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a b s t r a c t

In this work an analysis is performed on the nonlinear planar vibrations of a functionally graded beam

subjected to a combined thermal and harmonic transverse load in the presence of internal resonance.

Adopting the direct perturbation MMS technique, the partial differential equations of motion of the

beam are reduced to sets of first-order nonlinear modulation equations in terms of the complex modes

of the beam. The assumption of steady-state values of centrifugal loads is evaluated. It has to be said

that there is a lack of information about modeling of rotating box beams made of functionally graded

materials (FGMs) under thermo-mechanical loads. The influence of the transverse load amplitude and

the internal detuning parameter on the strength of nonlinear modal interaction is illustrated. It is also

shown that the system exhibits periodic and quasiperiodic responses for a typical range of parameter

values.

& 2012 Published by Elsevier Ltd.

1. Introduction

The problem of modeling and studding of a rotating flexible beam
has received a constant research interest in connection with the
applications like flexible robot arms, rotor blades and spacecraft with
flexible appendages. The most simplified representation of a rotating
beam is a one-dimensional Euler–Bernoulli model. A uniform rotating
beam of doubly symmetric cross-section is a special case. Owing to
the stiffening effect of the centrifugal tension, one generally can
expect the natural frequencies to increase with an increase in the
speed of rotation. Several works have studied a rotating cantilever
beam and approximate methods such as Rayleigh–Ritz, Galerkin,
finite element methods, etc., has been used to find the natural
frequencies [1–4]. However, the internally resonant analysis of
rotating beams is rather rare in the literature [5–8]. Systematic
procedures have been developed to obtain reduced-order models
(ROMs) via nonlinear normal modes (NNMs) that are based on
invariant manifolds in the state space of nonlinear systems [9–12].
These procedures initially used asymptotic series to approximate the
geometry of the invariant manifold. They have been used by Pesheck
et al. [5] to study the nonlinear rotating Euler–Bernoulli beam. Also,
Pesheck et al. [6] employed a numerically-based Galerkin approach to
generate accurate reduced-order models for large-amplitude, strongly
non-linear motions.

Apiwattanalunggarn et al. [7] presented a nonlinear one-
dimensional finite-element model representing the axial and trans-
verse motions of a cantilevered rotating beam, which is reduced to a
single nonlinear normal mode using invariant manifold techniques.
They used this approach to study the dynamic characteristics of the
finite element model over a wide range of vibration amplitudes. It is
interesting to note that the interest of most works about nonlinear
dynamic of rotating beams have focused on the reduced-order
model as the invariant manifold solution. Turhan and Bulut [8]
investigated the in-plane nonlinear vibrations of a rotating beam via
single- and two-degree-of-freedom models obtained through a
Galerkin discretization. They performed a perturbation analyses on
single- and two-degree-of-freedom models to obtain amplitude
dependent natural frequencies and frequency responses.

On the other hand, there are many papers concerning mechanics
of beams made of FGMs. In the opinion of the authors, the articles
presented in [13–15] among others offer interesting features,
applications and calculation methodologies. These models are
developed by means of different constitutive hypotheses (graded
metallic-ceramic, graded multilayered, etc.) and displacement for-
mulation (i.e. elementary Bernoulli–Euler or Timoshenko or Higher
order shear deformable theories). The constitutive modeling is
commonly related to a classical rule of mixtures and the material
properties vary according to a power law expression [14] or an
exponential expression [13].

Now, taking into account the technological context, it is
important to mention that there is a lack of information about
rotating beams constructed with FGMs. Piovan and Sampaio [16]
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introduced a nonlinear model for planar analysis of rotating
beams with material properties graded along the solid cross-
section. Only a few authors explored in recent years the dynamics
of thin-walled beams constructed with functionally graded mate-
rials. Piovan and Sampaio [17] developed a theory to study the
dynamics of telescopic thin walled beams made of FGMs. Oh et al.
[18,19] introduced a couple of first-order-shear models to study
vibratory patterns of spinning and rotating thin-walled beams
constructed with FGMs. The papers given by Fazelzadeh et al. [20]
and Fazelzadeh and Hosseini [21] also deal with rotating beams
made of FGMs. However in these formulations no geometrical
stiffness has been taken into account. The interest of these papers
has been focused in the thermoelastic effects related to graded
properties.

From the review of literature, it is found that the study of
internal resonance in the area of cantilever rotating slender beam
subjected to a harmonic transverse load has not yet been explored
so far, neither in the context of composite materials nor in the
context of functionally graded materials. The nonlinear modal
interaction or the internal resonance in the system arising out of
commensurable relationships of frequencies, in presence of para-
metric excitation due to periodic load can have possible influence
on system behavior, which needs to be studied.

