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Abstract

The magnitude of morphological integration is a major aspect of multivariate evolution, providing 

a simple measure of the intensity of association between morphological traits. Studies concerned 

with morphological integration usually translate phenotypes into morphometric representations to 

quantify how different morphological elements covary. Geometric and classic morphometric 

representations translate biological form in different ways, raising the question if magnitudes of 

morphological integration estimates obtained from different morphometric representations are 

compatible. Here we sought to answer this question by using the relative eigenvalue variance of 

the covariance matrix obtained for both geometric and classical representations of empirical and 

simulated datasets. We quantified the magnitude of morphological integration for both shape and 

form and compared results between representations. Furthermore, we compared integration values 

between shape and form to evaluate the effect of the inclusion or not of size on the quantification 

of the magnitude of morphological integration. Results show that the choice of morphological 

representation has significant impact on the integration magnitude estimate, either for shape or 

form. Despite this, ordination of the integration values within representations is relatively the 
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same, allowing for similar conclusions to be reached using different methods. However, the 

inclusion of size in the dataset significantly changes the estimates of magnitude of morphological 

integration, hindering the comparison of this statistic obtained from different spaces (shape or 

form). Morphometricians should be aware of these differences and must consider how biological 

hypothesis translate into predictions about integration in each particular choice of representation.
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Introduction

Morphological integration describes the association between continuous morphological 

traits and is a key component in understanding multivariate evolution (Lande 1979). We 

expect functionally and/or developmentally related traits to be more associated among 

themselves than with others and, consequently, to evolve in a coordinated fashion (Cheverud 

1984; Riedl 1978). A fundamental aspect of morphological integration is the magnitude of 

morphological integration (sensu Olson and Miller 1958), which measures the overall 

intensity of the association between traits. A high magnitude of morphological integration 

means that the available variation is restricted to relatively few dimensions in phenotypic 

space. In these cases, evolutionary change will be strongly influenced by the interaction 

between selection and available variation, and we expect evolutionary change to proceed 

preferentially along these few dimensions in which variation is available (Felsenstein 1988; 

Goswami et al. 2014; Melo et al. 2016; Felice et al. 2018 but see Schluter 1996). Conversely, 

lower magnitudes of morphological integration might indicate relative independence 

between the traits, allowing different aspects of the phenotype to evolve without interference 

imposed by other parts of the organism. Thus, populations with similar covariation patterns 

but with different magnitudes of morphological integration can present different 

evolutionary responses when subjected to the same selective pressure (Lande 1979; Hansen 

and Houle 2008; Pavlicev et al. 2009).

In the last few decades, with the advent of modern morphometric techniques, several authors 

have measured the magnitude of morphological integration in multivariate phenotypes using 

geometric morphometrics (GM). At the same time, morphometric studies based on classic 

linear measures, such as inter-landmark distances (ILDs), are still popular, making up a 

significant portion of all papers published on the topic (Esteve-Altava 2017). Using different 

morphometric representations of the same phenotype goes beyond a mere stylistic choice, 

because using different representation affects how biological processes are accounted for. 

Take size, for example. GM representations usually involve a size-scaling procedure, which 

leads many researchers to put aside isometric variation in the investigation of morphological 

integration, focusing on the morphological integration in shape alone (e.g. Jamniczky and 

Hallgrímsson 2009; Goswami et al. 2015; Curth et al. 2017; Randau et al. 2019). ILDs 

analyses, in turn, measures traits on a ratio scale (sensu Houle et al. 2011), which leads to 

isometric size variation being embedded in the variation of the traits, thus leading to an joint 

evaluation of the overall form (size plus shape) of biological structures (e.g. Meiri et al. 
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2005; Young et al. 2010; Haber 2015). Furthermore, different morphometric representations 

can vary in how they quantify shape changes, which can lead to incompatible interpretations 

regarding magnitude of morphological integration. For example, applying purely 

homoscedastic (and non-correlated) error on landmark data can lead to non-zero correlations 

among ILD data drawn from the same configurations (Rohlf 2000). Conversely, the 

application of affine, global deformations on landmark configurations will not necessarily 

lead to equally coordinated changes on ILD variables (Mitteroecker and Bookstein 2007). 

Nevertheless, if we expect to make general statements about the evolutionary properties of 

integrated structures, we need to understand how measures of the magnitude of 

morphological integration might differ between these popular approaches and if and when 

we can directly compare them.

Here, we investigate if measures of magnitudes of morphological integration obtained using 

different morphometric representations can be directly compared. We approach this 

objective in two ways. First, using simulations we alter a fixed GM covariance matrix to 

produce matrices with different magnitudes of morphological integration. From these altered 

covariance matrices, we sampled sets of shapes and sizes and calculated the magnitude of 

morphological integration for both geometric morphometrics and a set of linear distances. 

Second, we validate these comparisons by evaluating magnitudes of morphological 

integration on the skull of a diverse group of carnivores.

Material and Methods

SAMPLE AND MORPHOMETRICS

Morphometric data was obtained from 3440 skulls of adult specimens from 67 species of 

Carnivora from the Caniformes suborder, which comprises very distinct forms such as wolf 

(Canidae), walrus (Odobenidae), bear (Ursidae), badger (Mustelidae) and raccoon 

(Procyonidae). In addition to morphological variation, the family Canidae was recently 

found to have a diverging pattern of morphological integration when compared to other 

Carnivoran families (Machado et al. 2018). Therefore, this sample comprises not only 

considerable shape disparity, but also differences in patterns of association among cranial 

structures. For each specimen, a set of 32 landmarks (8 midline, and 12 symmetric) was 

measured by FM using a Microscribe MLX system (Immersion Corporation - San Jose, 

California). To produce GM shape variables the samples were subjected to a Generalized 

Procrustes Alignment (GPA, Rohlf and Slice 1990). Because GPA scales configurations to 

have the same size, data was evaluated both with and without size by removing or including 

the logarithm of the centroid size as an additional variable (Mitteroecker et al. 2004).

