessel, even if
there is enough free space in other regions of the tumor.

II. THE MODEL

We consider the cancer growth model presented in
Refs. [12,13] for describing avascular tumor growth. In this
model the tissue is represented by a network in which each
point is associated with a volume element that contains many
cells, nutrient molecules and excess of H+ ions. Healthy,
cancerous, and dead cells coexist at each node point, their
concentrations being denoted by h(�i, t ), c(�i, t ), and d (�i, t ),
respectively. The extra-cellular matrix degradation is repre-
sented by the presence of cell free space, which we denote
by e(�i, t ); since for each node, the total concentration is
considered to be uniform and normalized, the normalization
equation is generalized to h(�i, t ) + c(�i, t ) + d (�i, t ) + e(�i, t ) =
1. Cancer cells produce an excess of H+ ions while they
consume nutrients due to their aerobic glycolytic metabolism.
The acid diffuses in the tissue with diffusion coefficient αW

and has a constant rate of degradation, dW . The excess H+
ion concentration at the �i-node is denoted by W (�i, t ). For
simplicity, we consider a single critical nutrient which diffuses
through the tissue, with diffusion coefficient α′. We call it free
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nutrient and denote its concentration at the �i-node by p(�i, t ).
Free nutrient is absorbed by the healthy cells at rate γ0.

The rules governing cancer growth are as follows:
R1. Feeding. Free nutrient is absorbed by cancer cells

and converted into bound nutrient. The absorption rate is
proportional to p(�i, t ) at low free nutrient concentrations and
it saturates to a constant value, γas, at high concentrations (see
Ref. [14]). We model the absorption rate by

γ (�i, t ) = γas(1 − e−p(�i,t ) ).

This rule only modifies free and bound nutrient concentrations
as follows:

p(�i, t ) →p(�i, t ) − τγ (�i, t )c(�i, t ),

q(�i, t ) →q(�i, t ) + τγ (�i, t )c(�i, t ),

where q(�i, t ) is the bound nutrient concentration and τ the
time step.

R2. Consumption. Bound nutrient is consumed by �i-node
cells at the rate

β(�i, t ) = βas(1 − e−q(�i,t )/c(�i,t ) ),

where the denominator c(�i, t ) has been included in the ex-
ponent because each cell can consume only its own bound
nutrient. In order to model the effect of an aerobic glycolytic
metabolism, an excess of H+ ions is produced with rate
γW β(�i, t ), when cancer cells at the �i-node consume nutrients.
Thus

q(�i, t ) →q(�i, t ) − τβ(�i, t )c(�i, t ),

W (�i, t ) →W (�i, t ) + τγW β(�i, t )c(�i, t ).

R3. Cancer cell death. If the average amount of bound
nutrient per cell, q(�i, t )/c(�i, t ), is below a given threshold QD,
a fraction rDc(�i, t ) of cancer cell dies. Cancer and dead cell
populations are modified by

c(�i, t ) →c(�i, t )(1 − rD�(c(�i, t )QD − q(�i, t ))),

d (�i, t ) →d (�i, t ) + rDc(�i, t )�(c(�i, t )QD − q(�i, t )),

where �(x) is the Heaviside’s step function and rD is a
constant.

R4. Healthy cell death. If the excess H+ ion concentration
is above a given threshold QW , a fraction rW h(�i, t ) of healthy
cells dies. We assume that they die by activating their apop-
totic pathways; thus, they can be absorbed, [15], and cell free
space is generated by increasing e(�i, t ). The corresponding
equations are

h(�i, t ) →h(�i, t )(1 − rW �(W (�i, t ) − QW )),

e(�i, t ) →e(�i, t ) + rW h(�i, t )�(W (�i, t ) − QW ),

where rW is a constant.
R5. Mitosis. If the average amount of bound nutrient per

cell is above a given threshold QM (QM > QD), the concentra-
tion of cancer cells may increase up to rMc(�i, t ) depending on
the space availability, where rM is a constant. If e(�i, t ) = 0 we
should recover the Refs. [12,13] mitosis rule. If e(�i, t ) �= 0,
new cancer cells fill the available free space before replacing

healthy cells. Thus, when mitosis rule has to be applied at the
�i-node, cell free space is reduced by a fraction

g(�i, t ) = e(�i, t ) + (rMc(�i, t ) − e(�i, t ))�(e(�i, t ) − rMc(�i, t )).