In the present paper, the nonlinear planar vibration of a rotating
FGMs cantilever beam is analyzed, considering the dynamic condi-
tion of internal resonance. The model is based on a one-dimensional
Euler–Bernoulli formulation where the geometric cubic nonlinear
terms (due to midline stretching of the beam) are included in the
equation of motion. The linear frequencies of the system are
dependent on the rotation speed; this effect is used to activate the
internal resonance. For a particular rotation speed the second
natural frequency is approximately three times the first natural
frequency and hence the first and second modes may interact due to
a three-one internal resonance. Principal parametric resonance of
first mode considering internal resonance is also analyzed. For a
comprehensive review of nonlinear modal interactions, we refer the
reader to [22–24]. The method of multiple scales (MMS) is used to
attack directly the governing nonlinear partial differential equation
of motion of the beam and reduce the problem to sets of first-order
nonlinear modulation equations in terms of the complex modes of
the beam [25]. These modulation equations are numerically ana-
lyzed for stability and bifurcations of trivial and nontrivial solutions.
Bifurcation diagrams representing system responses with variation
of parameters like amplitude and frequency of the lateral excitation
load, frequency detuning of internal resonances and damping are
computed with the help of a continuation algorithm [26]. The trivial
state stability plots are presented and the modulation equations are
numerically integrated to obtain the dynamic solutions (periodic,
quasiperiodic and chaotic responses) for typical system parameters.

For the principal parametric resonance of first mode, the
influence of internal resonance is illustrated in the frequency
and amplitude responses. The system is shown to have Hopf and
saddle node bifurcations for different parameter values. The
influence of intensity of transverse load amplitude and frequency
detuning for internal resonance on the strength of nonlinear
modal interaction is illustrated. The system exhibits dynamic
solutions like periodic and quasiperiodic responses for typical
range of parameter values.

2. Funcionally graded material and its thermal properties

The laws of variation of the material properties along the wall
thickness can be prescribed in order to bear in mind for different
types of material gradation such as metal to ceramic or metal to
metal (e.g. steel and aluminum). In this case, a simple gradation

based on a power-law is employed. The law of variation of the
elastic and mass properties along the wall-thickness e is:

PðnÞ ¼ PMþðPC�PMÞ
2nþe

2e

� �K

ð1Þ

where P(n) denotes a typical material property (i.e., density r or
Young’s modulus E or Poisson coefficient n). Sub-indexes C and M

define the properties of the material of the outer surface (normally
ceramic) and inner surface (normally metallic), respectively. The
exponent K, which is connected to the ratio of constituents in
volume, can have different values that may vary between zero (i.e., a
full ceramic phase) or infinity (i.e., a full metallic phase).

It is assumed that the beam is subjected to a steady-state one
dimensional (1-D) temperature distribution through its thickness.
The steady-state 1-D heat transfer equation is expressed by:

d

dn
kðnÞ

dT

dn

� �
¼ 0 ð2Þ

where k is the coefficient of the thermal conduction. The bound-
ary conditions are:

T ¼ TM at n¼�
e

2
and T ¼ TC at n¼

e

2
ð3Þ

The solution of Eq. (2) can be obtained by means of the
polynomial series. Therefore, T(n) is calculated as [27]:

TðnÞ ¼ TMþ
DT

Z
Xc
j ¼ 0

ð�1Þj
ðkC�kMÞ

j

ð1þ jKÞkj
M

n

e
þ

1

2

� �ð1þ jKÞ

ð4Þ

with

Z¼
Xc
j ¼ 0

ð�1Þj
ðkC�kMÞ

j

ð1þ jKÞkj
M

ð5Þ

where normally the upper limit of the summation is C-N,
however by means of an elemental numerical study one can prove
that Eq. (4) may be finely approximated by taking just a few terms,
or more practically, CZ5 as it was done by many researchers [28].

Throughout the numerical simulation TM is taken 300 K. It is
assumed that the properties of the FGMs are temperature-
dependent and vary according to a law obtained experimentally.
These are expressed in a general form as [19,29]:

pðnÞ ¼ p0ðp�1=Tþ1þp1Tþp2T2
þp3T3

Þ ð6Þ

in which p is a temperature-varying material property in general
(i.e. modulus of elasticity, or Poisson’s coefficient, etc.), T is the
absolute temperature [1K] and the coefficient pi is unique for a
particular material and obtained by means of a curve fitting
procedure. Thus the material properties can be represented as a
function of the thickness and the temperature. It is clear that p0 is
the typical material property in absence of thermal effects.

3. Non-linear equations of motion

In this section the nonlinear equations of motion of a rotating
box beam subjected to harmonic transverse loads are presented.
The structural model of a thin-walled beam is shown in Fig. 1. The
origin of the beam coordinate system (x, y, z) is located at the
blade root at an offset R0 from a rotation axis fixed in space. R0

denotes the radius of the hub (considered to be rigid) in which the
blade or beam is mounted. The hub rotates about its polar axis
through the origin 0. We assume that the motion is planar and the
cross sections remains plane during transverse bending. A doubly
symmetric cross-section box-beam is used, thus uncoupling the
out-of-plane (flapping) and in-plane (lead-lag) vibration.