For the ILD analysis, we obtained a set of 35 linear inter-landmark distances. These 

distances have been used on a large set of evolutionary studies (e.g. Marroig and Cheverud 

2004; Porto et al. 2016; Assis et al. 2016; Hubbe et al. 2016; Machado et al. 2018), and are 

particularly interesting because not only they measure specific localized dimensions of the 

skull bones and structures (Pearson and Davin 1924), but also because the covariance matrix 

obtained on phenotypic data alone has been shown to be an accurate approximation of 

genetic patterns of covariation among the same traits (Garcia et al. 2014; Porto et al. 2015; 

Penna et al. 2017). We also calculated integration values using a Euclidean Distance Matrix 
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Approach (EDMA), in which all possible ILDs are calculated. The relationship between 

integration measures obtained for the 35 ILD and the EDMA was slightly non-linear and 

highly correlated (Spearman rank Order correlation rs = 0.965). Since the use of both ILD 

datasets provide the same general patterns, we focus on the results of the 35 ILD, henceforth 

called ILD for simplicity.

Following the analysis of the GM dataset, ILD were analyzed both with and without the 

influence of size. To control the effect of size, we obtained the distances on the centroid-

scaled configurations produced by GPA. This is equivalent to using Mosimann’s shape-

ratios (Mosimann 1970), where each variable (inter-landmark distance) is divided by a size 

factor (centroid size). Neither the GM nor ILD ”size-corrected” data are free of shape 

changes associated with size (i.e. allometry). They are merely scaled to have a common size, 

thus reflecting variation on allometric and non-allometric shape changes. Henceforth, the 

analysis without isometric size will be referred to as ”Shape” and the ones with isometric 

size as ”Form”.

To evaluate if different morphometric methods contain the same information of the 

biological variation on the sample, we performed a Procrustes correlation test (Peres-Neto 

and Jackson 2001). This test evaluates the distribution of observations on two multivariate 

spaces by applying the Procrustes transformations (translation, scale and rotation) in order to 

reduce the residual sum of squares between the same observations on both spaces. A 

correlation-like statistic can be obtained as the square root of 1 minus the residual sum of 

squares, with values closer to 1 representing a closer match between spaces. Tests were 

performed for each species, evaluating the empirical distribution of values on the first 35 

principal components of each sample (Peres-Neto and Jackson 2001). Average correlations 

were 0.939 (sd=0.014) for Form and a 0.904 (sd=0.012) for Shape, never reaching values 

lower than 0.878 for any comparison. These high correlations suggest that both ILD and GM 

are quantifying the same general patterns of morphological variation in our sample.

Covariance matrices were obtained for each species individually and for the full sample. 

Both species matrices and the full sample matrix were calculated after controlling for 

intraspecific sources of variation. For individual species, these sources of nuisance variation 

were subspecies and sex. For the full sample, in addition to subspecies and sex, species 

differences were also controlled for. This control procedure was done by fitting a linear 

model on the data using the nuisance variables as fixed effects, and using the residuals from 

these regressions to produce pooled-within-group phenotypic covariance matrices (PW). 

These regressions were done using the landmark and log-centroid size data. After the 

regression, residuals were added to the average shape and size. To obtain configurations on 

the original scale, each resulting configuration was multiplied by its corresponding centroid 

size. Inter-landmark distances were then calculated on these rescaled configurations, 

reducing possible sources of differences between GM and ILD datasets. Further details on 

data-processing, landmarks, measurements and nuisance sources of variation are described 

elsewhere (Machado et al. 2018).
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MAGNITUDE OF MORPHOLOGICAL INTEGRATION

The magnitude of morphological integration of each matrix PW was calculated as the 

eigenvalue variance

Var(λ) =
∑i = 1

N λi − λ 2

N
(1)

where λ are the eigenvalues of PW and N are the number of traits (Pavlicev et al. 2009). 

Pavlicev et al. (2009) suggested to scale the observed eigenvalue variance by the theoretical 

maximum to produce values that range between 0 and 1, which is compatible with the 

squared correlation coefficient among traits (r2). For covariance matrices, the maximum 

theoretical maximum is achieved when all variation is concentrated on the first principal 

component

Varmax(λ) =
tr PW − λ 2 + ∑i = 2

N λ2

N

=
tr PW − tr PW /N 2 + ∑i = 2

N tr PW /N 2

N

=
tr PW

2(N − 1)
N2

(2)

where tr(PW) is the total amount of variation on the matrix PW. The relative eigenvalue 

variance is calculated then as V arrel(λ) = V ar(λ)/V armax(λ). Values closer to 0 imply that 

eigenvalues have similar scales, implying a lack of covariance among the original traits. If V 
arrel(λ) is closer to 1, then V ar(λ) is close to the theoretical maximum V armax(λ), with all 

variation concentrated along a single axis, suggesting a highly integrated structure. The use 

of V arrel(λ) is convenient in the present study because the statistic is invariant to arbitrary 

rotations of the data, making it ideal for the use on both GM and ILD datasets.

Even though V arrel(λ) is thought to be comparable between systems with different 

dimensionality (Pavlicev et al. 2009) we only used the leading 35 eigenvalues for all 

analyses (the number of inter-landmark distances chosen for the ILD analysis) to standardize 

the number of traits (N=35). This is equivalent to analyzing the datasets after performing a 

Principal Component Analysis for dimensionality reduction. Despite this reduction, values 

of V arrel(λ) obtained with the reduced number of eigenvalues and the full sets were nearly 

identical for both simulated and empirical datasets, suggesting that this procedure did not 

alter the V arrel(λ) estimates for GM data significantly.

