Ann Math Artif Intell (2013) 69:103-129
DOI 10.1007/s10472-013-9338-x

Using argument strength for building dialectical bonsai

Sebastian Gottifredi - Nicolas D. Rotstein -
Alejandro J. Garcia - Guillermo R. Simari

Published online: 16 March 2013
© Springer Science+Business Media Dordrecht 2013

Abstract Argumentation in Al provides an inconsistency-tolerant formalism capa-
ble of establishing those pieces of knowledge that can be accepted despite having
information in contradiction. Computation of accepted arguments tends to be expen-
sive; in order to alleviate this issue, we propose a heuristics-based pruning technique
over argumentation trees. Empirical testing shows that in most cases our approach
answers queries much faster than the usual techniques, which prune with no guide.
The heuristics is based on a measure of strength assigned to arguments. We show how
to compute these strength values by providing the corresponding algorithms, which
use dynamic programming techniques to reutilise previously computed trees. In
addition to this, we introduce a set of postulates characterising the desired behaviour
of any strength formula. We check the given measure of strength against these
postulates to show that its behaviour is rational. Although the approach presented
here is based on an abstract argumentation framework, the techniques are tightly
connected to the dialectical process rather than to the framework itself. Thus, results
can be extrapolated to other dialectical-tree-based argumentation formalisms with
no additional difficulty.

This article is an extension of [25].

S. Gottifredi (X)) - N. D. Rotstein - A.J. Garcia - G. R. Simari
National Council of Scientific and Technical Research (CONICET),
Artificial Intelligence Research & Development Laboratory (LIDIA),
Universidad Nacional del Sur (UNS), Bahia Blanca, Argentina
e-mail: sg@cs.uns.edu.ar

N. D. Rotstein
e-mail: nicorotstein@gmail.com

A.J. Garcia
e-mail: ajg@cs.uns.edu.ar

G. R. Simari
e-mail: grs@cs.uns.edu.ar

@ Springer

104 S. Gottifredi et al.

Keywords Non-monotonic reasoning - Computational argumentation - Dialectical
proof procedures - Heuristics-based tree pruning

Mathematics Subject Classifications (2010) 68T27 - 68T37

1 Introduction & motivation

The theory on computational argumentation is usually focused on bringing new
theoretical elements to augment the expressive capability of the formalism. Other
extensions are also devoted to handle different aspects of the argumentation process,
from its dynamics [24] to its capability to represent dialogues [23], negotiations [2],
and other features [6]. Complementarily, some approaches study the suitability of ar-
gumentation within different application contexts, such as Multi-Agent Systems [27]
and the Semantic Web [22]. However, many complications lying on the practical side
of argumentation have not been completely addressed. Implementations have not
yet achieved maturity; the few systems available are still at an experimental stage
and have never been tested against large amounts of data. This is understandable for
a rather young discipline like Argumentation in Artificial Intelligence.

Nonetheless, as the theoretical foundations become stronger, the community is
starting to pay attention to the computational tractability of argumentation [3, 8, 10,
18]. In this article, we take on this concern and put our focus on the computation
of acceptable arguments through dialectical trees; that is, in order to find whether an
argument is accepted, a tree of arguments rooted in it is built and evaluated, where
children of an arguments are its counterarguments. The notion of dialectical tree as
a proof procedure is not new and has been studied extensively in the literature [7, 14,
17, 20]. We will refer to these accepted arguments as being warranted. Computing
warrant in a massive argumentation scenario [21] brings about two difficulties: either
dialectical trees are small and too many, or they are few but large. In this paper we
address the latter issue, attempting to build smaller trees via a pruning technique.
Thus, a smaller amount of arguments would be required to determine the status of
the root argument. In order to confirm this improvement, experimental tests were
performed over large argumentation frameworks, randomly generated, containing
up to 500 arguments. Empirical results are given in Section 5.

In this article we apply the pruning technique over dialectical trees taken from
a variation of Dung’s abstract framework for argumentation [16] called dynamic
argumentation framework that considers a universal set of arguments along with a
subset of currently active ones. From these two sets of arguments we can consider two
kinds of trees: potential and active; the former refers to trees built using the universal
set of arguments, whereas the latter is restricted to the set of active arguments. Only
active trees are used to compute warrant, as they represent the current state of the
world. As will be clear later, potential trees are used for calculating each argument’s
heuristic value. Consider the dialectical tree depicted in Fig. 1a. Assume this is the
potential tree for argument A. Two possible active instances are shown in (b) (H and
D are inactive, and possibly K) and (c) (D, E, G, H and | are inactive, and possibly
J and K). These active trees would be the ones used by the system to compute
warrant by exploring their nodes and “labelling” the root node as warranted or
not. In order to minimise the amount of nodes explored, we introduce a pruning

@ Springer

Using argument strength for building dialectical bonsai 105

Fig. 1 Potential tree and two A A A
possible active trees VRN 7N\ /7 N\
B C B C B C
/1 I\ \ I\ \
D E F G E F G F
A [
Ho1oJ I J (c)
\
K (b)
(a)

technique. Our approach looks for maximising the opportunities for pruning active
trees based on the information obtained from the corresponding potential trees,
regardless of how different these are—e.g., the active tree in Fig. 1c wrt. the potential
tree in Fig. 1a. Unlike preexisting articles on pruning of dialectical trees, we provide
a full, generalised formalisation and then analyse its implications in terms of the
performance gain for argumentative query answering.

The approach used for pruning will be based on the abstract notion of argument
strength, which indicates the likelihood of an argument to be ultimately defeated, as
described in Section 3.2. We propose a concrete formula, although others could be
considered. Arguments’ strength is used as a heuristic value to sort the attackers
of an inner node during the construction of dialectical trees. We will show that
pruning opportunities are likely to appear, and entire subtrees can be omitted
without affecting the calculation of the root’s warrant. We introduce a strategy to
build these dialectical bonsai,' based on our proposal of argument strength. Besides
this particular formula, we also present a set of postulates looking to characterise
any strength function. Then, we check the formula against the postulates to verify its
sensibility.

In order to validate our approach, in Section 5 we perform a series of tests. Empir-
ical testing shows that the usage of strength values allows for virtually instantaneous
response to queries. In parallel with strength calculation we can also store arguments
and attacks, saving the building stage every time a query takes place. Computing
a strength value for each argument comes at a certain cost. In order to alleviate
this, our algorithm relies on dynamic programming by reusing large portions of
data. In Section 3.2 we present the algorithm corresponding to strength calculation;
empirical analysis shows that this computation does not undermine the gain obtained
by bonsai, in terms of time.

Although the goal of this paper is mainly practical, here we study the suitability of
the approach applied over a particular flavour of Dung’s framework [16]. Concepts
and definitions are grounded on argumentation mechanisms rather than properties
of this abstract framework. Therefore, the approach can be translated in terms of
concrete argumentation frameworks rather straightforwardly. For instance, think of
a rule-based argumentation formalism. Provided that there are no functional letters,
we could build the universal set of arguments using a subset of the (finite) Herbrand
Base. Then, as the state of the world changes, facts would be asserted and retracted

IThe pruning technique attempts to keep trees small while retaining the properties of the entire tree,
like a bonsai.

@ Springer

106 S. Gottifredi et al.

accordingly, therefore activating and deactivating arguments. Here we will show how
to compute a heuristics from the universal set of arguments in order for it to be useful
at any given state of the world. We contend that many implementations for argument
frameworks would benefit from these results.

The paper is organised as follows: Section 2 provides the main theoretical elements
needed for the rest of the article. Section 3 explains what is the notion of strength
used by our approach, presenting postulates and a concrete formula. Section 4
describes and defines the concept of dialectical bonsai and its relation to the usual
notion of pruning. Section 5 presents the empirical tests that justify the usage of our
heuristics to achieve a more efficient pruning. Sections 7 and 8 discuss related and
future work. Finally, Section 6 outlines the paper and concludes.

2 Theoretical basis

Nowadays, Dung’s abstract argumentation framework has become the standard to
analyse and apply new ideas to any argumentation-based setting. In this article, we
will use a more general version of this classic framework that allows for the repre-
sentation of both active and inactive arguments. This dynamic abstract argumentation
framework (DAF) is a simpler version than the one presented in [24], getting rid of
all the representational intricacies that are not relevant for this line of research. This
version of the DAF consists of a universal set of arguments holding every conceivable
argument along with a subset of it containing only the active ones. These active
arguments represent the current state of the world and are the only ones that can
be used by the argumentation machinery to make inferences and compute warrant.
Therefore, at a given moment, those arguments from the universal set that are not
active represent reasons that, though valid, cannot be taken into consideration due
to the current context. At some point, active arguments could become inactive, thus
no longer used for inference, or vice versa. Having inactive arguments is the very
reason behind using the DAF: it will allow us to evaluate potential dialectical trees
in order to obtain arguments’ heuristic values that are afterwards used to prune
active trees. Furthermore, one of the scenarios that would find our pruning technique
advantageous is that of an argumentation-based agent. Continuous querying requires
an almost instantaneous response. Imagine an agent looking for warrants ten times
a second (which is a rather conservative approximation). If each warrant takes a
tenth of a second, the agent would either lose half its perceptions or yield constantly
delayed conclusions about what to do next. It will be clear by the end of Section 5
that our approach requires a time for precompilation to then have the capability of
delivering almost instantaneous query answering.