Following the mathematical formulation developed by the
authors in [30], considering in this case a Bernoulli–Euler theory
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and adding the rotation effect, the governing differential equa-
tions of a FGMs beam is given by

�Q 0xþM1ðxÞ�Jr11ðR0þxþuÞO2
¼ 0 ð7Þ

Mz*�ðQxv0Þ0 þM2ðxÞ ¼ FðxÞcosð$tÞ ð8Þ

In Eqs. (7) and (8) primes mean derivation with respect to the
space variable x. The variable u is the axial displacement of the
cross-section, v is the lateral displacements and O is the beam
rotation speed. On the other hand, Qx is the axial force and Mz is the
bending moment. F(x) describes the spatial distribution of the
applied transverse harmonic load and $ is the excitation frequency.
Finally, M1 and M2 are the inertia forces. These inertia forces can be
expressed in terms of the accelerations as follows:

M1 ¼ Jr11
€u, ð9Þ

M2 ¼ Jr11
€v ð10Þ

where Jr11 ¼
R

ArðnÞdsdn, r is the graded mass density.
The beam forces involved in Eqs. (7) and (8) can be defined in

terms of the shell-stress resultants in the following form:

Qx ¼

Z
S

Nxxds, ð11Þ

Mz ¼

Z
s

NxxY�Mxx
dZ

ds

� �
ds: ð12Þ

From the conventional definitions of shell stress-resultants
given by

Nxx ¼

Z e=2

�e=2
sxxdn ð13Þ

Mxx ¼

Z e=2

�e=2
sxxn dn ð14Þ

Functionally graded shells are usually considered to be com-
posed by many isotropic homogeneous layers [31]. Thus, the
stress–strain relation for a generally isotropic material including
thermal effects is expressed as

sxx ¼
Ef

1�n2
f

exx�
Ef

1�nf
afDT ð15Þ

in which Ef, vf, and af are the graded modulus of elasticity,
Poisson’s coefficient and thermal expansion coefficient, respec-
tively. These properties are defined in n e [�e/2, e/2], according to
the power law defined in Eq. (1).

Substituting Eq. (15) into Eqs. (13) and (14), after an algebraic
rearrangement it is possible to derive the following constitutive
equation of shell-forces accounting for thermal effects:

Nxx

Mxx

( )
¼

A11 B11

B11 D11

" #
exx

kxx

( )
�

TNN TNM

TNM TMM

" #
Q ðTÞN

Q ðTÞM

8<
:

9=
; ð16Þ

where Aij, Bij, Dij, TNN , TNMand TMM are modified elastic and
thermal expansion coefficients, whose definitions can be followed

in [30]. On the other hand, exx and kxx are normal strains and
curvature of the shell, whereas QN

(T) and QM
(T) are defined according to

Q ðTÞN

Q ðTÞM

8<
:

9=
;¼

Z e=2

�e=2
af

Ef

1�nf
DT

1

n

� �
dn ð17Þ

The shell strains exx and kxx can be expressed in the following
form:

exx ¼ u0 þ
1

2
v02þYv00, kxx ¼

dZ

ds
v00 ð18Þ

Now taking into account the definition of the beam forces
given in Eqs. (11) and (12) and employing the definitions of shell
forces and strains given in Eqs. (16) and (18), the expression of the
generalized beam forces are obtained as in [30].

Substituting the generalized beam forces in Eqs. (7) and (8),
neglecting the inertial effects along the longitudinal direction and
following Nayfeh et al. [32], the equation of motion governing the
transverse deflection n(x,t) is written as

Jr11
€vþEIviv�EA 1

2L

R L
0 v02dxþ

Jr
11

EA O
2 L2

6 �
x2

2 þR0
L
2�R0x

� 	
�QT

h i
v00

þ Jr11O
2v0ðxþR0Þ ¼ FðxÞcosð$tÞ ð19Þ

where EA and EI are the axial and flexural rigidity and QT¼aDT.
Overdots indicate differentiation with respect to time and primes
with respect to the axial co-ordinate. In this case, for a rotating
cantilever beam, boundary conditions demand that

v¼ 0 and v0 ¼ 0 atx¼ 0

v00 ¼ 0 and v000 ¼ 0 atx¼ L ð20Þ

Finally, introducing nondimensional quantities

tn ¼

ffiffiffiffiffiffiffiffiffiffiffi
EI

L4Jr11

s
t, xn ¼

x

L
ð21Þ

Substituting the relationships Eq. (21) into Eq. (19), adding
damping m and dropping the asterisk, the expressions can be
conveniently rewritten as

€v�wv00 þvivþ2m _v�gv00
Z L

0
v02dxþlv0 ¼ f cosð$tÞ ð22Þ

v¼ 0 and v0 ¼ 0 at x¼ 0,

v00 ¼ 0 and v000 ¼ 0 at x¼ 1, ð23Þ

where

g¼ EA

2EI
, l¼O

2 1

2
þ

R0

L

� �
, f ¼

FðxÞ

EI
L4, O

2
¼O2 Jr11

EI
L4,

w¼
Jr11

EI
L2 L2

6
þR0

L

2

 !
O2
�L2 EA

EI
QT

" #
ð24Þ

4. Method of analysis

The MMS is applied directly to the partial differential Eq. (22)
and the associated boundary conditions Eq. (23) in order to
analyze the present system of rotating cantilever beam. This
technique presents some advantage over the discretization per-
turbation technique [22,24]. We seek an approximate solution to
this weakly nonlinear distributed parameter system in the form of
a first-order uniform expansion and introduce the time scale

Fig. 1. Schematic description of the rotating box beam.
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Tn¼ent, n¼0,1,2,y The time derivatives are

d

dt
¼D0þeD1þ . . .,

d2

dt2
¼D2

0þ2eD0D1þ . . .,D0 ¼
@

@Tn
, n¼ 0,1,2,. . .