SIMULATION

Simulations were based on the pooled within-groups GM covariance matrix for the full form 

data-set. In other words, it is the average covariance matrix for the full dataset weighted by 

within-group degrees of freedom. Even though it is possible to generate completely random 

GM matrices (e.g. Walker 2000, it can be difficult to generate meaningful alterations on 

those matrices and produce biologically plausible shapes due to the arbitrary nature of the 

values of covariances and correlations. For this reason, we used the form PW for the full 
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sample of our empirical dataset, as described above, which included the covariances among 

Procrustes-superimposed coordinates plus the logarithm of the centroid-size. From this 

baseline matrix, we altered its magnitude of morphological integration in order to produce a 

wide range of V arrel(λ) values. This was done by first performing an eigen-decomposition. 

The first 35 eigenvalues were kept and then raised to different powers λp, where p was 

drawn from 20 equally spaced values between 0.5 and 2.5. This value range for p was 

chosen because it produced values of V arrel(λ) that are comparable to the ones in our 

empirical sample (Machado et al. 2018), which spans the values found for all major 

mammalian lineages (Porto et al. 2009). In order to maintain the total amount of variation 

constant in the altered matrices, eigenvalues were scaled to have the same total amount of 

variation as the original first 35 eigenvalues. Modified matrices were then reconstructed as 

follows

PW
p = VΛpVt

(3)

where V is a matrix of the first 35 eigenvectors of the baseline matrix and Λp is a diagonal 

matrix with the modified eigenvalues λp. When p is closer to 1, the resulting matrix 

possesses V arrel(λ) that is closer to the one of the original baseline matrix. When p is higher 

than one, the leading eigenvalues are proportionally larger than the last ones, increasing the 

disparity between eigenvalues and, therefore, increasing the V arrel(λ).

For each of the 20 values of p, we sampled 1000 populations of 100 simulated individuals 

using a multivariate normal distribution with the mean shape and mean log-centroid size as 

averages, and the corresponding PW
p  as the covariance matrix. Therefore, each individual in 

the simulated populations is defined by a set of landmark coordinates and a centroid size. 

For each sampled population, a new covariance matrix was calculated from Procrustes-

superimposed configurations, along with its corresponding V arrel(λ). Next, for each 

simulated individual landmark coordinates, we calculated the 35 inter-landmark distances 

used on the ILD analysis, and obtained the V arrel(λ) from the ILD covariance matrix. Both 

GM and ILD V arrel(λ) estimates were obtained for shape and form, as described above.

EMPIRICAL ANALYSIS

To evaluate if the simulations are good representations of what can happen in empirical 

datasets, we calculated V arrel(λ) values for shape and form variables on both ILD and GM 

representation on our set of 67 carnivore species. Before doing so, we evaluated two possible 

sources of bias in empirical estimates of integration: sample size (Haber 2011; Fruciano et 

al. 2013; Adams and Collyer 2016; Grabowski and Porto 2017) and total amount of variance 

(Hallgrímsson et al. 2009; Young et al. 2010).

To evaluate the effect of sample sizes on magnitude of integration, we calculated the 

Pearson’s Product Moment correlation (rp) between integration values and sample sizes. 

Furthermore we produced rarefied estimates of V arrel(λ) to remove the effect of sample size 

(Fruciano et al. 2013). This was done by resampling the original datasets with a fixed sample 

of 40 (the smaller sample size in our dataset) 100 times. The V arrel(λ) is calculated for each 

iteration, and the average V arrel(λ) across all iterations is taken as the rarefied V arrel(λ) for 
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that species. Rarefied and full sample V arrel(λ) values were compared through Pearson’s 

correlation.

In order to evaluate the effect of amount of variance on integration, we calculated the rp 

between V arrel(λ) and tr(PW) for shape and form variables on both ILD and GM. However, 

the simple correlation between these factors might not indicate bias in itself because 

variance might be preferentially concentrated on PC1 due to the interaction of life-history 

traits and aspects of the developmental system under study (Hallgrímsson et al. 2009; Porto 

et al. 2013). Therefore, we also performed semi-partial correlations between tr(PW) and V 
arrel(λ), with variation of tr(PW) conditional on the percentage of variation on PC1.

COMPARISON BETWEEN GM AND ILD

Values of V arrel(λ) were compared between GM and ILD representations using both 

Reduced Major Axis regressions (RMA) and Correlation analyses. For RMA an slope equal 

to 1 and a intercept equal to 0 means that integration values are the same for both 

morphometric representations being compared. This was done both statistically by 

estimating confidence intervals for the RMA statistics, but also graphically, by plotting 

values of integration obtained on both representations. Comparisons were made between 

shape (GM × ILD) and form (GM × ILD) representations and between shape and form for 

all representations (GM shape × GM form, ILD shape × ILD form, ILD shape × GM form, 

GM shape × ILD form). Because all shape × form comparisons yielded very similar results 

(not shown), we focus only on the GM shape × ILD form comparison, as these are among 

the most popular forms of morphological quantification in magnitude of morphological 

integration studies (Esteve-Altava 2017). Because of the strong nonlinear relationship 

between representations observed on the simulations (see below) we refrain from using the 

RMA on this dataset. For the same reason we employed a Spearman Rank Order correlation 

analysis (rs) on the simulated dataset. For the observed dataset we report the rp, even though 

rs produces the same overall results.

Additionally, in order to visualize the evolution of magnitude of morphological integration, 

we mapped the V arrel(λ) values for each morphometric representation on the phylogeny of 

the group. Ancestral character state were estimated through Maximum likelihood approach 

(Schluter et al. 1997) using the same phylogeny used in Machado et al. (2018) trimmed to 

match the current sample.

