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ABSTRACT: In this study the multivariate optimization of bismuth film deposition (BiFE) on 

glassy carbon electrode, together with square wave voltametry (SWV) parameters for 

nitrophenol quantification is described for the first time. For this purpose response surface 

methodology (RSM) and desirability function (DF) were applied to a Box–Behnken design 

(BBD). For the BiFE deposition procedure, the relationship between the reduction current peak 

(ip) and standard deviation (SD) values with time, potential deposition and Bi (III) concentration 

were analyzed, meanwhile for frequency, step and amplitude only the relationship with ip was 
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considered. The pH influence in nitrophenol determination was carried on by univariate analysis. 

After parameters optimization a LOD of 3.4 × 10−6 mol L−1 was observed.

1. Introduction

Application of Bismuth-film electrodes (BiFEs) was described around years 2000, 

showing several interesting properties such as simple preparation, high sensitivity, low toxicity, 

and well-defined electrochemical peaks 1–4. In addition, due to the portability of the new 

potentiostats and accessories it is possible to carry out on site analysis with in situ plated BiFEs 

associated with an electroanalytical technique. Metals 5–14 and organics 15,16,25,26,17–24 

quantifications have been proposed by using BiFEs. In these articles, different procedures for 

obtaining the bismuth film are described; where it is varied not only the composition of the 

solution but also the potential and time for film deposition.

Different industries, for instance, explosives, pharmaceuticals and pesticides use aromatic 

nitro compounds and some of them can be toxic or harmful to humans or the environment. In the 

particular cases of organic compounds determination, nitrophenol (NP) is one of the selected as 

test analyte, since it has a reducible group that allows a good evaluation of this type of films 

2,16,27–30. In the ex situ BiFE deposition different conditions 2,12,35–38,16,27,28,30–34 have been 

proposed, starting from the media pH which can be either acidic or acetate buffer with pH values 

between 4 and 5, furthermore, deposition potential is varied between -0.500 to -1.400 V, 

deposition time between 60 to 600 seconds and from 2.5 x 10-4 mol L-1 (100 ppm) to 2.0 x 10-6 

mol L-1 (900 ppb) Bi(III) concentration. Some authors claim that they have optimized the 

deposition method, however, as far as we know, the experimental parameters influence on the ex 

situ bismuth film electrodes obtained for nitrophenol current peak determination has been limited 
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to single factor analysis 2,27–29, no papers about multifactor interaction effects of Bi(III) 

concentration, time and deposition potential has been reported by now.

Some methods using statistical designs of experiments, have been employed in the 

optimization of electrochemical sensors 39–45, as they provide advantages allowing to set the 

optimum conditions using lower numbers of experiments. Using adequate experimental design a 

regression equation can be obtained were the importance of each independent variable in the 

global process can be obtained, furthermore the possibility of considering interaction effects 

between the variables can be detected, being an advantage over the classical method 46. In the 

literature there are some reports describing multivariate optimization of the voltammetric 

response 47–52. Furthermore, none of before mentioned articles describe NP determination.

Square wave voltammetry (SWV) is a rapid and sensitive electroanalytical technique 53. 

In general SWV optimization has been performed by one-factor-at-a-time (OFAT) approach. 

50,51,54,55. However, we believe that all the analytical process must be optimized taking into 

account all the factors at once. We have already performed SWV parameters optimization for 

other compounds 47,48,52 and we will continue optimizing analytical techniques by using design 

experiments methods.

This research reports for the first time, the multifactor optimization affecting bismuth 

film growth on glassy carbon electrode and SWV parameters for nitrophenol quantification by 

using RSM a statistical and graphical technique. Particularly, 4-nitrophenol was used as 

reference compound, in general with electrochemical techniques related compounds show 

similar behaviors so the technique can be generalized to other nitrocompounds and the idea is to 

quantify all the nitrocompounds present in the samples. With regard to the optimization, for 
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BiFE deposition, two different solutions traditionally reported were analyzed together with Bi 

(III) concentration, time and deposition potential. While, SWV step, amplitude and frequency 

parameters were considered. Furthermore, figures of merit were established for 4-nitrophenol 

determination and the practicality and feasibility of the sensor was verified by NP analysis in 

water samples. 