Definition 1 (Dynamic argumentation framework) A dynamic argumentation
framework, or DAF, is a triple (U, <—)[A], where U is the universal set of arguments,
< C U x U is the attack relation between arguments, and A C U is the subset of
active arguments.

The DAF yields a graph of arguments connected by the attack relation. An “active
subgraph” could be considered, containing only active arguments. In argumentation,
the challenge consists in finding out which active arguments prevail after all things

@ Springer

Using argument strength for building dialectical bonsai 107

considered, i.e., those arguments that are warranted. To this end, the notion of
argumentation semantics has been extensively studied [4]. In this article, warrant of
arguments will be determined on top of the dialectical tree for each one of them,
assuming a particular marking criterion (see Assumption 1).

A dialectical tree is conformed by a set of argumentation lines; each of which
is a non-empty sequence A of arguments from a DAF, where each argument in
attacks its predecessor in the line. An argumentation line should be non-circular (an
argument should not occur twice in the same argumentation line) in order to avoid
infinite lines, and it should be also exhaustive, i.e., no more arguments can be added
to it.

Definition 2 (Argumentation line) Given a DAF 1t = (U, <>)[A], and By, ..., B,
€ U, an argumentation line X in 7 is a (non-empty) finite sequence of arguments
[By,...,B,] such that, VB;,B; with i # j and 1 <i, j<n, B;—B,_;, B; # B, and
#C € U such that C<>B,,. The argumentation line A is said to be rooted in B,. The set
of all argumentation lines in 7 is noted as Lines,.

The first argument in an argumentation line A is called the root whereas the last
one is the leaf of A. Arguments in these lines are classified according to their role
wrt. the root argument: a pro argument (respectively, con) in an argumentation line
is placed at an odd (respectively, even) position. This classification can be extended
to any argument in the tree; positions must be interpreted relative to the argument
at issue. For instance, for an argument in an even position in a line, pro arguments
will be in even positions in that line.

Note that the definition for an argumentation line takes into account every
argument in the universal set. A restricted version of argumentation line could be
considered, setting its domain within the set of active arguments. This variant is called
active argumentation line. Since regular argumentation lines as defined above include
both active and inactive arguments, we will refer to them as potential argumentation
lines, to emphasise their meaning.

As said before, the warrant status of an argument will be determined by analysing
the dialectical tree rooted in it. A dialectical tree rooted in an argument A will be
built from a set of argumentation lines rooted in A.

Definition 3 (Dialectical tree) Given a DAF t = (U, —)[A] and an argument A €
U, the dialectical tree 7 (A) rooted in A from 7 is built from the set X C Lines, of
every argumentation line rooted in A. The set of all dialectical trees in 7 is noted as
Trees,.

As a convention, an argument C in a dialectical tree 7 (A) built from a set of
argumentation lines X is denoted as:

— anode iff C appearsin » € X
— achildofanodeBin7(A)inAiffA=[...,B,C,...],A e X
— aleafof 7(A)inAiff CisaleafinA € X

Dialectical trees are built from argumentation lines and can be classified in a sim-
ilar way. Therefore, potential dialectical trees are built from potential argumentation
lines: those containing arguments from the universal set. Similarly, active dialectical

@ Springer

108 S. Gottifredi et al.

trees are built from active argumentation lines, which include only active arguments.
Note that an argument may appear several times in a dialectical tree, each time in a
different argumentation line. Also, given a DAF (U, <—)[A], for each argument B in
U there will be a unique potential dialectical tree that is rooted in B, and for each A
in A there will be a unique active dialectical tree rooted in A.

The computation of warrant through dialectical trees usually relies on a marking
criterion that could be defined according to any conceivable policy; its main objective
is to assign a status to each argument in the dialectical tree. The status of the root
argument would tell whether it is warranted. An abstract specification for a sensible
marking criterion was given in [26]. Here we present a particular version of the
marking function that assigns either “D” (defeated) or “U” (undefeated) to each
argument.

Definition 4 (Marking function) Given a DAF t, a marking function over arguments
in 7 is any function m : U x Lines, x Trees, — {D, U}

Since the same argument can appear in different lines of the same tree, the
marking function needs to address it through line and tree, e.g., an argument could
be marked as D in some lines and U in others. Although Definition 4 indicates that
m is defined for the whole cartesian product of lines, trees and arguments in a DAF,
an implementation would probably define the function only for arguments within
a given line within a given dialectical tree. There is a case in which an argument B
can be associated to several lines, interchangeably: when the path from the root to B
coincides in these lines. We will not address this issue with any particular convention,
since it will not be problematic: the mark of B in all these lines will be just the same
(see Example 1). In this article we assume the marking criterion given in DELP [17].

Assumption 1 Given a dialectical tree, a node is marked D iff it has a child marked
U; otherwise it is marked as U.

It is worthwhile mentioning that this marking criterion yields an argumentation
semantics similar to Dung’s grounded semantics. Section 7 provides a deeper expla-
nation for the relation between the two approaches.

Example 1 Consider the dialectical tree 7 (A) in Fig. 2, depicted along with its two
argumentation lines A, and A,. White (black) triangles are used to denote arguments
marked as undefeated (defeated).

Fig. 2 The dialectial tree of T(A) A1 Ao
Example 1 and two of its R R
argumentation lines AL A‘A A‘A
\

Ba Ba Ba

VRN \ \
cA Da CA Da

\ \
EA EA

@ Springer

Using argument strength for building dialectical bonsai 109

Leaves are undefeated and B is defeated due to C being undefeated. Also note that
A and B belong to both lines, thus receiving the same mark. Finally, pro arguments
for A would be A itself plus C and D, whereas B and E would be con.

The construction of dialectical bonsai depends on discovering opportunities to
prune dialectical trees. Given a tree 7, a bonsai of 7 will be a pruned version of
it such that the marking applied to the bonsai retains, at least, the same marking
for the root than the one in 7. That is, during the construction of dialectical trees,
it should be possible to determine when the construction procedure has collected
enough information to compute the same mark for the root as the one in the non-
pruned tree. A simple example is a scenario in which there is an undefeated attacker
for the root; when such an argument is found, the dialectical analysis should be
stopped and the root marked as defeated. To simplify things, we will assume the
and-or pruning technique explained in [15], which we call 1U pruning (formally
introduced in Definition 6): whenever an attacker for an inner argument A is found
as undefeated, A can be directly marked as defeated and the rest of the attackers for A
can be ignored.

Although this technique is not too restrictive and could even be used quite
often, finding all the opportunities for pruning (thus obtaining the smallest possible
trees) requires just plain luck, since undefeated attackers must be found first (see
Example 2), and undefeatedness is not predictable —indeed, its discovery is the reason
to build dialectical trees.

Example 2 Consider the dialectical tree 7 (A) depicted below, and three possible
prunings: P;(A), 1 <i < 3. Depending on the order in which attackers for A are
selected, different prunings come up.

A PiL(A) Pa(A)

AA

AA AA
AR SN /N
AB AC aD AB AC 7 NI

AE AF AE
Pi(A)

AA

VLI

AB AC aD

AE AF

— Pi(A) : Cis selected after B but before D, so D is cut off;
— P»(A) : Cis selected first, both B and D are cut off;
— P5(A) : Cis selected last, no pruning occurs.

@ Springer

110 S. Gottifredi et al.

Note that pruning out argument C would lead to a faux pruning, marking the root
as undefeated. Such a pruning should and will not qualify as a bonsai.

Next, we formalise the generalised notion of pruning, according to the intuitions
previously presented. This definition is based on active dialectical trees, as they are
the ones used to compute warrant. A definition for pruning over potential trees
would be aimed at making the strength calculation more efficient; this topic will not
be discussed in this article.

Definition 5 (Pruning) Let 7 (A) be an active dialectical tree in the context of a DAF
© = (U, —)[A], St € U, the set of arguments in 7 (A), and E; C <, the set of edges in
T (A). A pruning P (A) for 7 (A) is a tree rooted in A with a set of arguments S, € S;
and a set of edges Ep C E;.