All analyses were run under the R Core Team (2015) programming environment using the 

“tidyverse” set of packages. Geometric morphometric analyses were carried out using the 

geomorph package (Adams and Otarola-Castillo 2013). Procrustes correlation tests were 

done with the vegan package (Oksanen et al. 2017). Ancestral character state reconstruction 

was done with the phytools (Revell 2012) package.

Results

Simulations were able to sample almost the full theoretical range of V arrel(λ) values, 

specially for form (Fig. 1A). All correlations between GM and ILD were strong (rs > 0.978) 

and non-linear. The correlation between form ILD and shape GM was strongly non-linear 
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(Fig. 1A third panel). Intermediate values are the most discrepant between GM and ILD for 

form and shape. For form, GM values tended to be greater than the ones for ILD values (Fig. 

1A first panel) while for shape, the opposite was true (Fig. 1A second panel). Values of form 

ILD are much larger than values of shape GM, with the exception of values at the extremes 

of the distribution.

For the empirical datasets, V arrel(λ) values were not correlated with sample size (p > 0.41 

for all morphometric representations), and rarefied values were nearly identical with the 

ones obtained from the full dataset (rp > 0.989 on all accounts, average difference=0.003 

± 0.003). Correlations between V arrel(λ) and tr(PW) changed broadly between different 

morphometric representations. While correlations between these factors was low for shape 

variables (both GM and ILD had rp < 0.298), they were higher for form variables, 

particularly for GM (rp = 0.721 for GM and rp = 0.591 for ILD). However, semi-partial 

correlations are vastly smaller (ρ = −0.030 − −0.070 for all comparisons), suggesting that 

most of the signal is given by PC1. Because both sources of bias are considered to be less 

relevant on the present dataset, we chose to focus empirical comparisons on the observed 

values of V arrel(λ) for the full samples.

Empirical values of V arrel(λ) for carnivoran species were more restricted in range than for 

the simulated data, with form values ranging from 0.1–0.7 and shape values ranging from 

0.05–0.2. The correlations between GM and ILD within shape and form were strong (shape: 

rp = 0.804; form: rp > 0.964; Fig. 1B first and second panels, respectively), while the 

correlation between form ILD and shape GM was moderate (rp = 0.393; Fig. 1B third panel). 

RMA analyses showed that intercepts were very similar to 0 in all comparisons, and slopes 

diverged from the expected value of 1 (Fig. 1B), with the comparison between form ILD and 

shape GM showing slopes that differed greatly from 1.

Ancestral estimates of magnitude of morphological integration along the phylogeny shows 

little divergence in the general phylogenetic pattern observed for both representations (GM 

and ILD) in both form and shape variables (Fig. 2). For form representations (Fig. 2A), 

pinnipeds and ursids show the largest magnitudes of morphological integration, while 

procyonids are the ones with the lowest values, on average. For shape variables (Fig. 2B), 

despite the lower between-representation correlations in comparison to form variables (Fig. 

1), the overall phylogenetic pattern is similar, specially the fact that canids present lower 

magnitude of morphological integration values.

DISCUSSION

We show that the choice of morphometric representation can lead to important differences 

on the estimates of integration magnitudes. As a consequence, it is not possible to directly 

compare values of magnitudes of morphological integration obtained from different 

morphometric representations. Despite that, both simulation and empirical results show that 

magnitude of morphological integration values are sorted similarly in both representations 

within form and within shape. In other words, a species that is considered to have “low” (or 

“high”) magnitude of morphological integration for form or shape in one representation will 

most likely also be considered as such in the other representation. The same is not true for 

comparisons between form ILD and shape GM, which shows that magnitudes of 
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morphological integration measured for form and the ones measured for shape are not 

comparable either on the empirical or simulated datasets. Our ancestral state reconstruction 

reinforces both these ideas, as the observed patterns for the evolution of magnitude of 

morphological integration of form or shape were consistent within methods, but divergent 

between methods (Fig.2). Therefore, while it is not advisable to combine results from 

studies using different morphometric representations, it is possible to understand general 

patterns of evolution and variation of form or shape magnitudes of morphological integration 

using different morphometric representations.

Both simulation and empirical results show that magnitude of morphological integration 

values are biased depending on the morphometric representation and space chosen. 

Specifically, values for shape magnitude of morphological integration were higher for ILD 

than for GM, and the opposite trend was observed for form. These patterns are somewhat 

expected. It has long been argued that ILD data might add spurious correlations among traits 

depending on how traits are defined. For example, we expect traits that share landmarks to 

present non-zero covariances (Rohlf 2000), and if distances are defined across similar 

structures (i.e. mapping similar overall dimensions), they will most likely vary in a similar 

fashion (Zelditch et al. 2012). Despite the fact that the ILD used here are chosen to minimize 

those factors (Cheverud 1982), some small effect might be enough to slightly increase the 

magnitude on the ILD dataset. Thus, by adding covariances among traits we would expect 

the shape magnitude of morphological integration of ILD to be higher than the one for GM.

For form, however, this interpretation does not hold because the GM magnitude of 

morphological integration values are slightly inflated in relation to the ILD values. In this 

case, the amount of size variation may explain the observed pattern. Size is a main feature of 

biological form, and will usually dominate the variation in both ILD and GM (Jolicoeur 

1963; Bookstein 1989; Mitteroecker et al. 2004). This means that size will load strongly on 

the first PC and therefore will be a major component in determining the magnitude of 

morphological integration (Marroig et al. 2009; Hallgrímsson et al. 2009; Porto et al. 2013). 