2. Experimental

2.1. Apparatus, reagents and solutions

All the electrochemical experiments (Cyclic voltammetry (CV), SWV and potentiostatic 

measurements, were described elsewhere 56,57. 

All reagents are analytical grade and used without further purification. Solution were 

prepared with Milli-Q Millipore purified water. 4-Nitrophenol (NP) and Bi(NO3)3.5H2O were 

obtained from Sigma–Aldrich (St. Louis, MS, USA). All the chemical compounds used as 

supporting electrolyte, sodium acetate, potassium hydroxide, acetic, phosphoric, boric and 

hydrochloric acid were from J.T. Baker. Solution of Britton Robinson buffer (BRBS) at different 

pH values were prepared by mixing acetic, phosphoric and boric acid to a final concentration of 

each component of 0.04 mol L−1. The electrodeposition solution was prepared with 1 × 10−3 mol 

L−1 Bi(NO3)3·5H2O either in acetate buffer solution (ABS) pH 4.50 or 0.10 mol L−1 HCl. 

Accuracy and applicability of the optimized method was analyzed using water samples, from Rio 

Tercero river, San Roque Lake, and drinking water, all samples from Córdoba, Argentina. Water 

samples were filtered using a Micropore membrane of 0.45 m and stored at 4 0C in glass 

containers until they were studied. Each analysis was performed by adding a 2.5 mL aliquot to a 
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5

10.0 mL calibrated flask, after that a NP standard solution aliquot was added to a 20 x 10-6 mol 

L-1 concentration and completed with buffer solution.

2.2. Experimental procedure 

Nitrophenol (NP) determination can be electrochemically carried out by the reduction of 

the nitro group that proceeds by the following two steps mechanism 27–29:

Slow: R-NO2 + e- R-NO2
- 

Fast: R-NO2
- + 3 e-+ 4H+ R-NHOH + H2O 

here, NP determination was evaluated by CV and SWV, in both cases a negative current peak 

was observed. Optimization procedures were carried on to BiFE preparation deposited by CV, 

and for SWV parameters for nitrophenol determination, in both cases NP concentration was 10 

mgL-1. 

The electrode modification under the optimized conditions established in the present 

article are the following: prior to modification, the GCE was polished with 0.05 µm alumina 

slurry and then ultrasonically washed with Milli-Q water. A pretreated GCE was immersed into 

pH 4.50, 0.1 mol L-1 acetate buffer containing 2.7 gL-1 Bi(III). The Bi film was potentiostatically 

electrodeposited onto the GCE at −0.64 V (vs Ag/AgCl) for 67 s to form BiFE/GCE. The 

bismuth film is removed by applying for 60 s a +0.5 V potential step in a BRBS solution, after 

that a new film is deposited.

All the experimental condition (instrumental and chemical) were analyzed and the optimized 

SWV procedure was: a 10 mL aliquot of BRBS 0.05 mol L-1, a 5 s equilibration time at open 

circuit potential, and finally a cathodic potential scan from −0.200 to −1.000 V versus Ag/AgCl 
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(3.0 mol L−1 KCl) at a frequency of 45 Hz, an amplitude of 0.02 V and a step potential of 0.008 

V. All measurements were perfomed three times (n = 3) for each concentration.

2.3. Data analysis

Design-Expert 7.0.0 software was used for experimental designs, statistical analyses, and 

regression models. Analysis of variance (ANOVA) was used to test the significance of each term 

in the equation and goodness of fit of the obtained regression model. R-squared (R2), adjusted R-

squared (R2
adj) and predicted R-squared (R2

pre), were used to check the fitness of the developed 

models. The significant levels are given as probability values less than 0.05.

