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Characterization of microstructures in live tissues is one of the keys to diagnosing early stages of pathol-
ogy and understanding disease mechanisms. However, the extraction of reliable information on biomark-
ers based on microstructure details is still a challenge, as the size of features that can be resolved with
non-invasive Magnetic Resonance Imaging (MRI) is orders of magnitude larger than the relevant struc-
tures. Here we derive from quantum information theory the ultimate precision limits for obtaining such
details by MRI probing of water-molecule diffusion. We show that already available MRI pulse sequences
can be optimized to attain the ultimate precision limits by choosing control parameters that are uniquely
determined by the expected size, the diffusion coefficient and the spin relaxation time T2. By attaining the
ultimate precision limit per measurement, the number of measurements and the total acquisition time may
be drastically reduced compared to the present state of the art. These results will therefore allow MRI to
advance towards unravelling a wealth of diagnostic information.

Information on compartment sizes and geometrical fea-
tures of microstructures in live tissues is one of the po-
tential keys to diagnosing tissue changes at early stages
of pathologies and understanding organ malfunctioning
due to diseases. For example, the biophysical mecha-
nisms of cancer development and treatment are revealed
by microstructure details [1–4]. Another case where small
structural changes are important indicators are neuronal
diseases that alter the distribution of axon diameters and
myelin sheath, and thereby the speed of information prop-
agation in the white matter of brain [5–10]. Such diseases
include Alzheimer, autism, amyotrophic lateral sclerosis
and schizophrenia. Therefore, a major goal of medical
diagnosis is the development of precise and non-invasive
techniques for characterizing the distribution of axon di-
ameters in the brain and the sizes of microstructure com-
partments in tissues [11–13]. In order to find reliable
biomarkers based on quantitative characterization of tis-
sue microstructure, the diagnostic tools should provide pre-
cise measures of tissue structure size of the order of a
few micrometers. For this purpose, it is not necessary to
obtain micron-scale images of individual tissue compart-
ments, but it is important to measure their average sizes at
this resolution.

Magnetic resonance imaging (MRI) is an excellent tool
for such studies, since it enables detailed, non-invasive
characterization of tissues in vivo. Its resolution, in terms
of voxel sizes, is typically limited to millimeters in clini-
cal studies, or hundreds of microns in preclinical studies
but reaching micrometer scales under specific conditions
[14, 15]. However, it also offers the potential to quan-
tify structural details that are orders of magnitude smaller
than the size of a voxel by monitoring the distance over
which water molecules can travel by diffusion until their
motion is restricted by walls that are not directly visi-
ble, such as cellular membranes. This approach is often

called diffusion-weighted imaging (DWI) [16–19]. The
most promising DWI technique employs Modulated Gradi-
ent Spin Echo (MGSE) sequences that enable detailed mi-
crostructure characterization [20–26]. Several works have
addressed the estimation of compartment sizes by proto-
cols based on various DWI sequences [23–30]. As pointed
out by those works, the main open questions are: what res-
olution can be ultimately achieved by these experiments
and how the experimental parameters should be adapted to
approach this ultimate limit?

In this work, we provide answers to these important
questions by adapting important results from quantum-
information theory: we analytically obtain this limit for
the important case where the size of tissue microstructures
are probed by diffusion processes via DWI experiments.
We derive the necessary control conditions for MGSE se-
quences to allow the attainment of this limit. As exam-
ples, we consider sequences with typical modulated gradi-
ent waveforms for the estimation of microstructure com-
partment sizes, assuming generic geometries. We show
that the ultimate precision limit of the estimation is achiev-
able by MGSE sequences if the gradient strength is set to
a value that depends on the microstructure size, the T2 re-
laxation time and the diffusion coefficient of the molecules
within the compartments. Based on this result, an opti-
mization protocol is provided for MGSE sequences capa-
ble of attaining the highest possible precision under the
given experimental constraints. With this protocol, the to-
tal acquisition time of quantitative microstructure imaging
is shown to be drastically reduced, taking into account the
limitations of the available hardware and the microscopic
properties of the tissues being studied, such as diffusion
constants and spin relaxation times.