The above definition gives a general notion of what we consider as a pruning.
However, not every pruning of a tree qualifies as a dialectical bonsai. As stated
before, the requirement for a pruning to be a bonsai is to yield the same information
than the complete tree about the warrant status of the root argument. Next, we
introduce the particular kind of pruning our approach is based on. The reader should
know that this is not a new concept, but used in existing argumentation systems, such
as DELP [17].

Definition 6 (1U Pruning) Given a DAF 7 and a pruning P(A) for a dialectical
tree 7 (A), let B be an inner node in P(A) with a set of attackers I' in 7 (A) such
that the subset of attackers in P(A) is I € I'. The pruning P(A) is a 1U pruning
for 7 (A) iff 3B; € ', m(B;, A;, 7 (A)) = U implies that there is exactly one argument
Bk S l_”, m(Bk, M P(A)) =U.

In words, a 1U pruning is a pruning P (A) such that for any set of attackers with at
least one attacker marked as U in the original tree 7 (A), the subset of attackers that
stays in P(A) has exactly one undefeated attacker. Recall that by Assumption 1 the
marking of a node will be D iff it has at least one attacked marked U. Therefore, the
1U pruning has only one U attacker since it is enough to determine the marking of
the attacked argument. The definition does not specify how to treat a set I" with all
defeated arguments. Note that any subset would work, even the empty set. However,
an implementation would most likely check all the defeaters to find out that they are
defeated. In Example 2 all prunings qualify as a 1U pruning.

Generally in the literature, when using a pruning technique, the expansion of
attackers (i.e., children) while building trees follows no criterion, and this happens
both in theoretical approaches as well as in implementations. The former usually
present a set of arguments to choose from, whereas the latter are often rule-based,
and rules are placed rather arbitrarily, and looked up in a top-to-bottom fashion. To
sum up, when building dialectical trees there is no available information to know
beforehand how to augment the possibilities of pruning. An external mechanism
should provide such knowledge. To this end, next we introduce the concept of
argument strength.

@ Springer

Using argument strength for building dialectical bonsai 111

3 Strength of an argument

Our approach to the notion of argument strength is similar to the heuristics proposed
for argument gradual valuation [7, 11, 19], and it is based on the following statement:
“an argument is as strong as weak are its attackers”. In this way, the number of
attackers is not the only parameter that affects an argument’s strength. This is
particularly interesting, since a strategy would be flawed if based solely on that
number. For instance, given an argument K within a dialectical tree, a subtree rooted
in K packed with pro arguments should give K a high strength value. The strength
of an argument in a tree should somehow codify how likely is this argument to be
ultimately un/defeated. An argument with great strength could even be considered as
a leaf, which would improve pruning at the risk of losing soundness. Strength values
will be used by a heuristic method to prune the tree, as will be explained later. The
idea behind this strength measure is to codify the likeliness of an argument to be
ultimately defeated.

3.1 Postulates for an argument strength formula

The strength of an argument A is calculated from the potential dialectical tree 7°
rooted in A. In this article we provide a way to extract the strength of an argument
out of its associated potential tree; therefore, when a particular situation is analysed
and the active tree is built, the strength of arguments will provide a heuristics to guide
its construction and early discovery of pruning opportunities. Not any formula would
serve to the purpose of accelerating warrant. In what follows, we introduce some
postulates that would rule the proper behaviour of any strength-measuring function
to be used as a heuristics. This implies constraining the way in which the strength
value is propagated throughout the tree, and determining the particular contexts
in which an argument’s strength should be higher than another’s. It is important to
keep in mind that the relative strength of non-root arguments within a potential tree
refers to their local measures of strength, since these are the values used to finally
determine the root’s actual strength. Below are the intuitions behind a collection of
desirable postulates for an arbitrary strength measure function:

(S1) immediate weakening: “An argument gets weaker as its attackers get stronger”.
This captures the initial intuition for the notion of strength, in which the
strength of the set of attackers has an inverse correlation to the strength of
the argument under attack.

(S2) no-defeat strength: “Non-attacked arguments are the strongest ones”. It is not
sensible to admit that an unattacked argument could be weaker than one
that is not. Although this principle suggests that leaves must have maximum
strength, it does not invalidate the fact that inner nodes could also have
maximum strength.

(S3) strengthening by support: “Extra pro arguments or less con arguments in-
creases strength”. Adding a new pro (or removing a con) argument to a subtree
increases the strength of its root. A change in strength always has a discernible
cause.

(S4) weakening by opposition: “Extra con arguments or less pro arguments de-
creases strength”. Analogous to (S3).

@ Springer

112 S. Gottifredi et al.

(S5) ancestral strengthening: “The increase in strength of an argument increases
the strength of all the pro ancestors while decreasing the strength of all con”.
A change in a subtree provoking an increase in its root strength implies an
increase to each of the root’s pro ancestors.

(S6) ancestral weakening: “The decrease in strength of an argument decreases the
strength of all the pro ancestors while increasing the strength of all con”.
Analogous to (S5).

The changes mentioned by postulates (S3) to (S6) do not imply that trees will or
have to be changed. These changes rather reveal the links between arguments and
the behaviour of pro arguments wrt. the presence of cons, and vice versa.

It is also important to note that these postulates comply with the intuitions
behind the four principles for the heuristics used in the gradual valuation for Dung’s
argumentation frameworks presented in [11]. In particular, postulates (S1), (S2), (S3)
and (S4) can be seen as adaptations of the four principles in terms of the structure
of the dialectical trees. Meanwhile, (S5) and (S6) capture new intuitions arising from
the dialectical nature of these trees.

Next, the collection of postulates is listed, considering a DAF t, two potential
trees 7; and 7, from t, and two arguments A; and A, placed in an arbitrary position
in 77 and 7, respectively. We also assume that an argument A in an argumentation
line X in a tree 7 has a measure of strength denoted (A, 1, 7) and an associated
set of attackers atts(A, 1, 7) in 7.2 The postulates assume that the strength function
u(-, -, -) returns a real number within the interval [0, 1]. This will simplify comparison
among measures of strength. Finally, the conjoint measure of strength of a set of
attackers for A pans(A, A, 7) = Y ((By, A;, 7)), where B; € atts(A, A, 7).

In the case of (S3) to (S6) we consider a potential tree 7,* that is the result of
arbitrarily adding and/or subtracting arguments to the subtree of 7; for which A; is
the root. The notation pro(A, A, T) (resp., coN(A, A, 7)) returns the set of pro (resp.,
con) arguments in the subtree of 7 rooted in the argument A from a line A.

(Sl) /’L(Ala A’l? 7-1) S M(AZs)\'25 7’2) lff l/«atts(A2s)\'27 75) S Matts(A1 k])"1 k] ,Tl)
(S2) if atts(Ay, A1, 71) = @ and atts(A,, Ay, T2) # @ then
WAz, o, 1) < (A1, AL, Th)
(S3) if [PRO(A}, A1, TD)| < [PRO(A}, Ay, T;®)| and [coN(Ay, Ay, T7)| = |coN(A, A1, T4
then w(Ar, A1, 77) < w(Ar, A, T1%)
(S4) if [coN(A, A1, T)| < |coN(Ay, Ay, T,2)| and [PrRO(A;, A1, T1)| > [PRO(A, A1, T2)|
then w(Ar, A1, 77) > n(Ar, AL, T2)
(SS) if/"L(Ah)"lv 7—1) = M(A]a)‘hlzr]A) then
(VB : A; € pro(B, A1, T1)) u(B, A1, T1) < u(B, Ay, 7,*) and
(VC : Al € CON(C7)"1’ ,2—1)) H’(C7)"17 7-1) > H‘(C7)"17 7-1A)
(S6) if“(Al»)‘-l’ 71) > M(AlvklaZA) then
(VB : Ay € pro(B, A1, 77)) u(B, A1, 77) = (B, Ay, 7,*) and
(VC : Ay € PrO(C, A1, T1)) u(C, A1, T7) < w(C, Ay, T2)

Any formula used to calculate argument strength should look to satisfy these
rationality postulates. In the following subsection we present a concrete strength
formula to then check it against these postulates.

2Not every attacker of A will be a child in 7.

@ Springer

Using argument strength for building dialectical bonsai 113

3.2 An approach to argument strength

Here we propose a formula to calculate strength for an argument A that works over
the potential tree rooted in A. The same formula, following the same intuition but
used for other purposes, is defined in [7]. In order to get A’s strength, the method
relies on the strength of A’s immediate attackers, which in turn rely on the strength
of their own immediate attackers, and so on, thus leading to the consideration of
the entire tree. Similarly, other formulas showing the desired behaviour could be
proposed.