2.4. Experimental design

Response Surface Methodology (RSM) were used to find the optimized variables values 

for film deposition and instrumental SWV parameters. Optimization of the BiFE/GCE 

preparation and SWV instrument parameters were performed by following a three-level-three-

factor full factorial Box–Behnken design (BBD) as already described elsewhere 48,52,58. In the 

optimization study for BiFE preparation, deposition time (A), Bi (III) concentration (B) and 

deposition potential (C) were selected as independent variables, while the evaluated response 

was the cathodic current peak (ip) and its standard deviation (SD) (Table S1). By the other side, 

for SWV instrumental variables optimization, Step (A), Amplitude (B) and Frequency (C) were 

selected as independent variables and current peak (ip) as response (Table S2). Data from BBD 

was subjected to a multiple regression methodology to obtain the parameter estimation of the 

mathematical model by the quadratic polynomial equation: 
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Y =  β0 +  
k

∑
i = 1 

βixi +
k

∑
i = 1 

βiix2
i +

k ― 1

∑
i = 1

k

∑
j = 2

βijxixj +  ε

where Y is the predicted response, β0 is an offset term, βi is the coefficient of linear effect, βii is 

the coefficient of squared effect, βij is the coefficient of interaction effect, and ε is the random 

error. This equation may be a linear one, but it may be unsuitable to explain fully the wide range 

included in the factor space or to describe completely the influence of all the variables and their 

interactions.

On the other hand, the Derringer function (DF) as described elsewhere 48,52,58 was used to 

find optimal compromises between the total number of responses taken into account. As already 

mention, this function allows to determing the levels of the predictor variables that produces the 

most desirables response on the dependent variables. It considers desirability 1 for maximum and 

0 for minimum by the desirability profile inspection.

3. Results and discussion

3. 1. Comparison between GCE and BiFE

Fig. 1 show three successively negative scans for 10 mg L-1 nitrophenol reduction on glassy 

carbon (A) and BiFE (B) electrodes obtained in 0.05 mol L−1 ABS pH 4.5 at 0.100 Vs-1, the 

solution was stirred between each scan. As can be observed, both electrodes exhibit a cathodic 

current peak; however with a different current intensity for the same conditions. Mainly, current 

peak values for BiFE electrodes are around 23 µA and almost constant for the three successive 

scans (Fig. 1 B), while on GCE the first scan present a current value similar to that obtained with 

BiFE electrode, however on the successively scans a remarkable signal decay is obtained (Fig. 1 
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8

A). All this suggest that BiFE electrodes are more suitable for NP quantification in successively 

determination as compared to GCE and will be used from now on.

3. 2. Experimental design for BiFE preparation optimization

In order to get the best analytical response for NP determination and reproducibility, 

BiFE deposition was optimized using the cathodic current peak and standard deviation (SD) as 

dependant variables; the measurements were performed in the two traditional solutions reported 

in the literature (ABS and HCl solutions). The purpose is to obtain a film that can be used several 

times. With the proposed design independent variables significance and interactions, on the 

negative current peak and SD for the successive scans can be explained; the design considers 

current peak maximization and standard deviation minimization. 

In Table S1 the dependence of NP cathodic current peak values (ip) after blank correction 

with the corresponding SD, for each BBD run, both in 0.05 mol L-1 ABS pH 4.5 and 1.0 mol L−1 

HCl are presented. The analytical results were adjusted by using the least squared methodology 

to a polynomial function of second order. The significance for the adjustement of the multiple 

regression was carried on by the ANOVA test and the lack of fit (LOF) with a 0.05 significance 

level. The ANOVA test demonstrated that results obtained in HCl are not significant for all the 

independent variables analyzed, probably due to the irreproducibility of the current values 

obtained. So the analysis will be performed only with data obtained in acetate buffer.

The significant terms for the cathodic current peak (ip) and SD optimization, different R-

Squared values (R2, R2
adj and R2

pred), LOF p values and fitted model equations for semi-empirical 

expressions are presented in Table S3. It can be observed that leave out, the significant terms for 

BiFE deposition optimizations were all the three variables studied, deposition time (A), Bi(III) 
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9

concentration (B) and deposition potential (C), but also the quadratic terms for A and B (A2 and 

B2). On the other side, interactions between variables or the quadratic term for C were not 

significant. The LOF p-value of 0.987 indicates that the analysis is not significant with respect to 

the pure error. Furthermore, the present model explains 98.6 % of the total variability (R2
adj 

0.986) and 98.4 % of new data variability (R2
pred 0.984). As the difference between both values is 

less than 0.2 that indicates a good model agreement. 