If e(�i, t ) < rMc(�i, t ), cancer cell concentration may still in-
crease up to rMc(�i, t ) − e(�i, t ) by replacing healthy cells.
Thus, a fraction,

f (�i, t ) = h(�i, t ) − h(�i, t )�(e(�i, t ) − rMc(�i, t ))

+ (rMc(�i, t ) − e(�i, t ))�(h(�i, t ) − (rMc(�i, t )

− e(�i, t )))�(rMc(�i, t ) − e(�i, t )),

of healthy cells is transformed into cancer cells. If e(�i, t ) �
rMc(�i, t ) the last term in the above equation is zero and
f (�i, t ) = 0; it means that the cell free space available at node
�i has been enough to contain all the new cancer cells. If
e(�i, t ) < rMc(�i, t ), the second term in the f (�i, t ) expression
is zero and f (�i, t ) takes the minimal value between h(�i, t ) and
rMc(�i, t ) − e(�i, t ). The equations after applying mitosis rule
are as follows:

c(�i, t ) →c(�i, t ) + (g(�i, t ) + f (�i, t ))�(q(�i, t ) − c(�i, t )QM ),

e(�i, t ) →e(�i, t ) − g(�i, t )�(q(�i, t ) − c(�i, t )QM ),

h(�i, t ) →h(�i, t ) − f (�i, t )�(q(�i, t ) − c(�i, t )QM ).

R6. Migration. If the average amount of free nutrient per
cell, p(�i, t )/c(�i, t ), is below a migration threshold, PD, cancer
cells at the �i-node migrate to its neighbor nodes. If there is
cell free space availability at the destination node, this can be
filled by cancer cells. However, we still assume that healthy
cells may be eliminated when cancer cells arrive, since healthy
cells are less mobile and aggressive than cancer cells, in
such a way that the total cell concentration is preserved, as
in Refs. [12,13]. In other words, if there is no enough free
nutrient, cancer cells at the �i-node migrate to its neighbor
nodes with migration coefficient α if either cell free space
or healthy cells are present at the destination node. The
corresponding equations for this rule are

c(�i, t ) → c(�i, t ) + τ

�2

⎡
⎣(h(�i, t ) + e(�i, t ))

∑
�i′

α̃(�i′, t )c(�i′, t )

−α̃(�i, t )c(�i, t )
∑
�i′

(h(�i′, t ) + e(�i′, t ))

⎤
⎦,

e(�i, t ) → e(�i, t ) + τ

�2

⎡
⎣α̃(�i, t )c(�i, t )

∑
�i′

e(�i′, t )

−e(�i, t )
∑
�i′

α̃(�i′, t )c(�i′, t )

⎤
⎦,

where α̃(�i, t ) = α�(PDc(�i, t ) − p(�i, t )), � is the spatial dis-
cretization, and healthy cell concentration may be computed
from the conservation equation. Cancer cell migration de-
pends not only on the local diffusivity but also on the state
of the target site.
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R7. Mobility. Since the presence of cell free space reduces
the pressure, we assume that a fraction of cancer cells may
invade the cell free space at their neighbor nodes. Thus, a
node with cell free space could be filled out with cancer
cells with a probability p f by choosing a random number
of cancer cells, rc, from a neighbor node, that is also chosen
randomly. The random number rc is a number between 0 and
min(e(�i, t ), c(�i′, t )), where �i- and �i′-nodes are neighbor nodes.
The parameter p f is also related with cancer invasion, in the
sense that the greater p f the more invasive the tumor. Thus

e(�i, t ) →e(�i, t ) − rc�(r − p f ),

e(�i′, t ) →e(�i′, t ) + rc�(r − p f ),

c(�i, t ) →c(�i, t ) + rc�(r − p f ),

c(�i′, t ) →c(�i′, t ) − rc�(r − p f ),

where r is a random number between zero and one and the
�i′-node is only one of the �i-node nearest neighbors, that has
been chosen randomly. Rule R7 differs from rule R6 because
the last considers cancer cell migration due to a low nutrient
concentration, while rule R7 only takes into account local
space availability.

As we show, implementation of these rules generates a set
of nonlinear difference equations. Iteration equations for the
evolution of free nutrient and excess H+ ion concentrations
are given by

p(�i, t + τ ) →p(�i, t ) + τ

⎡
⎣∑

�i′

α′

�2
(p(�i′, t ) − p(�i, t ))

− γ0 p(�i, t )h(�i, t ) − γ (�i, t )c(�i, t )

⎤
⎦,

W (�i′, t + τ ) →W (�i′, t ) + τ

⎡
⎣∑

�i′

αW

�2
(W (�i′, t ) − W (�i, t ))

+ γW β(�i, t )c(�i, t ) − dW W (�i, t )

⎤
⎦,

respectively.
In the next section we detail initial and boundary condi-

tions, as well as, the implementation of this model. In this
work, we consider an inhomogeneous distribution of free
nutrient. This allows us to analyze cancer cell behavior with
different local scenarios and since excess H+ ion concentra-
tion is correlated with the consumption of cancer cells, its
production would also be affected by local conditions.