This phenomenon is simple to understand if we consider the magnitude of morphological 

integration in terms of the V arrel(λ): everything else being equal, if the relative contribution 

of the first eigenvalue increases, the standard deviation of eigenvalues will increase 

accordingly, leading to higher values of V arrel(λ). Curiously, the amount of variation on the 

PC1 is higher on GM (0.551 ± 0.116) than on ILD (0.498 ± 0.119). Based on our discussion 

above, the inflation observed could be due to the large difference in the scale of size 

variation when compared to the scale of shape variation in GM. This could, in turn, explain 

why magnitude of morphological integration values for form tend to be higher on GM than 

on ILD (Figure 1B, second panel). Because the difference between GM and ILD magnitudes 

of morphological integration values are relatively small, it is probable that size variation is 

similarly captured by ILD and GM, despite the difference in how that variation is measured.

The relationship between size and shape may also explain why the extreme values for the 

magnitude of morphological integration converge in both representations. This pattern was 

observed in all cases, but it is most apparent on the simulation dataset for the form ILD × 

shape GM comparison (Figure 1A, last panel). In this case, matrices that present low 

magnitude of morphological integration values (i.e. near the theoretical minimum of V 
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arrel(λ) = 0) were produced by applying low values of p on the Equation 3. This means that 

the distribution of eigenvalues was homogenized and that the first PC explains a similar 

amount of variation in relation to other PCs. In other words, this matrix describes a mostly 

spherical distribution of traits. In this case, size variation will not dominate the covariance 

matrix structure, since all dimensions contribute almost equally to the total amount of 

variation in the sample. Thus, matrices will present low magnitudes of morphological 

integration with or without size. Analogously, when p is high, almost all variance in a 

sample will be accounted for by the first PC and the magnitude of morphological integration 

will be the strongest (will approach the V arrel(λ) = 1). The PC1 usually is a combination of 

size variation and allometry (Huxley 1924; Jolicoeur 1963; Bookstein et al. 1985; 

Klingenberg 2016) and our case is no exception. What we observe when p is high is that the 

removal of size results in lower magnitudes of morphological integration in comparison to 

the form analysis (Figure 1A, last panel), because the amount of variation explained by the 

PC1 decreases without size. However, since allometry is also an important contributor for 

the amount of variation explained by the PC1, this PC still presents considerably more 

variation than other axes. As a consequence, high magnitude of morphological integration 

values will still be observed for these matrices. Thus, unless ones’ data clusters in the 

extremes of the magnitude of morphological integration distribution, which is not the case 

for mammalian skulls at least, it is not advisable to conjointly discuss results obtained on 

different representations.

This then raises the question of what should be analyzed when making statements of 

magnitude of morphological integration: shape or form? One possible answer is that a 

structure should always be analyzed as a whole, and all factors should be taken into account 

(Bookstein 2009). From an evolutionary modeling point of view, the exclusion of important 

traits related to fitness variation could significantly mislead our understanding of the micro 

and macroevolutionary dynamics (Morrissey et al. 2010). Given that size has major effects 

on fitness components (Calder 1984), excluding it from morphometric analysis might be ill-

advised. On the other hand, size is thought to affect all structure in a coordinated fashion, 

possibly obscuring localized genetic and epigenetic effects (Marroig et al. 2004; 

Mitteroecker and Bookstein 2009). Thus, its removal from the data might help us better 

understand details about morphological modularity that would not be evident otherwise 

(Marroig et al. 2004; Shirai and Marroig 2010; Porto et al. 2013). Also, it is conceivable that 

for some biological questions size truly is unimportant, such as the evolution of bio-

mechanical proprieties, which might be fully independent of size (Rayner 1985; Dumont et 

al. 2009; Collar et al. 2014; Polly et al. 2016). These different choices for analyzing 

morphometric data could give insights on different aspects of morphological integration and 

evolution, and we should make choices that are appropriate to the questions we are trying to 

answer.

The standardized eigenvalue variance allows us to measure the magnitude of morphological 

integration in any numerical representation of shape or form, but we should always consider 

the actual theoretical implications of analyzing integration in these different morphospaces. 

The theory of morphological integration was originally developed to study measurements 

that are individually interpretable, such as lengths or weights (Olson and Miller 1958), and 

some predictions regarding the magnitude of integration only make sense in the context of 
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those measurements. For example, the idea that functionally related traits will be more 

correlated, while true for these kinds of measurements, might not be so for shape variables 

such as ratios. Consider the case of the carnivoran mandible (Fig. 3). According to theory, 

the optimal position of the resultant force of the jaw closing muscles is 60% of the way from 

the mandibular-skull articulation to the carnassial tooth (Greaves 1983, Fig. 3A). The 

magnitude of morphological integration between the distance of the adductor muscle 

insertion (which influences the position of the resultant force) and of the carnassial tooth to 

the articulation is strong, as expected (Fig. 3B). However, if we measure the same features as 

a ratio of the total length of the mandible, we find that these variables are less integrated 

(Fig. 3C), a fact that could then lead to the misguided rejection of the hypothesis of 

functional association between the two traits. Interpretations of magnitude of morphological 

integration can be even less straightforward on shape-size morphospaces (sensu 
Mitteroecker et al. 2004), i.e. when shape variables are analyzed along with a properly 

scaled size variable. On the mandible example above, if we add a size measure to the shape 

ratios we obtain a strong magnitude of morphological integration, despite the absence of 

association between ratios (Fig. 3C–E). In this case, the high magnitude of morphological 

integration is indeed the consequence of functional association among traits, as shape ratios 

and sizes stem directly from the original highly integrated variables. When interpreting 

morphological integration, we must take the meaning of the variables into account and 

consider how biological hypothesis translate into predictions about integration in the 

particular choice of representation.