In Fig. 2, 3D response surface plots are presented, which was adequate to determine the 

dependence of dependent variables on independent ones. Being the cathodic current peak the 

dependent variable these surface plots shows the dependence between Bi (III) concentration and 

deposition potential (Fig. 2A), Bi(III) concentration and deposition time (Fig. 2B) and potential 

and time deposition (Fig. 2C). In Fig. 2A there is a maximum (in absolute value) for intermediate 

Bi (III) concentration values while the current peak value increases with decreasing deposition 

potential at a constant 60 s deposition time. Fig. 2B shows a maximum in the response for 

intermediate Bi (III) concentration values and deposition time at a constant −0.76 V deposition 

potential. Finally, Fig. 2C shows the behavior between potential and time deposition at a 

constant 2.75 g L-1 Bi (III) concentration. The surface plot describes a similar shape as Fig. 2A 

with a maximum response at intermediate deposition time values. Response surface analysis 

show the significance of the quadratic terms corresponding to Bi(III) concentration and 

deposition time.

On the other hand, when analyzing the ANOVA results for SD (Table S3) only A and C 

are significant while the LOF has a p-value of 0.9836. Data of SD were transformed to base 10 

log and the R-square values were 0.697 (R2), 0.646 (R2
adj) and 0.605 (R2

pred), as already 

mentioned the difference between the last two values is less than 0.2. Although in the case of SD 
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10

the model explains 60.5 % of the total variability and 64.6 % of the new data variability, the 

results are considered satisfactory.

Fig. 3 shows 3D response surface plot for SD vs potential and time deposition at a 

constant 2.75 mg L-1 Bi (III) concentration. As it can be observed, there is a SD decreases as 

both time and deposition potential increase.

Considering that only, deposition and time potential are significant for SD model and 

comparing Fig 2C and Fig 3, where it can be seen that optimum conditions for ip maximization 

and SD minimization are opposed, other tools must be used. To achieve this purpose the 

desirability function (DF) was obtained by maximizing current peak values and minimizing SD 

for the all three independent variables. To obtain the best operational conditions,  cathodic 

current peak values (as absolute value) maximization with a +++++ (5 of 5) significance and SD 

minimization with a +++ (3 of 5) significance for the three responses each with a new BiFE were 

obtained.

Fig. 4 presents the desirability function for the three analyzed variables, deposition time (Fig. 

4A), Bi (III) concentration (Fig 4B) and deposition potential (Fig. 4C). As it can be observed, in 

Figs 4 A and B, maximum DF values are obtained for intermediate deposition time and Bi (III) 

concentration values. While, in the case of deposition potential (Fig. 4C) a slight variation of DF 

is observed. From the DF analysis, the highest desirability score obtained was 0.851 for 67 s 

deposition time, 2.7 mg L-1 Bi (III) concentration and 0.600 V deposition potential. This set of 

conditions was determined to be the optimum and to confirm the optimized condition validity. 

To compared experimental results with model predicted values different experiments were 

performed and a -19.97 μA NP reduction current peak was obtained with a prediction interval of 
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11

95 % between -20.43 μA and -19.52 μA. Furthermore, using three different BiFEs for 10 mg L-1 

NP a current value of -19.7 ± 0.4 μA was obtained. The results of the comparison between the 

obtained mean values with the predicted one indicates that the developed quadratic model is 

adequate.

3. 3. Optimization of the pH value determination

To obtain the best pH value for NP quantification, BRBS at different pH values were used. 

Fig. 5 presents the negative scans for 10 mg L-1 NP at 0.100 Vs-1 in BRBS at the following pH 3, 

5, 7 and 9. As already reported, better signals are obtained at acid pH in agreement with the 

proposed mechanism 27–29. Particularly, in this case as demonstrated by Fig. 5, a well defined 

current peak is obtained for pH values lower than 7 and the maximum reduction current peak is 

defined at pH 5. For alkaline solutions (pH 9), the signal is much lower and even two different 

peaks can be detected, indicating that different process are taking place. For that reason, pH 5 

was chosen as the working value.

3. 4. Optimization of instrumental variables

Nitrophenol quantification was performed by an electrochemical method, consisting on 

an equilibration time followed by SWV using a BiFE modified glassy carbon electrode. In the 

present study, the optimization of SWV variables such as amplitude, frequency and step potential 

using three independent factors and the current reduction peak as response variable was carried 

on. The Box–Behnken design is presented in Table S2 along with experimental data, all current 

peak values (ip) were blank corrected, and the experiments were performed in 0.05 mol L-1 

BRBS pH = 5.0. It is worth noting that reduction current peak values for SWV are somehow 
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12

smaller than those for CV, as the studied electrochemical process is irreversible. However, SWV 

is a faster technique.