Definition 7 (Argument strength) Let B be an argument in a line A in a potential
tree 7 (A), and X is a set of arguments such that every C; € X is a child of B in a line
A; within 7 (A). The strength B in A in the potential tree 7 (A) is calculated as:

X=90

nB, A, T(A) = X 44

1
T+ 3,((Ci, 7, TAY)

Again, since an argument may appear several times in the same tree but in
different lines, it has to be individualised through these three parameters. The
strength of an argument A in the context of a DAF t is calculated as (A, -, 7 (A)),
and the shortcut is w(A). Note that this formula captures the intuition that an
argument’s strength has an inverse correlation with the strength of its attackers.

Each argument’s strength is calculated by building the potential dialectical tree
rooted in it. Although each non-root argument in this potential tree has an associated
strength, this measure is local. That is, this is not necessarily the actual strength
value they would have in the potential tree rooted in them, but just a partial
measure towards the calculation of the root’s strength. Moreover, an argument
appearing twice in a tree would probably have two different local strength measures.
Nonetheless, the strength value associated to an argument will be its actual strength
value.

Example 3 Suppose a DAF ({A, B, C, D, E}, {(B, A), (C, A), (A, C), (D, C), (C, E)DH[A].
The set of active arguments here is not important, as we are looking to
compute strength. The potential trees for 7 (A), 7(C) and 7 (E) are shown
in Fig. 3. In the tree for A, arguments B and D receive no attacks, thus
uwB, 11, T(A) =1=pu(D,ry, 7(A)). Argument C is attacked just by D, then
u(C, Ay, T(A)) = 1/(1 + 1) = 0.5. Finally, A is attacked by B and C, which sum 1.5,

A(4)A C(.4)A E(.7)A
~ N ~ N \
B(1)A AC(.5) A(.5)A AD(1) C(.4)A
\ \ e ™~
AD(1) B(1)A A(.5)A AD(1)
\
B(1)A

Fig. 3 Potential trees for A,C and E from DAF of Example 3 and its respective strength measures

@ Springer

114 S. Gottifredi et al.

Fig. 4 Reutilising subtrees i

potential
tree forY

S(Y)

ANV

and therefore u(A) = 1/(1 + 1.5) = 0.4. The rest of the strength values are local.
The actual strength of Cis «(C) = 1/(1 + 1.5) = 0.4, since in its potential tree 7 (C)
has D as undefeated attacker with (D, A, 7 (C)) =1 and A as defeated attacker
with (A, 22, 7(C)) = 1/(1 + 1) = 0.5. Note that the local strength value 0.5 for C in
the potential tree for A differs from C’s actual strength value 0.4, computed from its
potential tree. Our approach would use the actual values (rather than the local ones)
in order to perform pruning, i.e., #(A) = u(C) = 0.4. Note that the local strength for
C in the potential tree for E is exactly its actual strength. This is not by chance, but
because the potential tree for C is a subtree there.

Having the potential tree for C as a subtree in E’s is a hint for reutilising subtrees,
thus making strength computation more efficient. Next, we will present an algorithm
for calculating a DAF’s arguments actual strength that involves this improvement by
detecting the circumstances under which actual and local strength for an argument
coincide, i.e., when a potential tree is completely included in another argument’s tree.
By looking at Fig. 4 we have the potential tree 7 (X;) for X; containing a subtree
S(Y) rooted in Y. Arguments Z; to Z,, denote those that are not part of 7 (X;) due to
the definition for an argumentation line prohibiting arguments to appear twice. The
challenge is to be able to tell when S(Y) is exactly the potential tree for Y. In order
to detect this we have to check whether arguments X; to X,, were left out of S(Y).
Therefore, if {Xy, ..., X,} N{Zy,...,Z,} = @ then S(Y) is the potential tree for Y. In
this way, when building 7 (X;) we can also store the potential tree for Y.

The symmetrical case takes place when we already have Y’s potential tree calcu-
lated. When building 7 (X)), once Y is reached, we can check whether arguments X;
to X, belong to Y’s potential tree. If they do not, then we can use Y’s actual strength
value, as it is the same as the local value, avoiding the construction of S(Y).

Algorithm 1 allStrengths

In : a DAF (U, <—)[A]
Out : aset StrSet containing the actual strength of every argument in U
begin

StrSet + 0

foreach argument A in U do
getStrength(A, 0, (U,—)[A], AStr, ATreeArgs, Excluded, StrSet)
StrSet «— StrSet U {(A, AStr, ATreeArgs)}

@ Springer

Using argument strength for building dialectical bonsai 115

The algorithm allstrengths will return the actual strength of every argument
in a given DAF. It will use the algorithm get St rength which computes the actual
strength for any argument whose strength is not already calculated. Once the actual
strength of an argument A is obtained, it is added to the set StrSet along with the
arguments used to build the potential tree for A. Arguments within the potential tree
will be used by the get Strength algorithm to determine if A’s actual strength can
be reutilised.

The getStrength algorithm is also used to compute arguments’ local strength.
It receives an argument A from a DAF (U, <)[A] and an argumentation line L in
which A will be added, and returns the local strength of A, the arguments considered
in A’s subtree used to compute the local strength and the arguments excluded from it.
In addition, this algorithm uses the set StrSet containing the actual strengths already
calculated.

Algorithm 2 getStrength

In : an argument A, an argumentation line L, a DAF (U, <)[A]

Out : the strength value AStr of A in the context of L, the set ATreeArgs
containing the arguments used to calculate AStr, and the set ExcludedA of
arguments excluded when obtaining AStr

In-Out: the set StrSet of already calculated strength values

begin

attsStr < 0

ExcludedA «+ 0

foreach attacker B of A in — do

if B is in L then

ExcludedA <+ ExcludedA U {B}

else
if B is in StrSet and no argument for B in StrSet is in L then
BStr « getStr(B, StrSet)
BTreeArgs < getTreeArgs(B, StrSet)
ExcludedB < ()
else
| getStrength(B,L U {A},(U, —)[A],BStr,BTreeArgs, ExcludedB,StrSet)
attsStr < attsStr + BStr
ATreeArgs + ATreeArgs U BTreeArgs
L FzcludedA + ExcludedA U Excluded B

AStr « 1/(1 + attsStr)
if no Argument in EzcludedA is in L then
| StrSet = StrSet U {(A, AStr, ATreeArgs)}

Given an argument A, getStrength analyses every possible attacker B of A in
the DAF. If B is already in the argumentation line L, then it cannot be added to A’s
subtree and therefore it is excluded (it will not affect A’s local strength). Otherwise,
B will be part of A’s subtree. In this case, if B’s actual strength is already calculated
and no argument in B’s potential tree is part of line L, then B’s actual strength stored
in StrSet will be B’s local strength in A’s subtree. In particular, all B’s potential tree
arguments stored in StrSet will be part of A’s subtree. On the contrary, if B’s actual
strength was not previously calculated, then it is obtained by recursively calling this
algorithm in the context of A’s subtree. Similarly, if any B’s potential tree argument
cannot be included in A’s subtree, then it is necessary to compute B’s local strength.
After B’s strength is obtained it is added to the sum of A’s attackers strength, and the
arguments used to compute B’s local strength are included into A’s subtree. Then,
after all A’s attackers have been considered, A’s local strength is obtained by using

@ Springer

116 S. Gottifredi et al.

the formula presented in Definition 7. If none of the excluded arguments from A’s
subtree appeared previously on Line, then A’s subtree is indeed A’s potential tree.
Therefore, A’s local strength is in particular A’s actual strength and can be stored in
StrSet.

It is important to note that, when the get St rength algorithm receives an empty
argumentation line for an argument A, it will be calculating A’s actual strength
directly. In particular, this is how the al1St rengths algorithm calculates the actual
strength of arguments.

Now that we have given the strength formula and presented the algorithms that
implements it, we will show that the formula for calculating strength presented in
Definition 7 satisfies the postulates from Section 3.1.

Proposition 1 The strength measure (-) from Definition 7 satisfies the postulates
(S1), (S2), (S3), (S4), (S5) and (S6).

Proof See Appendix. O

4 Building dialectical bonsai

In this article, we will use strength values to devise a heuristics-based method to
construct dialectical bonsai. Remember that the strength of an argument is computed
on top of the potential dialectical tree associated to it. Therefore, these values will
be an indication of how likely to be defeated an argument is, but given a specific
scenario the real strength of an argument (corresponding to the active tree rooted
in it) could differ greatly from the one calculated from the potential tree. That is,
if strength values were to be kept up to date, they should be recalculated every
time the situation changes, which is rather undesirable. In this article we propose
a more pragmatic approach, in which each strength value is computed just once
from the corresponding potential dialectical tree. Thus, when faced to particular
situations, strength values end up being approximated; however they are still useful
as a heuristics, as demonstrated by experimental testing.