ð25Þ

A small parameter e is introduced by ordering the linear
damping and load amplitude as m¼ e ~m, f ¼ e~f . Moreover, the
displacement v(x,t) are expanded as:

vðx,tÞ ¼ v1ðT0,T1,xÞþev2ðT0,T1,xÞþ . . . ð26Þ

Substituting Eqs. (25) and (26) into Eqs. (22) and (23) and
equating coefficients of like powers of e on both sides, we obtain

Order e0

D2
0v1þviv

1 �wv001þlv01 ¼ 0 ð27Þ

v1 ¼ 0, v01 ¼ 0 at x¼ 0 ð28Þ

v001 ¼ 0, v0001 ¼ 0 atx¼ 1 ð29Þ

Order e1:

D2
0v2þviv

2 �wv002þlv02 ¼�2D0D2v2�2mD0v1�gv001

Z 1

0
v01

2dxþ f cosð$tÞ

ð30Þ

v2 ¼ 0, v02 ¼ 0 at x¼ 0 ð31Þ

v002 ¼ 0, v0002 ¼ 0 at x¼ 1 ð32Þ

The solution to the first-order perturbation Eqs. (27–29) can be
expressed as

v1ðT0,T1,xÞ ¼
X1

m ¼ 1

fmðxÞAmðT1Þe
iomT0þcc ð33Þ

where fm(x) is the mode shape, om is the natural frequency and
cc stands for complex conjugate. The mode shape fm(x) for the
specified cantilever boundary conditions is calculated as

fmðxÞ ¼ exb4mþ exb3m ½�eb2mb2
2mðb1m�b4mÞþeb1mb2

1mðb2m�b4mÞ

n
þeb4mb2

4mðb1m�b2mÞ�þexb2m ½eb3mb2
3mðb1m�b4mÞ

�eb1mb2
1mðb3m�b4mÞ�eb4mb2

4mðb1m�b3mÞ�

þexb1m ½�eb3mb2
3mðb2m�b4mÞþeb2mb2

2mðb3m�b4mÞ

þeb4mb2
4mðb2m�b3mÞ�

o
=½�eb2mb2

2m

ðb1m�b3mÞþeb1mb2
1mðb2m�b3mÞþeb3mb2

3mðb1m�b2mÞ� ð34Þ

where bim is the eigenvalue which satisfies the relation

b4
im�wb

2
imþlbim�o2

m ¼ 0 ,i¼ 1,2,3,4 ð35Þ

and the characteristic equation

ðb2n-b3nÞðb1m-b4mÞðe
b2nþb3nb2

2nb
2
3nþeb1n þb4nb2

1nb
2
4nÞ

þðb1n-b3nÞðb2m-b4mÞð-eb1nþb3nb2
1nb

2
3n-eb2nþb4nb2

2nb
2
4nÞ

þðb1n-b2nÞðb3m-b4mÞðe
b1nþb2nb2

1nb
2
2nþeb3nþb4nb2

3nb
2
4nÞ ¼ 0 ð36Þ

The natural frequencies of the cantilever beam vary with the
rotation speed. For specific combinations of system parameters,
the lower natural frequencies can be commensurable, leading to
internal resonance in the system and nonlinear interaction
between the associated modes. A three-to-one internal resonance
o2ffi3o1 is considered for a range of rotation beam speed and it
is assumed that there is no other commensurable frequency
relationship with higher modes. Therefore Eq. (33) is replaced by

v1ðT0,T1,xÞ ¼ A1ðT1Þf1ðxÞe
io1T0þA2ðT1Þf2ðxÞe

io2T0þcc ð37Þ

where Ai is the unknown complex-valued function.
Now, in order to investigate the system response under internal

and external resonance conditions, two detuning parameters si are

introduced:

o2 ¼ 3o1þes1, $¼o1þes2: ð38Þ

Substituting Eqs. (37) and (38) to find the solution of Eq. (30),
we obtain

D2
0v2þv2

iv�wv002þlv02 ¼G1ðT1,xÞeio1T0þG2ðT1,xÞeið3o1T0þs1T1Þ

þ
1

2
f eiðo1T0 þs1T2Þ þccþNST ð39Þ

where the term Gm is defined in the Appendix and NST stands for
terms that do not produce secular or small divisor terms. As the
homogeneous part of Eq. (39) with its associated boundary
conditions has a nontrivial solution, the corresponding non-
homogeneous problem has a solution only if a solvability condi-
tion is satisfied [22]. This requires the right-hand side of Eq. (39)
to be orthogonal to every solution of the adjoint homogeneous
problem, which leads to the following complex variable modula-
tion equations for the amplitude and phase

2iðA01þm1A1Þþ8A1ðg11A1A1þg12A2A2Þþ8d1A2A1
2
eis1T1�

1

2
f 1eis2T1 ¼ 0

ð40Þ

2iðA02þm2A2 Þþ8A2ðg21A1A1þg22A2A2Þþ8d2A1
3e�is1T1 ¼ 0 ð41Þ

where prime denotes differentiation with respect to the slow time
T1 and mm, gm, dm and f1 are defined in Appendix. Overbar
indicates complex conjugate amplitude. It is interesting to note
that the terms in the above equations involving the internal
frequency detuning parameter s1 constitute the contributions of
internal resonance in the system.