III. RESULTS

In this work we represent the tissue of interest by a two-
dimensional grid (N × M), with lattice constant � and node
points �i = (i�; j�), with i = 0, 1, . . . , N and j = 0, 1, . . . , M.
The nutrient is supplied by a single capillary vessel situated
at the lower edge of the lattice. The nutrient concentration
in the blood vessel is constant, p((i�; 0), t ) = P0, with i =
0, 1, . . . , N . Periodic boundary conditions are used for the

TABLE I. Numerical values of computational parameters.

Symbol Unit Value References

� μm 33
τ h 0.001
P0 Mm 5.5 [19]
α′ cm2/h 0.001 [16,20]
γ 1/h 0.002 [16,21]
γas 1/h 200 [21,22]
βas 1/h 5 [23]
α cm2/h 8.3 × 10−8 [24,25]
αW cm2/s 5 × 10−6 [17]
dW 1/s 10−4 [4]
γW 0.7 Estimated

left and right boundaries, and absorbing conditions for the
upper boundary. Absorbing conditions are also considered for
cancer cell and excess H+ ion concentrations at the lower
boundary, due to the presence of the blood vessel. Initially we
consider a healthy tissue with stationary nutrient distribution.
At t = 0 a cancer seed is placed at the center of the lattice,
and the tumor evolution starts.

At t = 0 a tumor starts growing at the center of a com-
pletely healthy tissue. On the basis of our previous work [12]
the temporal discretization was chosen to be τ = 0.001h. Cell
growth and division are regulated by the cell cycle. The cell-
cycle duration is approximately 12 h in exponentially growing
monolayer cultures [16]. Therefore, we inspect the threshold
QM every 12000 steps. We also implement rules R3–R7 every
12000 steps.

Our two-dimensional grid represents a slab of tissue of
size 2 cm × 1 cm, and we take N = 600 and M = 300. The
values for most of the parameters that are related with nu-
trient diffusion, cancer and healthy cell consumption, cancer
cell death, mitosis, and migration, were already discussed
in Ref. [12]. Based on Refs. [4,17], the parameter values
corresponding to αW and dW were taken as 5 × 10−6 cm2/s
and 10−4/s, respectively. The parameter γW was estimated in
order to obtain concentration of W similar to those reported in
Ref. [18]. Although Table I summarizes the reference values
of the parameters used in most of the simulations, we have
also explored the effects of variations in some of them. Most
of the parameters related with cancer growth without consid-
ering acid production were fixed, and we focus on the effects
of changing the parameters related with cancer cell migration
as well as acid diffusion and production. In particular, α, αW ,
γW , and p f are specified for each figure.

Figure 1 shows snapshots of growing tumors, including
live and necrotic cells, 90 days after seeding for p f = 0.5, α =
8.3 × 10−8 cm2/h, and (a) αW = 5 × 10−6 cm2/s, γW =
0.7; (b) αW = 5 × 10−6 cm2/s, γW = 0.9; and (c) αW = 2 ×
10−6 cm2/s, γW = 0.7. At a given time, the gap between
cancer and healthy cells will be formed by all the nodes for
which neither healthy nor cancer cells are present; those nodes
are represented by black points in panels (d), (e), and (f).
In other words, each of the lower panels of Fig. 1 show the
gap between cancer and healthy cells for the corresponding
upper panel. If we fix all the parameters and only increase
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FIG. 1. Snapshots of growing tumors and interstitial gap, 90 days after seeding for pf = 0.5, α = 8.3 × 10−8 cm2/h, and αW = 5 ×
10−6 cm2/s, γW = 0.7, (a) and (d); αW = 5 × 10−6 cm2/s, γW = 0.9, (b) and (e); αW = 2 × 10−6 cm2/s, γW = 0.7, (c) and (f). Scale color:
for upper panels, white color corresponds to c(�i) + d (�i) = 0 and black color corresponds to c(�i) + d (�i) = 1; for lower panels, black color
corresponds to c(�i) = d (�i) = h(�i) = 0.