Example 4 Consider Example 3, where wu(A)=0.4,uB)=unD)=1,uC) =
0.4, w(E) =0.7. Let us assume a world in which A and D are inactive. In this
case, C has no defeaters, but its strength value is still 0.4, as it would have been
calculated beforehand, from its potential tree. For instance, if while building a tree
we encounter that the set of attackers is {B, C, D, E} then, given their strength values,
the order of evaluation would be B, D, E and C. That is, the algorithm would not
know that C is undefeated and would lose the opportunity for a quick pruning. This
is understandable and does not undermine the usefulness of this approach, as shown
by empirical testing.

Definition 8 (Dialectical bonsai) Let 7 (A) be an active dialectical tree in the context
of a DAF 1, a dialectical bonsai B(A) for 7 (A) is a pruning of 7 (A) with a set of
arguments Sy, verifying:

m(B;, Ak, 7 (A) = m(B;, A;, B(A)), for every B; € Sy,

@ Springer

Using argument strength for building dialectical bonsai 117

where A is an argumentation line of 7 (A) containing B;, A; is an argumentation line
of B(A) containing B;, and A, A; are such that the paths from A to B; coincide in both
lines.

Proposition 2 A 1U pruning for an active dialectical tree T is a dialectical bonsai

forT.

Proof See Appendix. O

By definition, a dialectical bonsai is not an arbitrary pruning of its associated
(active) dialectical tree, but one that shares the mark of every argument; in particular,
the mark of the root. A more relaxed version of this definition could require sharing
only the mark of the root argument. However, permitting a different marking for
the rest of the arguments adds unnecessary complexity, and it constitutes ongoing
research. The most important property dialectical bonsai should satisfy is to warrant
exactly the same arguments than non-pruned trees do.

Lemma 1 (Soundness & completeness) Given a dialectical bonsai B(A) of a dialecti-
cal tree T (A), A is warranted from T (A) iff A is warranted from B(A).

Proof See Appendix. O

A different version of the definition for a dialectical bonsai might imply a
much more complicated procedure to determine the status of the root argument.
However, it would be desirable for any alternative definition to not interfere with
the satisfaction of the meta-properties of soundness and completeness.

Note that, for the kind of pruning we are considering here, any heuristics would
yield trees that are both sound and complete. Even a very poor heuristics would
do so. This happens because the heuristics determines just the order of evaluation.
On the other hand, the mechanism used for pruning could make the method to
lose these two meta-properties. Or it could as well lead to even smaller bonsai.
In any case this article is devoted to analyse pruning techniques that preserve the
marking of all nodes, thus verifying Lemma 1. Next we introduce a particular notion
of bonsai, whose pruning is based on argument strength and that happens to be a 1U
pruning.

Fast-prune bonsai When a dialectical tree is built, the order in which children
(i.e., attackers) are generated is relevant, as it could lead to very different results if a
pruning technique like 1U were applied (as shown in Example 2). In our approach,
each argument has an associated strength value, therefore once all the children of a
given inner node were gathered, they are sorted from the strongest to the weakest.
In this way, we always seek for the strongest attackers first in order to find an
undefeated argument as fast as possible, to then be able to cut the remaining siblings
off. This strategy is called fast prune.

@ Springer

118 S. Gottifredi et al.

Definition 9 (Fast-prune bonsai) Given a DAF 1 and a dialectical bonsai B(A) for
an active dialectical tree 7 (A), let B be an inner node in B(A) with a set of attackers
[in 7 (A) such that the subset of attackers in B(A) is I'" C I'. Given the argument
strength function w(-), B(A) is a fast-prune bonsai iff 3B; € I, m(By, Ay, B(A)) = U
implies both:

1. VB]'#k S F/, U«(Bk) < M(B]'), m(B]-,)\j, B(A)) =D
2. VB, e D\ I, u(By) < u(By).

Another way of reading this definition is to think that the strongest attackers B;
for B have to be considered within 3(A), until an undefeated attacker is found; then,
those attackers B, that were left out of the bonsai are weaker than (or as strong as)
the attackers for B in B(A). As in Definition 6, [’ containing all defeated arguments
receives no special treatment, since any subset would preserve the marking for B.
Procedurally, however, the algorithm would have to check all the arguments, from
the strongest to the weakest, to finally find out that none of them is undefeated.
Hence, in practice, when all arguments in I' are defeated, it holds that I" =T.
Another variant would be to stop checking arguments statuses whenever a certain
strength threshold is met, e.g., not to check arguments with a strength value below
0.2. In that case, we would have that I' C I" and could prune even further, at the risk
of losing soundness.

Proposition 3 A fast-prune bonsai for a dialectical tree T is a 1U pruning for T.
Proof See Appendix. O

Example 5 Consider the potential tree for A depicted in Fig. 5a. Assuming that D
and H are not active at the current time, we have the active tree shown in Fig. 5b.
Applying fast prune over this active tree (which keeps the strength values from the
potential) we have that the strongest attacker of A is C. This argument has two

Fig. 5 a Potential tree for AA(.54)

argument A in Example 5, P ~

b active tree for A for an Ba(.33) CA(.53)

active scenario and ¢ o |~
fast-prune bonsai for A DA(1) EA(1) FA(4) GA(.5)

in the same active scenario

o \
HA(S) 1AL JA(1)

(a) KA
AA(.54) AA
~ ~ AN
Ba(.33) CA(.53) \\/ cA
\ N N
EA(1) FA(4) GA(.5) Fo Ga
\

@ Springer

Using argument strength for building dialectical bonsai 119

Fig. 6 a Potential tree for AA(.42)
argument A in Example 6, NG
b active tree for A for an B1A(5) — Boa(.4) BsA(.5)
active scenario and ¢ | o |
fast-prune bonsai for A
in the same active scenario CiAM) CQA‘('5) CA) CaA()
D1 A(1)
(a)
AA(.42) AA
P RN 7N
BlA(.5) BQA(.4) BgA(.E)) BI‘A = B3A
\ \
C1A(1) Coa(.5) (SAY
\
D2A(1) (c)

(b)

children, where G is the strongest one. Then, we consider G, whose only attacker
is J, therefore G ends up defeated and its siblings should be evaluated. Again, F is
defeated by leaf I, and C has no more attackers, thus it ends up undefeated. This
means that C’s siblings can be pruned off, yielding the bonsai in Fig. S5c. Note that
every node in the bonsai preserves its marking; in particular the root.

Example 6 Consider the potential tree depicted in Fig. 6a. Assuming a world in
which C; and C, are inactive, we have the active tree in Fig. 6b, where A is now
defeated. The strongest attackers for A are By and B;. Following the lexicographical
order, B, is expanded, whose one attacker C; is undefeated, hence B, is defeated.
Then, we seek for the second stronger attacker for A, which is Bs, and it is a leaf,
i.e., it is undefeated. Therefore, B, is cut off and the root is marked as defeated. The
resulting bonsai is depicted in Fig. 6¢. Note that the bonsai could get even smaller if
it were composed just by A and B;.

5 Empirical results

The previous section defined how to build a dialectical bonsai. An argumentation-
based system using fast-prune bonsai for computing warrant would first precompile
(only once) all strength values and then, in response to queries upon the chang-
ing set of active arguments, build and prune the corresponding active dialectical
tree/s.

In this section, the performance of the fast-prune bonsai (FP) is measured from
a simulation. The analysis involves comparing the FP bonsai against a blind-prune
bonsai (BP), i.e., a pruning technique imitating the behaviour of a typical dialectical
tree construction procedure, using no guide, like DELP. The comparison between

@ Springer

120 S. Gottifredi et al.

the two bonsai will help us analyse the improvement achieved by FP bonsai. The
simulation consists of the following steps:

1. Generation of a random DAF with U arguments: by creating a graph of U nodes
and over U edges;

2. Strength computation: performed following the formula in Definition 7 using the
algorithms in Section 3.2 by reutilising subtrees, which implies big time savings.
Strength computation allows for storing trees (i.e., arguments and attacks), as a
precompilation [10]. Since generally in a real-world scenario the construction of
arguments takes time, we simulated this by introducing a small time penalty of
0.001 seconds each time an argument is built;

3. Loop 500 times:

(a) Deactivation of arguments: a certain percentage of randomly chosen argu-
ments is deactivaated.

(b) Selection of a query: a random active argument is selected to act as a query.

(b) Computation of warrant:

— Fast-prune bonsai: an algorithm following Definition 9 computes war-
rant by using precompiled arguments and attacks; as for strength
calculation, the time penalty per argument is introduced.

— Blind-prune bonsai: an algorithm following the usual procedure in
Definition 6 computes warrant by building arguments and attacks on-
the-fly, which includes the time penalty.