Introducing a Cartesian transformation

Ak ¼
1

2
pkðT1Þ�iqkðT1Þ
� �

einkT1 , k¼ 1,2 ð42Þ

into the Eqs. (40) and (41), the following amplitude and phase
expressions are obtained:

p01 ¼�m1p1�n1q1þg11q1ðp
2
1þq2

1Þ

þg12q1ðp
2
2þq2

2Þ�d1½2p1q1p2�q2ðp
2
1þq2

1Þ� ð43Þ

q01 ¼�m1q1þn1p1�g11p1 p2
1þq2

1


 �
�g12p1 p2

2þq2
2


 �
�d1 2p1q1q2þp2 p2

1�q2
1


 �� �
þ

1

2
f 1 ð44Þ

p02 ¼ -m2p2-n2q2þg21q2ðp
2
1þq2

1Þþg22q2ðp
2
2þq2

2Þ

þd2q1ð3p2
1-q2

1Þ ð45Þ

q02 ¼�m2q2þn2p2�g21p2ðp
2
1þq2

1Þ�g22p2ðp
2
2þq2

2Þ

þd2p1ð3q2
1�p2

1Þ ð46Þ

where

n1 ¼ s2, n2 ¼ 3s2�s1 ð47Þ

and the prime indicates the derivative with respect to T1.

5. Results and discussion

For the analysis of the rotating beam subjected to principal
parametric resonance of the first mode (i.e., $ffio1) in presence
of 3:1 internal resonance, system parameters are taken as men-
tioned earlier corresponding to the commensurable natural frequen-
cies of the first and second mode of the system. There are no modal
interactions involving other modes. The beam geometrical charac-
teristics used in this analysis are the same employed by others
authors [21]: L¼1.2 m, h¼0.0827 m, b¼0.257 m, e¼0.01654 m and
R0¼1.3 m. The closed box beam is constructed with a metallic alloy
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(Ti6Al4V) and a ceramic (ZrO2), whose properties are given in
Table 1.

For a volume fraction exponent K¼1 and TC¼600 K, the
internal resonance is perfectly tuned when O¼4.607. The follow-
ing dimensionless parameter has been considered in the numer-
ical simulations

o2
i ¼o

2
i

rA

EI
L4

ð48Þ

where oi is the ith natural frequency of the beam obtained from Eq.
(36). The second natural frequency and three times the first natural
frequency are plotted as functions of O in Fig. 2. In the case of
O¼4.607, the scaled natural frequencies are o1¼8.9 and o2¼26.7.
The corresponding nonlinear interaction coefficients, defined in
Eqs. (43)–(46), for the specified rotating speed are:g11¼15.40, g12¼

1353.19, g21¼�176.485,g22¼�2780.57, d1¼�135.43 and d2¼5.56.

5.1. Steady-state motions and stability

The equilibrium solutions of Eqs. (43)–(46) correspond to
periodic motions of the beam. Steady-state solutions are deter-
mined by setting pi

0 ¼qi
0 ¼0 the right-hand members of the

modulation Eqs. (43)–(46) and solving the non-linear system.
Stability analysis is then performed by analyzing the eigenvalues
of the Jacobian matrix of the non-linear equations calculated at
the fixed points. Amplitude-load curves are reported in Fig. 3, for
a damping values m1¼m2¼0.05 and considering different reso-
nance conditions. The amplitudes a1 and a2 are obtained by
means of the following expression:

ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi

2þqi
2

q
, i¼ 1,2 ð49Þ

In the case of perfect resonance condition (s1¼s2¼0.04), the
modal solution is stable for all load conditions. However, for a

small value of the external detuning parameter (s2¼0.2), the
amplitude modal branch alternatively loses and regains stability
due to the presence of some saddle-nodes bifurcations. On the
other hand, when the internal detuning parameter is far from the
perfect resonance condition (s1¼4), the solution presents some
stable and unstable branches.

The frequency–response curves are shown in Fig. 4a and b, for
a particular internal resonance condition. The modal amplitude ai

curves are obtained as a function of the external detuning
parameter s2. In this case, the forcing amplitude is f1¼0.025,
the modal damping is mi¼0.05 and the internal detuning para-
meter is s1¼0.04. The response curve corresponding to the first
amplitude shows a noticeable hardening-spring type behavior
(Fig. 4a). The modal amplitude of the indirectly excited second
mode is smaller in comparison with the first mode (Fig. 4b). In the
Figures (dotted) lines denote (unstable) stable equilibrium solu-
tions and thin solid lines denote unstable foci.

As it is seen, the response curves exhibit an interesting
behavior due to saddle-node bifurcations (where one of the
corresponding eigenvalues crosses the imaginary axis along the
real axis from the left- to the right-half plane) and Hopf bifurca-
tions (where one pair of complex conjugate eigenvalues crosses
the imaginary axis transversely from the left to the right-half
plane). As s2 increases from a small value, the solution increases
in amplitude and loses stability via a Hopf bifurcation at
s2¼�0.2570 (H1) and regains its stability via a reverse Hopf
bifurcation at s2¼�0.1598 (H2). Then, the response jumps to
another branches of stable equilibrium solutions (jump effect),
depending on the initial conditions. The dynamics solutions that
emerge from this bifurcation will be analyzed in the next section.
There is an unstable solution happening between two saddle-
node bifurcations SN1 and SN2 (s2¼�0.1597 and s2¼�0.1694).
The reduction in amplitude of the first mode represents an
increased in the second mode amplitude. Increasing s2 beyond
SN2, the stable solution grows again in amplitude until arriving to
a saddle-node bifurcation SN3 (s2¼0.8279), resulting in a jump of
the response to another branches of solutions. The new stable
branch is left bounded by a saddle-node bifurcation SN4

(s2¼0.2330).
The influence modal damping is shown in Fig. 5a and b. The

modal damping is reduced to mi¼0.025, conserving the same
forcing amplitude and internal detuning parameter values as in
the previous model. It is observed that the curves are similar to
the previous case, but the modal amplitudes result to be larger.
However, it can be seen that the influence of the first mode on the
second mode response is smaller in the neighborhood of the Hopf
bifurcation H1 and the saddle-node SN2.