Our results for carnivoran species are illustrative of how analyzing integration on different 

spaces might lead to different results and conclusions. Magnitude of morphological 

integration values for form have shown that large species, such as pinnipeds and bears, are 

among the most integrated ones (Fig. 2A). Larger sizes could be achieved by increased 

growth rates during ontogeny, a fact that could result into a greater variance in size and 

allometric variation in detriment of other aspects of shape (Porto et al. 2013). However, once 

size is removed, these groups are no longer among the most integrated ones. In fact, when 

we evaluate only the magnitude of integration of shape, Canidae is the group that stands out 

as being consistently less integrated than other taxa (Fig. 2B). As discussed above, 

interpreting shape integration can be problematic on its own. However, adding the log-

centroid size on the shape data (as in the GM form dataset) do yield intermediary values of 

integration (the same is true if we add the log-centroid size to the ILD shape ratios, not 

shown), suggesting that the low shape integration in Canidae is not due to lack of 

morphological variation in shape variables. In fact, previous analysis have shown that canids 

have an increased evolutionary potential for some localized aspects of skull shape, namely 

those relating to the relative length of the face. Thus, it is likely that a lower shape 

integration observed for the group actually reflects a less constrained and more flexible 

(sensu Marroig et al. 2009) phenotype. This shows that a proper examination of 

morphological integration magnitudes cannot be taken out of the context of the morphospace 

under analysis.

In conclusion, our results show that the magnitude of morphological integration obtained 

from different morphometric representations are unlikely to be directly comparable. Even in 

the case of form, where absolute values are similar among representations, GM estimates 
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tend to be larger than those for ILD (Fig. 1). Despite this, we observe a high correlation 

between values obtained from different representations, i.e. V arrel(λ) of different species 

will be similarly sorted in both ILD and GM, especially if we are analyzing form data. 

Furthermore, large-scale phylogenetic comparisons of form or shape can produce similar 

conclusions regardless of representation, even if species values are not equal. However, 

magnitudes of morphological integration obtained for form will not be compatible to those 

obtained for shape and vice-versa, and care should be taken when evaluating conclusions 

reached by works focusing on these different representations of morphological variation.

ACKNOWLEDGMENTS

We thank Mirian Zelditch, P. David Polly, Anjali Goswami, Philipp Mitteroecker and 2 anonymous reviews for their 
insightful comments that helped us to stir this manuscript into the right direction. We also thank Valentina Segura 
for lending the mandible outline to ilustrate our paper. This work was partially supported by grants from the 
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) to FAM (2011/21674–4, 2013/22042–7), AH 
(2012/24937–9), DM (2014/26262–4), and GM (2011/14295–7). FAM was also partially supported by the NSF 
grant (DEB 1350474 to L. Revell). AP was supported by the National Institute of Dental and Craniofacial Research 
of the National Institutes of Health, award number F31DE024944. The content is solely the responsibility of the 
authors and does not necessarily represent the official views of the National Institutes of Health.

LITERATURE CITED

Adams D, and Otarola-Castillo E, 2013 geomorph: an r package for the collection and analysis of 
geometric morphometric shape data. Methods in Ecology and Evolution 4:393–399.

Adams DC, and Collyer ML, 2016 On the comparison of the strength of morphological integration 
across morphometric datasets. Evolution 70:2623–2631. [PubMed: 27592864] 

Assis APA, Patton JL, Hubbe A, and Marroig G, 2016 Directional selection effects on patterns of 
phenotypic (co)variation in wild populations. Proceedings of the Royal Society of London. Series B, 
Biological Sciences 283:20161615. [PubMed: 27881744] 

Bookstein FL, 1989 “Size and shape”: a comment on semantics. Systematic Zoology 38:173–180.

Bookstein FL, 2009 Measurement, explanation, and biology: Lessons from a long century. Biological 
Theory 4:6–20.

Bookstein FL, Cherno B, Elder RL, Humphries J, Smith GR, and Strauss RE, 1985 Morphometrics in 
evolutionary biology: the geometry of size and shape change, with examples from fishes. The 
Academy of Natural Sciences of Philadelphia, Special Publication No. 15.

Calder WA, 1984 Size, function, and life history. Courier Corporation.

Cheverud JM, 1982 Phenotypic, genetic, and environmental morphological integration in the cranium. 
Evolution 36:499–516. [PubMed: 28568050] 

Cheverud JM, 1984 Quantitative genetics and developmental constraints on evolution by selection. 
Journal of Theoretical Biology 110:155–171. [PubMed: 6492829] 

Collar DC, Wainwright PC, Alfaro ME, Revell LJ, and Mehta RS, 2014 Biting disrupts integration to 
spur skull evolution in eels. Nature Communications 5:430–9.

Curth S, Fischer MS, and Kupczik K, 2017 Patterns of integration in the canine skull: an inside view 
into the relationship of the skull modules of domestic dogs and wolves. Zoology 125:1–9. 
[PubMed: 28823648] 

Dumont ER, Grosse IR, and Slater GJ, 2009 Requirements for comparing the performance of finite 
element models of biological structures. Journal of Theoretical Biology 256:96–103. [PubMed: 
18834892] 

Esteve-Altava B, 2017 In search of morphological modules: a systematic review. Biological reviews of 
the Cambridge Philosophical Society 92:1332–1347. [PubMed: 27245113] 

Felice RN, Randau M, and Goswami A, 2018 A fly in a tube: Macroevolutionary expectations for 
integrated phenotypes. Evolution; international journal of organic evolution 72:2580–2594. 
[PubMed: 30246245] 

Machado et al. Page 12

Evolution. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Felsenstein J, 1988 Phylogenies and quantitative characters. Annual Review of Ecology and 
Systematics 19:445–471.

Fruciano C, Franchini P, and Meyer A, 2013 Resampling-Based Approaches to Study Variation in 
Morphological Modularity. PLOS ONE 8:e69376. [PubMed: 23874956] 

Garcia GRG, Hingst-Zaher E, Cerqueira R, and Marroig G, 2014 Quantitative Genetics and 
Modularity in Cranial and Mandibular Morphology of Calomys expulsus. Evolutionary Biology 
41:619–636.