Hence, each simulation generates a DAF, deactivates some arguments, and
performs 500 queries. Since results are DAF-dependent, this simulation was ran 1000
times and the deactivation ratio was set to 10 %. The results for different DAF sizes
can be seen in Table 1, where “U” indicates the size (i.e., number of arguments) of
the DAF, “str(t)” the average amount of time taken to compute strength values,
“FP(t)” (resp., “BP(t)”) the average amount of seconds taken to compute the
500 queries using fast-prune (resp., blind-prune) bonsai, “B/F” indicates the online
speedup obtained considering queries only (without time needed for of fline strength
computation), “str(#)” (resp., “BP(#)”) reflects the average amount of arguments
generated to compute strength (resp., BP bonsai).

A question that might arise after this description is why tolerating a time penalty
while building the BP bonsai if the argument base can be precompiled. The answer
to this is split in two: (1) we are trying to simulate the usual procedure to compute
warrant (such as the one used in DELP) which does not perform any precompilation;
(2) precompilation of arguments and attacks involves computing potential trees and
from there computation of strength would involve a slight overhead: traversing the
tree from the leaves to the root. The original question however remains: how does FP
perform against BP when both work over precompiled argument bases? The answer
can be found in Table 2. Here, we consider the time taken to precompile knowledge,

Table 1 Results U st((t) FP(t) BP(t) B/F str(#) BP(#)
200 086 0029 2.02 70 807 1822
300 141 0031 206 66 1329 1852
500 235 0039 208 53 2219 1861

@ Springer

Using argument strength for building dialectical bonsai 121

Table 2 Precompiled U FP(1) BP(t) Bo/Fe
argument base
200 0.029 0.076 2.62
300 0.031 0.08 2.58
500 0.039 0.091 2.33

which is comparable to compute strength. Since both approaches would be storing
potential trees, we took this element out of the equation. Speedup (“Bc/Fc”) follows
the same intuition as before. Note that the time BP bonsai (“BP(t)”) take to respond
to queries no longer has the tree-construction penalty, thus modifying the per-query
speedup shown before(“B/F”).

As mentioned in Section 2, a scenario that would be favoured by the usage of FP
bonsai is that of an argumentation-based agent. When looking at Table 1, speedup
speaks by itself, whereas by considering precompiled KBs in Table 2 speedup is
smaller but still largely justifies using FP bonsai to further maximise pruning, thus
minimising time devoted to query answering.

Regarding the amount of space needed to store potential trees, we only need to
store the potential graph, as each potential tree is the spanning of this graph from
a given argument. For instance, a DAF of 500 arguments and 500 attacks with a
maximum argument size of N kilobytes would require 500 x N + 500 x M, where M
is just a few bytes representing an attack: both arguments IDs plus attack direction.
For this problem size, considering arguments of a maximum size of 5 kb (which is
approximately two pages of plain text), the amount of storage necessary to keep the
precompiled information would remain below 5 mb.

6 Conclusions

We have presented an approach to accelerate the computation of dialectical trees
(and thus warrant) within a dynamic abstract argumentative setting. Such dynamic
frameworks allow for the representation of active and inactive arguments, being the
former the only ones to be considered to compute warrant. This characteristic leads
to the consideration of potential dialectical trees (containing every argument in the
universal set), as well as active trees (containing only currently active arguments).
Therefore, every time the situation changes, warrants would have to be recalculated.
There is a high degree of uncertainty regarding how the fluctuation of active argu-
ments affects previously computed warrants. Nonetheless, the information codified
by potential trees can be successfully used to speed up the construction of active
trees. To this end, we calculate a measure of strength for each argument using
potential trees. This is an advantage, as strengths are calculated just once, and not
upon every change in the world, as it would be done if strength were calculated over
active trees. Strength computation, even when performed once, is indeed expensive.
However, empirical testing has shown that the time taken to compute argument
strength is amortised within a reasonable time window. Another advantage of pruned
trees is that of readability; smaller trees are easier to visualise. This is another
motivation for finding the smallest possible trees, as they justify the mark of the root
by using the minimal amount of arguments.

@ Springer

122 S. Gottifredi et al.

We presented a comprehensive set of postulates describing the desirable be-
haviour of any strength formula. The concrete measure presented in Section 3.2
was successfully checked against these postulates. Having such a characterisation
formalises the expected behaviour of any given strength measure; this eases the
definition of new strength formulas.

The fast-prune heuristic technique is guided by argument strength and attempts to
maximise pruning by looking to find undefeated arguments as soon as possible, which
implies that their siblings can be cut off. Computing argument strength allows us to
store precompiled arguments and attacks, which would be used later when answering
queries. Hence, significant speedup (shown as “B/F” in Table 1) is not only a result
of traversing smaller trees, but also due to the non-calculation of arguments and
attacks. In the case of fast prune (FP), arguments are built at the stage of strength
computation; as for blind prune (BP), every query triggers the construction of a
tree and every argument in it. Table 1 shows both quantities in columns “str(#)”
and “BP(#)”, where the latter is the accumulated amount after 500 queries. Finally,
when considering precompiled arguments and attacks for both approaches, speedup
remains considerable, as illustrated by column “Bc/Fc” in Table 2, where is shown
that FP responds generally twice as fast than BP.

Experimental results indicate that each fast-prune bonsai is a significantly smaller
version of its associated non-pruned active tree, providing a meaningful speedup.
This plus precompilation of arguments and attacks is an asset in massive argumenta-
tion domains, like the WWW [21], where repeatedly looking for counter-arguments
is expensive. Another scenario where our approach would perform well can be found
in the context of multi-agent systems. An argumentation-based agent with goals
expressed as a set of warranted arguments [1] would be computing warrant several
times per cycle. In such a setting, precompiling and storing potential trees would yield
a twice-as-fast response.

7 Related work

The problem of efficiently computing the marking of the argument in the root of
a dialectical tree has received scarce attention. In [13] the problem was already
addressed; however, the approach is mostly declarative and does not include any
concrete techniques to perform the pruning, leaving out the definition of interesting
heuristics or empirical testing. Meanwhile, the approach taken in [15] was a concrete
attempt to address the issues related to the implementation of processes related
to the computation of argument status. In general, there has been little attention
devoted to this important problem.

In [8] an approach for speeding up the construction of argumentation trees is
presented. The authors also use information from the argument knowledge base
beforehand, to speed up the argumentation process. This argument compilation
produces a hyper-graph of the inconsistent subsets, which, together with a special
algorithm, can be used for efficiently building argument trees, saving time for conflict
detection. In our work, we try to avoid the evaluation of attackers whenever possible.
Both approaches follow parallel paths and could be combined.

In order to deal with warrant recalculation, some work has been recently done
on dynamics in argumentation. In [9], the authors propose a series of principles to

@ Springer

Using argument strength for building dialectical bonsai 123

determine under what conditions an extension does not change when faced to a
change in the framework. A similar article [12] analyses the impact on the set of
extensions provoked by the addition of a single argument to a framework. Another
paper [S] proposes possibility and impossibility results regarding argument additions
and enforcement of a set of warranted arguments. These articles are complementary
to ours, as they define properties that operate on top of an argumentation framework
that is assumed to change. Our method to accelerate warrant computation could be
used in tandem with these methods.

Concerning the relation between Dung semantics and the warrant given by our
adopted marking criterion, there is a resemblance with the grounded extension. The
difference is that our approach does not allow arguments to be repeated within an
argumentation line, whereas the grounded semantics only prevents pro arguments
from being repeated. For instance, assume an AF ({A, B,C},{B— A, B— C,C —
B}). In the DAF resulting from considering all arguments as active, the dialectical
tree would be the line A — B — C, whereas for Dung the tree spanning from the
graph would be A — B — C — B. In the former A would be accepted, while it is
rejected in the latter.

The work presented in [18] is related to ours by the fact that introduces a
computationally oriented method to update the semantics of an abstract argumen-
tation framework when the set of arguments or the attack relation change; the
division-based procedure is designed to improve the computational effectiveness
of such an update. This method effects a separation of the framework in three
sets of arguments (unaffected, affected, and the connecting parts) providing a way
of handling the change in the framework in such a way that the computation of
the new semantics can be done in polynomial time; and, when this cannot be
achieved, an exponential improvement in the complexity can be obtained. Clearly,
the approach presented in [18] differs from ours. On the one hand, our approach
is based on dialectical trees while theirs is based on the extensional approach for
argumentative semantics over graphs of arguments. On the other hand, our pruning
technique is guided by precalculated argument strength values that are afterwards
used for any configuration of active arguments. In contrast, they propose an efficient
method to compute the arguments statuses of an updated argumentation framework
by just considering the part of the framework affected by this update. Since both
approaches involve dynamics and pursue efficiency, it could be interesting to study
the feasibility of combining them. In particular, we could study how to use a heuristic
approach on their framework. Symmetrically, we could study how to apply the sep-
aration process to our proposal by analysing how an active instance transforms into
another.