The variables analyzed were step potential (A), amplitude (B) and frequency (C), and as 

previously reported an ANOVA test was performed. The significant terms for the cathodic 

current peak (ip) and SD optimization, different R-Squared values (R2, R2
adj and R2

pred), LOF p 

values and fitted model equations for semi-empirical expressions are presented in Table S3, 

together with the already discussed analysis for BiFE formation. As it can be observed from 

Table S3, all the three variables studied were significant, and also the quadratic term for step 

potential (A2). On the other hand interactions between variables or the quadratic terms for B and 

C were not significant. The LOF p-value of 0.964 indicates that the analysis is not significant 

with respect to the pure error. Furthermore, the R2
adj value (0.981) and R2

pred (0.978) demonstrate 

that 98.1 % of the model variability and 97.8 % of new data variability can be explained by the 

model. Again there is a correspondence between both values as they present difference less than 

0.2 indicating a reasonable agreement. 

Fig. 6 presents 3D plots of the polynomial equation (Table S3) for the dependence ip as a 

function of the significant variables. Fig. 6A shows the variation of ip as a function of the 

amplitude and step potential at 50 Hz frequency, as it can be observed there is a current increase 

as the amplitude increases, while for the step potential there is an increase up to intermediate 

values and then remains practically constant. In Fig. 6B the dependant variable is represented vs 

SWV frequency and amplitude at a 0.008 V constant step, in this case there is a clear current 

increase as the amplitude increases while there is slight current increase as the frequency 

decreases. Finally, when analyzing the effects of frequency and step potential on the reduction 

current peak with constant 0.02 V amplitude (Fig. 6C), the same behavior previously described 
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13

for both variables is observed. The quadratic term for the step potential (A2) although significant, 

does not have a notorious influence on the results (Figs. 6A and C). 

As already mentioned before the dependent variable value (ip) was maximized to 1.0 with a 

+++++ (5 of 5) significance. On the basis of these calculations, the optimized ip reduction was 

8.9  0.5 μA with a 95 % of confidence, obtained using the proposed model and the following 

instrumental values 45.0 Hz frequency, 0.008 V step potential and 0.02 V amplitude. In order to 

check the validity of the model different experiments were performed by triplicate and results 

compared to predicted values. Under the optimal condition the cathodic current peak of 10 mg L-

1 NP was 8.4  0.3 μA. The results of the comparison between the obtained mean values with the 

predicted one indicate that the developed quadratic equation is adequate.

3. 5. Method performance

The method linearity was tested in the (1.0–100) × 10−6 mol L−1 NP concentration range by 

measuring triplicate samples, prepared at five concentration levels. Data of ip vs. concentration 

were fitted by least-squares obtaining a R2 value greater than 0.999. The detection limit (LOD) 

and quantification limit (LOQ) were calculated as described elsewhere 59, the obtained values 

were 3.4 × 10−6 mol L−1 and 1.0 × 10−5 mol L−1 respectively, and the resulting equation is:

𝑖𝑝(µ𝐴) = (1.34 ± 0.03) + (5.99 ± 0.08) × 104𝐶𝑁𝑃(µ𝐴𝑚𝑜𝑙 ―1𝐿 ―1)

Repeatability (intra-assay precision studies) was analyzed, by the same analyst, under the 

same conditions, and on the same day using three different levels of concentration (5.00 × 10−5, 

7.00 × 10−5, and 9.00 × 10−5 mol L−1) with six replicate samples. Table 1 shows the coefficient of 

variation (CV %) values for different NP concentrations and results at intermediate precision for 
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current peaks values under different conditions. In general it can be observed that, CV values are 

close to 5% being an indication of an excellent precision. Intermediate precision was also 

analyzed by considering three replicates samples at 5.00 × 10−5 mol L−1 by the same analyst, 

under the same conditions, on three different days (day 1, 2 and 3) for three different BiFE (I, II 

and III). The ANOVA test presented in Table 1 shows that there are no significant differences at 

95 % confidence, between the calculated averages (p = 0.398).