Goswami A, Binder WJ, Meachen J, and OKeefe FR, 2015 The fossil record of phenotypic integration 
and modularity: A deep-time perspective on developmental and evolutionary dynamics. 
Proceedings of the National Academy of Sciences 112:4891–4896. URL http://www.pnas.org/
content/112/16/4891.abstract.

Goswami A, Smaers JB, Soligo C, and Polly PD, 2014 The macroevolutionary consequences of 
phenotypic integration: from development to deep time. Philosophical Transactions of the Royal 
Society B: Biological Sciences 369:20130254.

Grabowski M, and Porto A, 2017 How many more? Sample size determination in studies of 
morphological integration and evolvability. Methods in ecology and evolution 8:592–603. 
[PubMed: 28503291] 

Greaves WS, 1983 A functional analysis of carnassial biting. Biological Journal of the Linnean Society 
20:353–363.

Haber A, 2011 A Comparative Analysis of Integration Indices. Evolutionary Biology 38:476–488.

Haber A, 2015 The Evolution of Morphological Integration in the RuminantSkull. Evolutionary 
Biology 42:99–114.

Hallgrímsson B, Jamniczky H, Young N, Rolian C, Parsons T, Boughner J, and Marcucio RS, 2009 
Deciphering the palimpsest: studying the relationship between morphological integration and 
phenotypic covariation. Evolutionary Biology 36:355–376. [PubMed: 23293400] 

Hansen TF, and Houle D, 2008 Measuring and comparing evolvability and constraint in multivariate 
characters. Journal of Evolutionary Biology 21:1201–1219. [PubMed: 18662244] 

Houle D, Pélabon C, Wagner GP, and Hansen TF, 2011 Measurement and Meaning in Biology. The 
Quarterly Review Of Biology 86:3–34. [PubMed: 21495498] 

Hubbe A, Melo D, and Marroig G, 2016 A case study of extant and extinct Xenarthra cranium 
covariance structure: implications and applications to paleontology. Paleobiology 42:465–488.

Huxley JS, 1924 Constant differential growth-ratios and their significance. Nature 114:895–896. URL 
http://www.nature.com/nature/journal/v114/n2877/abs/114895a0.html.

Jamniczky HA, and Hallgrímsson B, 2009 A comparison of covariance structure in wild and laboratory 
muroid crania. Evolution 63:1540–1556. [PubMed: 19210537] 

Jolicoeur P, 1963 The Multivariate Generalization of the Allometry Equation. Biometrics 19:497–499.

Klingenberg CP, 2016 Size, shape, and form: concepts of allometry in geometric morphometrics. 
Development genes and evolution 226:113–137. [PubMed: 27038023] 

Lande R, 1979 Quantitative genetic analysis of multivariate evolution, applied to brain: Body size 
allometry. Evolution 33:402–416. URL ://WOS:A1979GV98300014. [PubMed: 28568194] 

Machado FA, Zahn TMG, and Marroig G, 2018 Evolution of morphological integration in the skull of 
Carnivora (Mammalia): Changes in Canidae lead to increased evolutionary potential of facial 
traits. Evolution 72:1399–1419.

Marroig G, and Cheverud JM, 2004 Did natural selection or genetic drift produce the cranial 
diversification of neotropical monkeys? The American Naturalist 163:417–428.

Marroig G, Shirai LT, Porto A, de Oliveira FB, and De Conto V, 2009 The evolution of modularity in 
the mammalian skull II: Evolutionary consequences. Evolutionary Biology 36:136–148. URL ://
WOS:000264547700010.

Marroig G, Vivo M, and Cheverud JM, 2004 Cranial evolution in sakis (Pithecia, Platyrrhini) II: 
evolutionary processes and morphological integration. Journal of Evolutionary Biology 17:144–
155. [PubMed: 15000657] 

Meiri S, Dayan T, and Simberloff D, 2005 Variability and correlations in carnivore crania and 
dentition. Functional Ecology 19:337–343.

Machado et al. Page 13

Evolution. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.pnas.org/content/112/16/4891.abstract
http://www.pnas.org/content/112/16/4891.abstract
http://www.nature.com/nature/journal/v114/n2877/abs/114895a0.html
http://WOS:A1979GV98300014
http://WOS:000264547700010
http://WOS:000264547700010


Melo D, Porto A, Cheverud JM, and Marroig G, 2016 Modularity: Genes, Development, and 
Evolution. Annual review of ecology, evolution, and systematics 47:463–486.

Mitteroecker P, and Bookstein F, 2009 The ontogenetic trajectory of the phenotypic covariance matrix, 
with examples from craniofacial shape in rats and humans. Evolution 63:727–737. [PubMed: 
19087182] 

Mitteroecker P, and Bookstein FL, 2007 The conceptual and statistical relationship between modularity 
and morphological integration. Systematic Zoology 56:818–836.

Mitteroecker P, Gunz P, Bernhard M, Schaefer K, and Bookstein FL, 2004 Comparison of cranial 
ontogenetic trajectories among great apes and humans. Journal of Human Evolution 46:679–698. 
[PubMed: 15183670] 

Morrissey MB, Kruuk LEB, and Wilson AJ, 2010 The danger of applying the breeder’s equation in 
observational studies of natural populations. Journal of Evolutionary Biology 23:2277–2288. 
[PubMed: 20831731] 

Mosimann JE, 1970 Size allometry: size and shape variables with characterizations of the lognormal 
and generalized gamma distributions. Journal of the American Statistical Association 65:930–945.

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’hara RB, 
Simpson GL, Solymos P, Stevens MHH, Szoecs E, and Wagner H, 2017 vegan: Community 
Ecology Package.

Olson EC, and Miller RL, 1958 Morphological integration. University of Chicago Press.