8 Future work

Apart from the argument strength formula presented in Section 3.2, other formulas
could be considered. For instance, a formula stating that an argument A is as strong
as its support, which is understood as the difference between pro and con arguments
in the potential tree for A. An argument with no defeaters would be assumed to
have infinite support and assigned oo by default. Note that there would not be local
strength values, as the actual strength calculation is a simple count. For example,

@ Springer

124 S. Gottifredi et al.

applying this formula to the DAF in Example 3 would yield the following strength
values:

A(0) C(0) E()

Analysing this and other strength formulas has been left as future work, as
presenting them formally and checking compliance with the postulates presented in
Section 3.1 would have diverted the scope of the present article.

Our approach does not reach the “optimal” bonsai. That is, although the heuristics
clearly accelerates computation of warrant by analysing a smaller number of argu-
ments, it cannot ensure bonsai minimality. Addressing this challenge is a matter for
future work. Another optimisation to be analysed is to find a new heuristics in which
local strength values and actual strength values always coincide.

We plan to apply the pruning technique to the variation of the DELP system used
in [10]. This system contains defeasible rules only and specifies a set of “perceptions”
(i.e., facts) that changes dynamically. One of the main issues is to find a way to
(efficiently) build all potential arguments. Although this should consider any possible
set of facts that could arise, operationally defeasible rules are analysed one by one.
Each possible chaining of rules gives place to a new potential argument. Potential
trees would be used to compute strength. Once this has been done, given a particular
set of perceptions, a subset of these potential arguments will be active and thus the
method studied in this article could be used to prune DELP dialectical trees. More
difficulties have to be addressed for this rule-based approach to work; for instance,
potential arguments would be uninstantiated. That is, they are schemes and each one
of them could lead to several active arguments.

For certain argumentation frameworks the initial computation of strength could
be too expensive. In such a case, instead of computing strength values using potential
trees, an alternative approach can be implemented. The first query for a given
argument A could make the system to build a complete (i.e., non-pruned) dialectical
tree to find the answer. This tree would be also used to compute the strength value for
A. Both the tree and the strength value are stored. Subsequent queries for arguments
other than A but involving A in their active tree would use this strength value, as if
it were computed from a potential tree. Subsequent queries for A could refine the
strength value by completing the pseudo-potential tree. Over time, the performance
of this method would be increasingly better than pruning blindly.

The application of our approach to generalised Dung semantics indeed represents
future work. In order to achieve this, firstly we would need to de-attach the strength
formula from dialectical trees to make it compatible with argumentation graphs. As
mentioned in the previous section, our semantics is very close to Dung’s grounded
semantics; therefore, a straightforward extension could be achieved by relaxing the
occurrence check over con arguments within an argumentation line. In this case, the

@ Springer

Using argument strength for building dialectical bonsai 125

rest of the theoretical elements (strength formula, pruning policy, etc.) we propose
would remain valid.

Appendix

Proposition 1 The strength measure () from Definition 7 satisfies the postulates
(81), (S2), (S3), (S4), (S5) and (S6).

Proof Let u(-) be the strength measure of Definition 7, t a DAF, 7| and 7, two
potential trees from t, and two arguments A; and A; placed in an arbitrary position in
7 and Ty, respectively. Also let 7 be a potential tree that is the result of arbitrarily
adding and/or subtracting arguments to the subtree of 7; rooted in A;.

(S1) w(AL AL T < w(Ag, do, Do) Aff pas (A2, A2, To) < patts(A1, A1, Ty).
Let By, ..., B, be the attackers of A; in A; of 7, and Cy, ..., C, be the attackers
of A, in A, of 75.
If w(Ay, A1, 71) < u(Az, X2,), then by Definition 7:

1 1
<
Y>uBi i, T)+1 7 > u(Cja;,)+ 1

ZM(BiJi,Tl) +1> ZM(C;', i D) +1

Z w(Bi, A, Th) = Z w(Cj, rj, o)

Then it holds that pats (A2, A2, T2) < patts(A1, A1, 7).

(SZ) if attS(Al, A, ,TI) =@ and attS(Az, Ao, ’]—2) “0 then ,LL(Az, A2, 75) <
w(Ar, A1, 77). Let Cy,...,C, be the attackers of A, in A, of 7,. By
hypothesis atts(A;, A, 7)) =@ then by Definition 7 (A, A, 7;) = 1,
and since atts(A,, A2, 7o) # ¥ then by Definition 7 Y u(C;, A;, 72) > 0. Thus,
14+ Y wu(Ci, Ai, T2) > 1, and it holds that

1
1
1+> uCrin Do)

Then by Definition 7 it holds that w(A;, A2, 72) < w(Ay, Ay, 77).

(83) if [PrRO(A|, A1, TD)| < [PRO(A|, A1, T}™)| and [coN(Ay, Ay, T1)| = |coN(A, A1, T4
then w(Ay, A1, 71) < w(Ay, A, TR).
By induction over n = “the amount of changes performed over 7; to obtain
TIA, where a change is an addition or a removal of a subtree”.

— Initial Step: When n =0 that is 7; = 7* therefore, w(Ai, 7, 7)) =
(AL, A, TR). Then, u(Ar, Ay, 71) < pu(Ar, &y, 7,%) holds.

— Inductive Step: Let us assume that u(A;, A1, 77) < (A, &1, 7:°7") holds
with 7;27! having n — 1 changes with respect to 77, and let us prove that
w(AL, d1, Th) < w(Aq, A1, 72) holds for 7,2 having one change with respect
to 7;27". Then, by hypothesis we have two cases: either this change is an

@ Springer

126 S. Gottifredi et al.

addition of a pro argument or the removal of a con argument (at any case,
the change involves the corresponding subtree):

- If 7% adds a pro argument E, then there is an argument C
such that C € con(A;, A;, 732" and C e CON(Al,)Ll,'TlA), assuming
that D,...,D; are C’s attackers on 7;%~' and D,...,Dy, E are
C’s attackers on 7,%. By inductive hypothesis " u(D;, A, 7,%7") =
> w(Dy, A, TIA), and by Definition 7 u(E, A, 7,%) > 0. Therefore,

1 1
>
1+ w2, T2 ~ 1+ 2wy, A, T + w(E, A, T1%)

which implies by Definition 7 that 1(C, A, T;°™") > u(C, A, ™).
Since C’s strength is reduced in 7,* with respect to 7;*~' and
the only change in 7,* is the addition of E, the only strengths
that will be affected are those of C’s ancestors. In particular, by
Definition 7 the strength of C’s father F will be increased in 7,2,
which also decrements the strength of F’s father G. Given that C €
coN(Ay, 1, T2), then F e pro(Ar, 41, 7%) and G € coN(Ay, Ay, T2).
Following, the strength of C’s ancestors which are A’s Pro arguments
will increase in 7,* with respect to 7;“~". Since A € Pro(A,, A, T%), it
holds that w(A, &1, 71271 < n(A, A4, 7,*). Thus, by inductive hypoth-
esis (A, A1, 77) < (A, A1, 72) holds.

- If 7* removes a con argument E, then there is an argument C
such that C € pro(A;, 21, 7127") and C € pro(A, A1, 7,%), assuming
that D;...,Di, E are C’s attackers on 7;°' and D,...,D; are
C’s attackers on 7,%. By inductive hypothesis 3" u(D;, A;, 7,%7") =
> (D, A, T2), and by Definition 7 w(E, A, 7,*) > 0. Therefore,

1 1
<
14+ ui iy T2 + w(E, 1), T2) ~ 1+ X (D i)

which implies by Definition 7 that 1(C, A, 71°7") < (C, A, T,2).
Since C’s strength is augmented in 7, with respect to 77" and
the only change in 7% is the removal of E, the only strengths
that will be affected are those of C’s ancestors. In particular, by
Definition 7 the strength of C’s father F will be decreased in 7,2,
which also increases the strength of F’s father G. Given that C €
PRO(A, A1, 7;%), then F € con(A, A, 72) and G € pro(Ay, Ay, T2).
Following, the strength of C’s ancestors which are A’s Pro arguments
will increase in 7,* with respect to 7;*~". Since A € Pro(A|, A, T2), it
holds that w(A, A1, 71271 < (A, A4, 7,*). Thus, by inductive hypoth-
esis (A, A1, 77) < (A, A, 7*) holds.

(S4) if |con(Ay, A1, T1)| < |con(Ay, A1, T)| and [PRO(A, A1, T1)| = [PRO(A}, A1, T2))|
then ww(Ay, A1, T1) = (AL, A, T2).
Analogous to (S3).