The accuracy was obtained by analyzing samples with known concentrations at three 

levels and comparing the experimental concentration with the true value. In Table 1 real and 

averages concentration values and Student’s t-test p values are presented, and at 95 % confidence 

level no statistical differences were observed.

The analysis method presented in this paper was used to NP detection in water samples to 

validate the application potential in practical analysis. Water samples were prepared as described 

in Experimental section, and determinations were carried on by the standard addition method. In 

Table 2, NP concentration added and found, SD and recovery % are presented, the obtained 

results are satisfactory with a 103 % average recovery, indicating that the developed method is 

adequate. It is worthy to note that recovery analysis in different samples and matrixes (Table 1 

and Table 2) with results rounding 100% are an indication that no interferents are present in the 

sample.

4. Conclusion

This article described the development of an alternative electroanalytical method, using 

bismuth film electrodes, for nitrophenol quantification. The proposed methodology included a 
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previous bismuth film preparation and then SWV determination. The experimental variables 

were studied and optimized by BBD together with RSM and DF. The proposed model allows the 

analysis of the different effects of independent variables, such as Bi(III) concentration and 

electrolyte pH solution, and time and deposition potential for BiFE preparation and SWV 

instrumental variables for a better understanding on NP detection. The quadratic response 

surface models is in very well agreement with data at different conditions. From the statistical 

analysis optimal conditions for the analytical method for NP determination was developed. To 

the best of our knowledge, the use of experimental design for ex situ BiFE preparation together 

with NP quantification by SWV is reported for the first time, good linearity range together with 

acceptable LOD and LOQ were obtained making the method a good candidate for a reference 

one. Finally, the application of the method to NP detection in natural water samples has been 

successful.
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FIGURES

Figure 1. Successive linear scan for 10 mg L−1 NP in acetate buffer pH 4.5 (black) of 1st scan 

(red); 2nd scan (green) and 3rd scan (blue) at (A) GCE and (B) BiFE electrodes, v = 0.100 V s−1.

Figure 2. Response surface of the current peak for the Box Behnken designs of data in Table S1: 

(A) Deposition potential (V) vs Bi (III) concentration (mg L-1), (B) Bi (III) concentration (mg L-

1) vs Deposition time (s), (C) Deposition potential (V) vs Deposition time (V).

Figure 3. Response surface of the Standard Deviation for the Box Behnken designs of data in 

Table S1: Deposition potential (V) vs Deposition time (V).

Figure 4. Desirability function profiles for (A) Deposition Time, (B) Bi (III) concentration and 

(C) Deposition potential.

Figure 5. Linear scan obtained in supporting electrolyte (dashed line) and 10 mg L−1 NP (solid 

line) in 0.05 mol L−1 of different pH 3.0 (black); 5.0 (red); 7.0 (blue) and  9.0 (dark cyan) at a 

BiFE electrode, v = 0.100 V s−1.

Figure 6. Response surface of the current peak for the Box Behnken of data in Table S2: (A) 

Amplitude (V) vs Step potential (V), (B) Frequency (Hz) vs Amplitude (V) and (C) Frequency 

(Hz) vs Step potential (V).
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TABLES

Table 1. Analysis of known concentration samples

Concentration

Real (x 10-5 mol L-1) Obtained (x 10-5 mol L-1) ± SDa CVb (%) p-value

5,00 4,9 ± 0,2 3,50 0,2892

7,00 7,0 ± 0,1 1,74 0,5301

9,00 8,7 ± 0,4 3.72 0,6443

Current peak (µA)

Day 1 Day 2 Day 3 p-value

BiFE I 4,129 4,340 4,152 0,398

BiFE II 4,286 4,473 4,377

BiFE III 4,364 4,295 4,226
aMean values and standard deviation of six determinations. bCV: coefficient of variation.
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Table 2. Results for the detection of NP in several water samples.

Sample Added (x 10-6 mol L-1) Found (x 10-6 mol L-1)a SD Recovery (%)

San Roque lake 20 20 4 102

Rio Tercero river 20 19.5 0.7 98

Córdoba city drinking water 20 21 1 106
aSWV measurements were repeated five times (n = 3).
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Figure 1
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