γW , the tumor produces more acid, thus healthy cells are more
affected. On the other hand, if all parameters are fixed, but
αW decreases; acid diffusion is slower. Thus, there is a local
increasing in the acid concentration. In this sense, simulations
with a larger γW or smaller αW have the same effect: in
both cases the local concentration of W increases. Due to
the asymmetric distribution of nutrient, there is more local
nutrient availability on the lower half of the tissue; and thus
more local W production. This is the reason why the gap starts
at the bottom of the tumor. Depending on W production and
diffusion the gap could surround all the tumor, but still, in gen-
eral, it does not show an uniform width. In this model, nutrient
and space competitions play an important role; when healthy
cells are killed, there is more space and nutrient availability.
In particular, cancer cells near the gap can consume and
migrate more than those in the same conditions, but without
considering acid production. Our simulations indicates that
tumors clearly show a privilege direction of growing toward
the blood vessel, even if the gap is present around all the tumor
boundary. In order to analyze this, we define the mean tumor
radius as R = 〈r〉 = (1/N )

∑N
i=1 ri, where the sum is over the

N nodes at the tumor edge and ri is the distance from node
point �i to tumor center of mass. We also define the minimal
(maximal) distance from the tumor to the vessel as jmin�

( jmax�), where jmin ( jmax) is such that c((i�; jmin�), t ) �= 0
[c((i�; jmax�), t ) �= 0] for some i, and c((i�; j�), t ) = 0 for
all i and j < jmin ( j > jmax). With the same procedure, imin

and imax are also defined. In order to compare results with
and without acid production, the sub-index zero will be used

to identify realizations without considering acid production.
Figure 2(a) shows the ratio between R and R0 versus time
for the realizations that have been shown in Fig. 1(a) dotted

FIG. 2. Ratio between tumor radii with and without considering
lactate production, (a). Ratio between minimal (black), and maximal
(gray), distance to the blood vessel with and without considering
lactate production (b). Ratio between imin (black) and imax (gray),
with and without considering lactate production (c). For all plots,
dotted, dashed, and solid lines correspond to realizations that have
been shown in Fig. 1(a), (b), and (c), respectively.
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FIG. 3. Interstitial gap size versus the minimal distance from the
tumor to the blood vessel. Realizations are associated with three
groups, the first one has the lowest maximum and it corresponds
to αW = 5 × 10−6 cm2/s, γW = 0.7; the curves in the middle cor-
respond to αW = 5 × 10−6 cm2/s, γW = 0.9; and the third group,
corresponding to the highest maximum, includes realizations with
αW = 2 × 10−6 cm2/s, γW = 0.7. For all plots, the following pf

values has been considered: 0.25 (solid lines); 0.5 (dashed lines);
0.75 (dash-dotted lines); 1 (dotted lines); and the following α values,
as well: α̂ ≡ 8.3 × 10−8 cm2/h (black lines); 2 × α̂ (dark gray
lines); 3 × α̂ (gray lines); and 4 × α̂ (light gray lines).

line; (b) dashed line; and (c) solid line. A significant increment
is observed in all the cases reported here. Figure 2(b) shows
the respective ratios between jmin and jmin,0 (black); and jmax

and jmax,0 (gray); and Fig. 2(c) is an equivalent plot, but
considering the horizontal direction. This figure indicates that
the presence of acid production clearly increases the cancer
cell migration toward the blood vessel [Fig. 2(b)], implying
an increased risk of metastasis. Furthermore, tumor becomes
narrower in the presence of acid production [Fig. 2(c)].

As we have expressed above, the gap width is not uniform,
and, due to the tumor sprouting in the upper region, it would
not be convenient to define an average gap width considering
the whole boundary. Our interest is focused on the lowest area
of growing, because this is related with the risk of having
metastasis. Furthermore, the mainly difference between tumor
progressions with and without considering acid production
is the front of propagation toward the nutrient source. In
order to define an average gap width, denoted by �, we
just consider the nodes with i ∈ [icm − a, icm + a], where icm

is the horizontal position of the tumor center of mass, and
a = (imax − imin) × 0.1. For those nodes, the vertical distance
from the last node with at least one cancer cell to the first
node with at least one healthy cell is taken; and � is defined
as the average of those distances. Figure 3 shows � versus
the minimal distance from the tumor to the vessel, ( jmin), for
different realizations. Figure 3 shows clearly three groups,
the first one has the lowest maximum and it corresponds to
αW = 5 × 10−6 cm2/s, γW = 0.7 [as in Fig. 1(a)]; the curves
in the middle represent the second one, which corresponds
to αW = 5 × 10−6 cm2/s, γW = 0.9 [as in Fig. 1(b)]; and