The influence of the load amplitude parameter f1 on the
frequency–response is analyzed in Fig. 6a–f, where the modal
damping considered is mi¼0.05 and the internal detuning

Table 1
Temperature dependant coefficients of material properties for ceramic (ZrO2) and

metals (Ti–6Al–4V).

Material P�1 P0 P1 P2 P3

E (Pa)
Ti–6Al–4V 0 122.7�109

�4.605�10�4 0 0

ZrO2 0 132.2�109
�3.805�10�4

�6.127�10�8 0

v
Ti–6Al–4V 0 0.2888 1.108�10�4 0 0

ZrO2 0 0.3330 0 0 0

r (kg/m3)
Ti–6Al–4V 0 4420 0 0 0

ZrO2 0 3657 0 0 0

a (1/K)
Ti–6Al–4V 0 7.43�10�6 7.483�10�4

�3.621�10�7 0

ZrO2 0 13.3�10�6
�1.421�10�3 9.549�10�7 0

k (W/mK)
Ti–6Al–4V 0 6.10 0 0 0

ZrO2 0 1.78 0 0 0

Fig. 2. Variations of three times the first o1 and second o2 scaled natural

frequencies with O.

Fig. 3. Amplitude–load curves for the first modal response. Thick line: stable

solutions; dashed line: unstable solutions.
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parameter is far from the perfect resonance condition s1¼4.
When f1¼0.05, see Fig. 6a and b, the frequency–response curves
are similar to the previous case. However, for large values of s2,
the stable equilibrium solution loses stability via a Hopf bifurca-
tion at s2¼0.756 (H3) and regains its stability via a reverse Hopf
bifurcation at s2¼0.908 (H4). The curves for a forcing load
f1¼0.025 are shown in Fig. 6c and d, and for f1¼0.01 in Fig. 6e
and f. It can be seen that the amplitude of the second mode keeps
almost the same when the load parameter is reduced. However,
the dynamic behavior of the beam becomes more complicated
and the hardening-spring curvature declines.

5.2. Dynamic solutions

According to the Hopf bifurcation theorem, small limit
cycles are born as a result of the Hopf bifurcation. The born limit
cycles are stable if the bifurcation is supercritical and unstable if
the bifurcation is subcritical. Cycle-limit of the modulation
equations corresponds to aperiodic responses of the beam. Fig. 7
shows a bifurcation diagrams for the orbits of the modulation
Eqs. (43)–(46) in the neighborhood of the unstable foci, when
f1¼0.025 ,s1¼0.04 and mi¼0.05 (see Fig. 4). Full filled and empty
circles denote branches of stable and unstable limit cycles. In
addition, some phase portraits in the p1–p2 plane, characterizing
the period-one limit cycles found on each branch, are shown in
Fig. 7. It is observed that a stable small limit cycle born due to the
supercritical Hopf bifurcation at H1 (s2¼�0.257). Then, as s2

increases, the limit cycle grows and loses stability through a
cyclic-fold bifurcation at CF1 (s2¼�0.241). Consequently, the
two-period quasiperiod response of the beam jumps to another
two-period quasiperiod response. This stable branch is limited to
the left and to the right by two cyclic-fold bifurcation CF2 and CF3

(s2¼�0.2511 and s2¼�0.1673, respectively). Increasing s2 after
CF3 the dynamic response jumps to a periodic solution.

On the other hand, as s2 decreases past the supercritical Hopf
bifurcation H2 (s2¼�0.159835), the equilibrium solutions loses
stability and gives way to a small-amplitude limit cycle. In Fig. 8,
we show a schematic bifurcation diagrams for the orbits of the
modulation equations, in the neighborhood of the Hopf bifurca-
tion H2. As the parameter s2 is reduced, the limit cycle grows, as
shown in Fig. 8. It then goes through a sequence of cyclic-fold y

doubling period bifurcation. When the stable solution encounters
a cycle-fold bifurcation, the beam response jumps to a two-period
quasiperiodic motion. When s2 decreases past CF in the last
branch (denoted as VIII in Fig. 8), the beam response jumps to a
periodic solution.

As it was observed in the previous section, the dynamic
behavior of the beam becomes more complicated for an internal
detuning parameter s1¼4. The dynamic solutions for the case of
f1¼0.05 and mi¼0.05 are analyzed (according to the frequency–
response curves, Fig. 6a and b). In this case, there are four Hopf
bifurcations, where H1 (s2¼0.04025) and H3 (s2¼0.756) corre-
spond to supercritical Hopf bifurcation, while H2 (s2¼0.5667)
and H4 (s2¼0.908) correspond to subcritical Hopf bifurcation.