Pavlicev M, Cheverud JM, and Wagner GP, 2009 Measuring Morphological Integration Using 
Eigenvalue Variance. Evolutionary Biology 36:157–170.

Pearson K, and Davin AG, 1924 On the biometric constants of the human skull. Biometrika 16:328–
363.

Penna A, Melo D, Bernardi S, Oyarzabal MI, and Marroig G, 2017 The evolution of phenotypic 
integration: How directional selection reshapes covariation in mice. Evolution 71:2370–2380. 
[PubMed: 28685813] 

Peres-Neto P, and Jackson D, 2001 How well do multivariate data sets match? The advantages of a 
Procrustean superimposition approach over the Mantel test. Oecologia 129:169–178. [PubMed: 
28547594] 

Polly PD, Stayton CT, Dumont ER, Pierce SE, Rayfield EJ, and Angielczyk KD, 2016 Combining 
geometric morphometrics and finite element analysis with evolutionary modeling: towards a 
synthesis. Journal of Vertebrate Paleontology 36:e1111225.

Porto A, Oliveira F. B. d., Shirai LT, Conto V, and Marroig G, 2009 The Evolution of Modularity in the 
Mammalian Skull I: Morphological Integration Patterns and Magnitudes. Evolutionary Biology 
36:118–135.

Porto A, Schmelter R, VandeBerg JL, Marroig G, and Cheverud JM, 2016 Evolution of the Genotype-
to-Phenotype Map and the Cost of Pleiotropy in Mammals. Genetics 204:1601–1612. [PubMed: 
27784721] 

Porto A, Sebastião H, Pavan SE, VandeBerg JL, Marroig G, and Cheverud JM, 2015 Rate of 
evolutionary change in cranial morphology of the marsupial genus Monodelphisis constrained by 
the availability of additive genetic variation. Journal of Evolutionary Biology 28:973–985. 
[PubMed: 25818173] 

Porto A, Shirai LT, Oliveira F. B. d., and Marroig G, 2013 Size Variation, Growth Strategies, And The 
Evolution Of Modularity In The Mammalian Skull. Evolution 67:3305–3322. [PubMed: 
24152009] 

R Core Team, 2015 R: A Language and Environment for Statistical Computing. R Foundation for 
Statistical Computing, Vienna, Austria URL https://www.R-project.org/.

Randau M, Sanfelice D, and Goswami A, 2019 Shifts in cranial integration associated with ecological 
specialization in pinnipeds (Mammalia, Carnivora). Royal Society Open Science 6:190201–24. 
[PubMed: 31032062] 

Rayner JMV, 1985 Linear relations in biomechanics: the statistics of scaling functions. Journal of 
zoology 206:415–439.

Revell LJ, 2012 phytools: an R package for phylogenetic comparative biology (and other things). 
Methods in Ecology and Evolution 3:217–223.

Machado et al. Page 14

Evolution. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.R-project.org/


Riedl R, 1978 Order in Living Organisms: A Systems Analysis of Evolution. John Wiley.

Rohlf F, and Slice D, 1990 Extensions of the procrustes method for the optimal superimposition of 
landmarks. Systematic Zoology 39:40–59.

Rohlf FJ, 2000 On the use of shape spaces to compare morphometric methods. Hystrix-the Italian 
Journal of Mammalogy 11:8–24.

Schluter D, 1996 Adaptive radiation along genetic lines of least resistance.Evolution 50:1766–1774. 
[PubMed: 28565589] 

Schluter D, Price T, Mooers AØ, and Ludwig D, 1997 Likelihood of ancestor states in adaptive 
radiation. Evolution Pp. 1699–1711. [PubMed: 28565128] 

Shirai LT, and Marroig G, 2010 Skull modularity in neotropical marsupials and monkeys: size 
variation and evolutionary constraint and flexibility. Journal of Experimental Zoology Part B: 
Molecular and Developmental Evolution 314B:663–683.

Walker JA, 2000 Ability of geometric morphometric methods to estimate a known covariance matrix. 
Systematic Biology 49:686–696. [PubMed: 12116434] 

Young NM, Wagner GP, and Hallgrímsson B, 2010 Development and the evolvability of human limbs. 
Proceedings of the National Academy of Sciences of the United States of America 107:3400–
3405. [PubMed: 20133636] 

Zelditch ML, Swiderski DL, and Sheets HD, 2012 Geometric morphometrics for biologists: a primer. 
Academic Press.

Machado et al. Page 15

Evolution. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Relationship between the V arrel(λ) obtained on Geometric Morphometric and Inter-

landmark Distance for simulated (A) and observed (B) datasets. SMA regression statistics: 

β-slope, values between parenthesis are the confidence intervals. ρ- Pearson’s product 

moment correlation index. R2-Coefficient of determination. Solid line- empirical SMA 

regression line. Dashed line- line where values are equal for both morphometric 

representations (slope=1 and intercept=0).
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Figure 2: 
Mapping of V arrel(λ) as a continuous trait on the Caniform (Carnivora) phylogeny. 

Triangles associated with taxa names refer to the phylogenetic average for that group. GM- 
Geometric Morphometrics. ILD-Inter-landmark Distances.
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Figure 3: 
A- Example of functional traits on the carnivoran mandible: a- length between the 

articulation and abductor muscle insertion; b- length between the articulation and the 

carnassial tooth; c- dentary length. B- Relationship between the ratios b/c and a/c. C- 

Relationship between b and a as ratios of the c. D- Relationship between a/c and c 

standardized by its average. E- Relationship between a/c and c standardized by its average. 

V arrel(λ) was calculated for the association between linear variables a and b (B), shape 

ratios a/c and b/c (C) and both shape ratios, a/c and b/c, and the standardized size c/mean(c) 

(D).
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