@ Springer

Using argument strength for building dialectical bonsai 127

(SS if/"L(Ah)"lv 7—1) E/“L(A]a)‘l’TA) then
1
(a) (VB:A; erro(B, A, 7)) u(B, A1, T1) < (B, A1, 7,*) and

(b) (VC: A, € con(C, i, T) w(C, 21, To) = u(C, hr, T).

The proof for (a) is by induction over n = “the number of pro ancestors of A,
in the argumentation line A; of 7; and 7,%”.

Initial Step: When n = 0 the argument A, is the only argument that has A
as a pro argument in the line 1; of 7; and 7,%. Then it holds by hypothesis
that (A, A1, 77) < Ay, AL, T2).

Inductive Step: Let us assume that w(B,_1, A1, 71) < u(By—1, A1, T]A)
holds with B,,_; the (n-1)th pro ancestor of A; in ;, and let us prove
that this holds for B, the nth pro ancestor of A; in 1;. Let C;...Cy, D
be the attackers of B, in TIA and 7; where D is the attacker that appears in
Ai,and let Ey, ..., E,, B, be the set of attackers of D in 7,* and 7;. By
definition of 7* Y u(Cy, &, 1) = Y w(Ci, A, T,2) and Y- w(E, 24, 7)) =
> w(Ei Aiy 7,%). Then:

L4 Y w@iri, Ty =14 uGCi ki, T4
L+ i ain T) + n(Buoy, A, 7)) < 1
+ ZM(CZV)“iv 7—]A) + M(Bﬂflv)\‘17 7’]A)

[By Inductive Hypothesis]

1
1+ Z I’L(Ch)\-is /TIA) + I'L(Als)"15 ’Z;A)
- 1
T4+ Y wCiai, T + (A, AL, T

w(D, 21, T1) = u(D, A1, T%)
[By Definition 7]

14> 1@ 2 T+ D1, A, T) = 1+ Y (D), Ay T2 + 1Dy, 21, Tr)

1 1
<
14+ D), 2, 7)) + w(Di, A, 7)) — 1+ > w(Dj, A5, TR

M(Bn»)“17 7—1) = H’(an)“17 7—1A)
[By Definition 7]

The proof for (b) is analogous to (a) where n is “the number of con
ancestors of A; in A;” and the initial step considers the father of A;.

@ Springer

128 S. Gottifredi et al.

(S6) if w(Ay, A1, 1) = (A, Ay, T}%) then
(VB : A € pro(B, 11, T1)) u(B, A1, 1) = (B, A1, 7,) and
(¥C : Ay € pro(C, A1, T1)) (G, 11, T) < u(C, 2y, T%).
Analogous to (S5).

Therefore, the strength formula from Definition 7 verifies postulates (S1) to (S6) O

Proposition 2 A 1U pruning for an active dialectical tree T is a dialectical bonsai

forT.

Proof Let P(A) be a 1U pruning of a dialectical tree 7 (A). Since for any set
of attackers for a given argument B in the original tree 7 (A) with at least one
undefeated attacker, exactly one of these remains in the 1U pruning P(A) by
Definition 6, then B is defeated both in 7 (A) and P(A). On the other hand, for any
set of attackers for B where no argument is undefeated, any subset of attackers (even
the empty set) would yield B as undefeated. O

Lemma 1 Given a dialectical bonsai B(A) of a dialectical tree T (A), A is warranted
from T (A) iff A is warranted from B(A).

Proof Trivial, from Definition 8, the marking of the root nodes in B(A) equals the
marking of the root in 7 (A):

(=) By hypothesis, A is marked as U in 7 (A). By Definition 8, m(A, Ax, 7 (A)) =
m(A, A;, B(A)), then m(A, A;, B(A)) = U and A is warranted in B(A).

(<) By hypothesis, A is marked as U in B(A). By Definition 8, m(A, Ax, 7 (A)) =
m(A, A;, B(A)), then m(A, A;, 7 (A)) = U and A is warranted in 7 (A).

Therefore, A is warranted from 7 (A) iff A is warranted from B(A). O
Proposition 3 A fast-prune bonsai for a dialectical tree T is a 1U pruning for T.

Proof A fast-prune bonsai requires, for any set of attackers with at least one
undefeated argument: (1) to have only one undefeated argument By (2) for By to
be weaker than its (defeated) siblings in the bonsai. Condition 1 is equivalent to the
requirement for a 1U pruning. O

References

1. Amgoud, L., Devred, C., Lagasquie-Schiex, M.C.: A constrained argumentation system for
practical reasoning. In: AAMAS, pp. 429-436 (2008)

2. Amgoud, L., Dimopoulos, Y., Moraitis, P.: A general framework for argumentation-based nego-
tiation. In: ArgMAS, pp. 1-17 (2007)

3. Baroni, P., Dunne, P.E., Giacomin, M.: Computational properties of resolution-based grounded
semantics. In: IJCAI, pp. 683-689 (2009)

4. Baroni, P., Giacomin, M.: On principle-based evaluation of extension-based argumentation
semantics. Artif. Intell. 171, 675-700 (2007)

5. Baumann, R., Brewka, G.: Expanding argumentation frameworks: Enforcing and monotonicity
results. In: COMMA, pp. 75-86 (2010)

6. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171,
619-641 (2007)

@ Springer

Using argument strength for building dialectical bonsai 129

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1-2),
203-235 (2001)

Besnard, P., Hunter, A.: Knowledgebase compilation for efficient logical argumentation. In: KR,
pp. 123-133 (2006)

Boella, G., Kaci, S., van der Torre, L.: Dynamics in argumentation with single extensions:
abstraction principles and the grounded extension. In: ECSQARU, pp. 107-118 (2009)
Capobianco, M., Chesiievar, C.I., Simari, G.R.: Argumentation and the dynamics of warranted
beliefs in changing environments. JAAMAS 11, 127-151 (2005)

Cayrol, C., Lagasquie-Schiex, M.C.: Graduality in argumentation. J. Artif. Intell. Res. (JAIR) 23,
245-297 (2005)

Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.C.: Change in abstract argumentation frame-
works: adding an argument. J. Artif. Intell. Res. (JAIR) 38, 49-84 (2010)

Chesiievar, C.I., Simari, G.R., Godo, L.: Computing dialectical trees efficiently in possibilistic
defeasible logic programming. In: LPNMR, pp. 158-171 (2005)

Chesiievar, C., Simari, G.: A lattice-based approach to computing warranted belief in skeptical
argumentation frameworks. In: IJCAI, pp. 280-285 (2007)

Chesiievar, C.I., Simari, G.R., Garcia, A.J.: Pruning search space in defeasible argumentation.
In: ATALI pp. 46-55 (2000)

Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artif. Intell. 77(2), 321-358 (1995)

Garcia, A.J., Simari, G.R.: Defeasible logic programming: an argumentative approach. TPLP
4(1-2), 95-138 (2004)

Liao, B., Jin, L., Koons, R.C.: Dynamics of argumentation systems: a division-based method.
Artif. Intell. 175(11), 1790-1814 (2011)

Matt, P.A., Toni, F.: A game-theoretic measure of argument strength for abstract argumentation.
In: JELIA, pp. 285-297 (2008)

Prakken, H., Vreeswijk, G.: Logics for defeasible argumentation. In: Gabbay, D., Guenthner, F.
(eds.) Handbook of Philosophical Logic, 2nd edn, vol. 4, pp. 219-318. Dordrecht etc. (2002)
Rahwan, I.: Mass argumentation and the semantic web. J. Web. Sem. 6(1), 29-37 (2008)
Rahwan, 1., Zablith, F., Reed, C.: Towards large scale argumentation support on the semantic
web. In: AAAI pp. 1446-1451 (2007)

Reed, C., Wells, S., Devereux, J., Rowe, G.: Aif+: dialogue in the argument interchange format.
In: COMMA, pp. 311-323 (2008)

Rotstein, N., Moguillansky, M., Garcia, A., Simari, G.: A dynamic argumentation framework.
In: COMMA, pp. 427438 (2010)

Rotstein, N.D., Gottifredi, S., Garcia, A.J., Simari, G.R.: A heuristics-based pruning technique
for argumentation trees. In: SUM, pp. 177-190 (2011)

Rotstein, N.D., Moguillansky, M.O., Simari, G.R.: Dialectical abstract argumentation: a charac-
terization of the marking criterion. In: IJCAI, pp. 898-903 (2009)

Wooldridge, M.J.: An Introduction to MultiAgent Systems, 2nd edn. John Wiley & Sons (2009)

@ Springer

	Using argument strength for building dialectical bonsai
	Abstract
	Introduction & motivation
	Theoretical basis
	Strength of an argument
	Postulates for an argument strength formula
	An approach to argument strength

	Building dialectical bonsai
	Empirical results
	Conclusions
	Related work
	Future work
	Appendix
	References