Two schematic diagrams of dynamic solutions are shown in
Figs. 9 and 10. As s2 increases from the left Hopf bifurcation H1,
nine branches of solutions are found in the neighborhood of H1. It is
noticeable that multiple attractors coexist between these branches.
The relative sizes of branches of limit cycles in the neighborhood of
the Hopf bifurcation H1 are: 0.04025os2o0.04713 on branch I,
0.06757os2o0.06762 on branch II, 0.1528os2o0.1722 on branch
III, 0.0447700os2o0.0447733 on branch IV, �0.0148os2o
�0.013866 on branch V, �0.04594os2o�0.04541 on branch
VI, �0.07981os2o�0.079525 on branch VII, �0.4489os2o
�0.44818 on branch VIII and �0.8389os2o�0.826465 on
branch IX.

In the first branch, a small limit cycle born as a result of the
supercritical Hopf bifurcation H1. Two-dimensional projections of

Fig. 4. Frequency–response curves for: (a) first and (b) second modes, when f1¼0.025, s1¼0.04 and mi¼0.05. Solid (dotted) lines denote stable (unstable) equilibrium

solutions and thin solid lines denote unstable foci.

Fig. 5. Frequency–response curves for: (a) first and (b) second modes, when f1¼0.05, s1¼0.04 and mi¼0.025. Solid (dotted) lines denote stable (unstable) equilibrium

solutions and thin solid lines denote unstable foci.
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the phase portraits of the limit cycle onto the p1–p2 plane at
various pre and post-period-doubling bifurcation points are
shown in Fig. 11a–f. The period-one limit cycle (Fig. 11a and b)
grows and deforms and remains stable until a period-doubling
bifurcation occurs PD2 (s2¼0.0462763). Then it undergoes a

sequence of period doubling bifurcations DP4 (s2¼0.0470266),
DP8 (s2¼0.0471067), DP16 (s2¼0.04713062), culminating in a
chaotic attractor as shown in Fig. 12a (s2¼0.04718). As s2

increases slightly, the chaotic attractor increases in size and
collides with its basin boundary, resulting in the destruction of

Fig. 6. Frequency–response curves for the first and second modes when mi¼0.05 and s1¼4; (a and b) f1¼0.1, (c and d) f1¼0.05, (e and f) f1¼0.025. Solid (dotted) lines

denote stable (unstable) equilibrium solutions and thin solid lines denote unstable foci.

Fig. 7. Bifurcation diagrams, which limit cycle encounters between the Hopf bifurcation points when mi¼0.05, s1¼0.04 and f1¼0.025. H¼Hopf and CF¼cycle-fold

bifurcation. (���) Stable limit cycle, (JJJ) unstable limit cycle. Solid (dotted) lines denote stable (unstable) equilibrium solutions and thin solid lines denote

unstable foci.
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the chaotic attractor and its basin boundary in a boundary crisis.
As a result, the beam response jumps to a far away attractor, as it
can be seen in the time history of p1 in Fig.12b. Two-dimensional
projection of the large attractor is shown in Fig. 12c for a
s2¼0.19. Then, as s2 is increased further, the large chaotic
attractor undergoes a boundary crisis and tends to a periodic
solution in the neighborhood of SN2 (s2¼0.0193, see Fig. 9).

On the isolated branch II (see Fig. 9), a symmetric limit cycle
was found at s2¼0.067596 (see Fig.13a), through simulation of
the modulation equations. As s2 is increased, the limit cycle
encounters a cyclic fold bifurcation at s2¼0.06762, causing the
response to jump to the large chaotic attractor from the Branch I.
As s2 is decreased, the symmetric limit cycle grows, and goes
through a period bifurcation at s2¼0.06759, as seen in the
schematic diagram in Fig. 9. Two-dimensional projections of the
phase portraits of the limit cycles found on branch II are shown in
Fig. 13. The limit cycles of period-2 and period-4 are shown in
Fig. 13b and c. Then, the chaotic attractor found in this branch

(see Fig. 13d) remains stable in size to s2¼0.067575, after that
value the response of the beam jumps to the large chaotic
attractor found in branch I.

A similar dynamic behavior is observed in all the others
branches. For example, the limit cycle found in the branch III is
limited to the left by a cycle fold bifurcation (CF) at s2¼0.01528
and to the right by a period-doubling bifurcation (PD) s2¼

0.01692. The two-dimensional projections of the phase portraits
of the period-1 limit cycle for s2¼0.016775 is shown onto the
p1–p2 plane in the Fig. 14a. In this case, as s2 is decreased until CF,
the beam response jumps to a periodic solution (see Fig. 9).
Fig. 14 b–d, show the two-dimensional projections of the phase
portraits of the limit cycles of period �2, �4 and �8 onto the p1–
p2 plane corresponding to different values of the internal detun-
ing parameter s2. These limit cycles are obtained increasing s2

further the PD bifurcation. The chaotic attractor found in this
branch undergoes a boundary crisis at s2¼0.01729 and the beam
response jumps to a periodic solution (see Fig. 9). The limit cycles

Fig. 8. Schematic of the dynamic solutions found in the neighborhood of the Hopf bifurcation H2, when mi¼0.05, s1¼0.04 and f1¼0.025. H¼Hopf bifurcation, CF¼cycle-

fold bifurcation and PD¼period-doubling bifurcation. (—) Stable and (y) unstable limit cycles.