the third group, corresponding to the highest maximum, in-
cludes realizations with αW = 2 × 10−6 cm2/s, γW = 0.7 [as
in Fig. 1(c)]. For all these groups there are realizations consid-
ering the following p f values: 0.25 (solid lines); 0.5 (dashed
lines); 0.75 (dash-dotted lines); 1 (dotted lines); and α = α̂ ≡
8.3 × 10−8 cm2/h (black lines); 2 × α̂ (dark gray lines); 3 ×
α̂ (gray lines); and 4 × α̂ (light gray lines). Parameters p f and
α were defined in rules R7 and R6, they represent the invasion
probability and the cancer cell migration coefficient, respec-
tively. Although experimental data are in correlation with the
first group, the study of the second and third groups becomes
interesting because the effects, that are already present in
the first group, are amplified. Variations with PD were not
included because they were not relevant (PD was defined in
rule R6, cancer cell migration takes place if the local amount
of free nutrient is less than PD). When tumors start growing
there is no gap. Once cancer cells consume nutrients, the
level of H+ ion concentration increases and healthy cells start
dying. The onset of gap increases the nutrient availability,
because dead healthy cells do not consume; this also increases
cancer cell consumption and thus W local concentration. This
positive feedback increases nutrient flow from the vessel to
the tumor and contributes to the gap growing. However, after
a while, nutrient availability is not enough to maintain all the
new cancer cells, thus cancer cell migration become more
active and the gap size starts decreasing. Once the active
front is near to the vessel, the absorbent condition becomes
more relevant and local W concentration is reduced due to
the loss of the H+ ion through the vessel. When cancer cells
arrive to the blood vessel, gap size turns zero by definition.
Figure 3 shows that, although the gap size depends on p f and
α, the main influence in the gap evolution is given by acid
production and diffusion. In general, for each group, the larger
the cell migration coefficient, α, the smaller the gap. On the
other hand, the lower the healthy cell resistance, the larger
the gap.

IV. CONCLUSIONS

In this work we used a mathematical model to describe the
formation and evolution of a gap between cancer and healthy
cells due to an excess of H+ ion concentration. Our model is
based on space and nutrient competitions and considers a non-
uniform distribution of nutrients. The gap onsets in the region
with more consumption by cancer cells, depending on tumor
activity, as well as, acid production and diffusion properties,
the gap could surround the whole tumor-host interface. Our
results suggest that although the gap itself is weakly correlated
with intrinsic cancer cell migration properties and healthy
cell resistance, its presence indicates an increased cancer cell
mobility toward the regions with more nutrient availability.

In our model all cancer cells have the same migration
coefficient. However, their effective mobility depends on the
local conditions. Nutrient availability triggers reproduction;
and thus, more consumption. The increase in nutrient con-
sumption produces more acid; as a consequence, healthy cells
die generating more space and nutrient availability for cancer
cells. This feedback increases nutrient flow toward tumors
and the activity of already active regions of tumors inducing
cancer cell migration in those sectors. The combination of
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these key factors drives tumor evolution. Comparing these
results with those for tumor evolutions without considering
the excess of H+ ions on the tissue, we can state that acid
production increases the migration bias toward the nutrient
source and thus, also increases the probability to invade by
metastasis.

In this work, we consider that the network bottom line
represents a blood vessel. With this scenario, the closer to
the bottom, the more aggressive the tumor in the sense of
metastasis. Our results indicate that acid production is asso-
ciated with a faster propagation of the lowest front. If we
analyze the minimal distance from the tumor to the vessel as
a function of time (after a few weeks of seeding), we find that
is linear, indicating a constant growth velocity (non-shown
results). However, the gap size is not constant as a function
of time. Even more, it is easy to find similar growth velocity
for very different gap size evolutions. Most of the models,
that consider acid-mediated tumor invasion, obtain a constant
gap size for a given tumor dynamics, and according to this,
correlation between growing speed can be analyzed. The main

difference with our findings is that gap size is not constant and,
for a given tumor dynamics, it depends on the distance to the
nutrient source location. In particular, our model suggests that
there is no strong correlation between the gap size and the
tumor growth velocity as in Ref. [4], but it mainly depends
on the distance to the nutrient source and the acid production.
In this sense, it would be difficult to obtain information about
growing speed from gap images. However, the presence of a
gap can be consider a hallmark, because it indicates tumors
with a high risk of metastasis; and if the gap is present in
just a part of the tumor-host interface, this region should be
associated with the more active tumor area, and it would also
indicates the direction of growing.
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