Fig. 9. Schematic of the dynamic solutions of branches I, II, III and IV found in the neighborhood of the Hopf bifurcation H1, when mi¼0.05, s1¼4 and f1¼0.05. H¼Hopf

bifurcation, CF¼cycle-fold bifurcation and PD¼period-doubling bifurcation. (—) Stable and (y) unstable limit cycles.
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corresponding to branch IV, V, VI, VII, VIII and IX, are very similar
to those showed in Fig. 14. For that reason they are not presented
in the article.

On the other hand, there is another supercritical Hopf bifurca-
tion denoted as H3 (s2¼0.7558) in the frequency–response of
Fig. 6a and b. In this case, when s2 increases from the saddle node

Fig. 10. Schematic of the dynamic solutions of branches V, VI, VII, VIII and IX found in the neighborhood of the Hopf bifurcation H1, when mi¼0.05, s1¼4 and f1¼0.05.

H¼Hopf bifurcation, CF¼cycle-fold bifurcation and PD¼period-doubling bifurcation. (—) Stable and (y) unstable limit cycles.

Fig.11. Two-dimensional projections of the phase portraits of the limit cycle found on branch I onto the p1–p2 plane, when mi¼0.05, s1¼4, f1¼0.05 and s2¼(a) 0.04146

(p-1), s2¼(b) 0.04592 (p-1), s2¼(c) 0.04669 (p-2), s2¼(d) 0.04708 (p-4), s2¼(e) 0.04712 (p-8) and s2¼(f) 0.04713 (p-16).

Fig. 12. Attractor chaotic found in branch I, two-dimensional projection of the phase portrait onto the p1-p2 plane showing the chaotic attractor before and after the

explosive bifurcation for (a) s2¼0.0478 and (c) s2¼0.19, and (b) time history of p1 after a crisis had occurred for s2¼0.0472.
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bifurcation SN4, a small limit cycle born as a result of the
supercritical Hopf bifurcation, which grows and loses stability
via a cycle-fold bifurcation CF at s2¼0.7698. Consequently, the
quasiperiodic response of the beam jumps to a periodic motion.
A schematic diagram of bifurcation is shown in Fig. 15. The limit
cycles found in this branch are also shown.

6. Conclusions

The nonlinear planar response of a cantilever rotating box
beam to a principal parametric resonance of its first flexural mode
is investigated. The beam is subjected to a harmonic transverse
load in the presence of internal resonance. The internal resonance
can be activated for a range of the beam rotating speed, where the
second natural frequency is approximately three times the first
natural frequency. Geometric cubic nonlinear terms are included
in the equation of motion due to midline stretching of the beam.
The FGMs thermo-mechanical properties vary smoothly and
continuously in predetermined directions throughout the body
of the structure.

By means of the method of multiple scales applied directly on
the partial-differential equation four first-order nonlinear
ordinary-differential equations were derived, describing the mod-
ulation of the amplitudes and phases of the interacting modes.
The frequency–response curves exhibit a hardening type beha-
vior. When the excitation frequency is slowly varied, the response
may undergo saddle-node and Hopf bifurcations. On the other
hand, when the internal detuning parameter is varied from its
perfect condition, the frequency–response curves exhibit a more
complex behavior. It was shown that this effect is also influenced
by the load amplitude parameter value. In this case, it was found
that the modulation equations posses complex dynamics, includ-
ing supercritical period-doubling bifurcation, the coexistence of
multiple attractors, and various jump responses driven by cyclic-
fold bifurcation, subcritical period-doubling bifurcations, and
boundary crises. The limit cycle solutions of the modulation
equations may undergo a sequence of period-doubling bifurca-
tions, culminating in chaos. The chaotic attractors may undergo
attracting-merging and boundary crises. In a future work we will
include the shear deformation effect on the beam model.
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Appendix A

The terms used in Eqs. (39)–(41) are defined as:

G1 ¼�2io1f1ðA
0

1þmA1Þþ 3f001

Z 1

0
f01

2dx

 !
A2

1A1

þ 2f001

Z 1

0
f01f

0

2dxþf002

Z 1

0
f012dx

 !
A2A

2

1eis1T1

þ 4f002

Z 1

0
f01f

0

2dxþ2f002

Z 1

0
f02

2dx

 !
A1A2A2 ð50Þ

Fig. 13. Two-dimensional projections of the phase portraits of the limit cycle found on branch II onto the p1-p2 plane, when s2¼(a) 0.067596 (p-1), s2¼(b) 0.067584 (p-2),

s2¼(c) 0.0675793 (p-4), s2¼(d) 0.0675784 (attractor).

Fig. 14. Two-dimensional projections of the phase portraits of the limit cycle found on branch III onto the p1-p2 plane, when s2¼(a) 0.01677489 (p-1), s2¼(b) 0.01703596

(p-2), s2¼(c) 0.01721368 (p-4), s2¼(d) 0.01722902 (attractor).

Fig. 15. Bifurcation diagrams in the neighborhood of the Hopf bifurcation H3.

H¼Hopf and CF¼cycle-fold bifurcation. (���) Stable limit cycle, (JJJ) unstable

limit cycle. Solid lines denote stable equilibrium solutions and thin solid lines

denote unstable foci.
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G2 ¼�2io2f2ðA
00
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2dx
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2dx
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gmn ¼
1

8om
ð4Gmmnnþ2GmmnnÞ, man ð54Þ

d1 ¼
1

8o1
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qdx
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