Diffusion-weighted spin-echo NMR signal. Nuclear
spins of molecules in biological tissues, in particular the
spins s = 1

2
of protons in water molecules, interact with
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Figure 1. Diffusion-weighted spin-echo probing of length scales in tissue microstructure. (a) Schematic image of axon diameters
in brain white matter. The myelin sheaths (dark circles) protect the cells of the central nervous system. In the presence of a magnetic
field gradient, the Larmor frequency of the nuclear spins depends on their spatial positions. As the spins undergo Brownian motion,
their displacement is limited by the distance between the walls of the compartment. Three relevant scales are compared: the restriction
length `c is the main quantity that we have to characterize; it is related to the size of the compartment. The diffusion length `D is
the average distance that the water molecules would travel in the case of free diffusion and `G is a dephasing length scale determined
by experimental parameters that are sensitive to the diffusion process, such as the amplitude G of the gradients. (b) Scheme of a
normalized displacement power spectrum S(`c, ω) (red color) and an optimal MGSE filter function Ft(ω) (green color) as a function of
the renormalized frequency ω`2c/2D0. (c) Pulsed Gradient Spin Echo (PGSE) sequence for probing the diffusion restriction length: an
initial π2 -excitation pulse is followed by the diffusion weighting-contrast building block that consists of a refocusing (π)-pulse at half
the diffusion weighting time t between two pulsed gradients of duration δ and separated by a delay ∆. After the diffusion-weighting
period, the remaining signal is measured, possibly using MRI encoding. The PGSE filter shown in panel b, assumes δ = ∆ = t

2 .

external magnetic fields in MRI. A uniform magnetic field
along the z axis defines the Larmor precession frequency
of the spins. In DWI, uniform magnetic-field gradients Gr̂
are applied along an arbitrary direction r̂ (Fig. 1a). The
spins are then subjected to fluctuating precession frequen-
cies ω(t) induced by molecular diffusion displacements
[18, 19]. The instantaneous precession frequency of the
spin ω(t) = γGr(t) accounts for the random motion of
molecular diffusion, where r(t) is the instantaneous po-
sition of the diffusing spin along the field-gradient direc-
tion and γ is the gyromagnetic factor of the nucleus. If
the motion of the molecules is restricted, e.g. due to com-
partmentalization of the tissue, such as in the human brain,
the fluctuations are limited in amplitude. Quantification of
these fluctuations therefore allows one to obtain an indirect
measure of the size distribution of these compartments as
shown in Fig. 1a [11–13].

A typical MRI / DWI experiment starts with a π/2-
excitation pulse, which creates a coherent superposition
of the two spin states. During the subsequent evolution
within the diffusion time t, the spin-ensemble magnetiza-
tion M(t) =

〈
e−iφ(t)

〉
M(0) records the diffusion pro-

cess, where the brackets represent the ensemble average
over the random phases. The total magnetization of the
sample is encoded spatially by an MRI sequence at the end
of this evolution. We consider here thatM(t) is the magne-
tization in a voxel of the image, that provides what is called
the diffusion-weighted contrast. A Gaussian phase dis-
tribution is typically assumed for the random phase φ(t),
leading, under probing by a MGSE sequence, to a decay of
the magnetization Stepisnik [31]

M(t) = e−
1
2〈φ2(t)〉M(0), (1)

with the mean value 〈φ(t)〉 = 0. Here, the signal atten-
uation factor 1

2
〈φ2(t)〉 accounts for the contrast generated

in an image, based on the effect of the MGSE sequence
that probes different time scales of the diffusion process.
The phase variance can be described in the frequency do-
main by the following expression [21, 32–34], which is
the example for the case of phase-diffusion of the Kofman-
Kurizki (KK) universal formula for decoherence (dephas-
ing and relaxation) control and probing in quantum systems
[34–40],

〈
φ2(t)

〉
= γ2

ˆ ∞
−∞

dωFt(ω)S(ω). (2)

The phase variance is a convolution of two spectral func-
tions: (i) The filter function Ft(ω) is the finite-time Fourier
transform (FT) of the magnetic field gradient (power spec-
trum) applied in the experimental sequence. It acts as a
spectral noise-filter: If its value is 1, it passes the experi-
mental noise at that frequency without attenuation whereas
if it is 0, it blocks the noise completely. (ii) The spectral
density S(ω) of the spin noise induced by the environment
is given (in the case of diffusion) by the FT of the spin
displacement autocorrelation function 〈∆r(t)∆r(t+ τ)〉,
where ∆r(t) = r(t) − 〈r(t)〉 is the instantaneous dis-
placement deviation from the mean value [32, 33]. For
molecular diffusion 〈∆r(t)∆r(t+ τ)〉 = D0τce

−|τ |/τc ,
where D0 is the free diffusion coefficient [23, 29, 41] and
τc is the correlation time. For molecules that diffuse in
a microstructure, the characteristic time τc is the one re-
quired on average for a molecule to probe the compartment
boundaries. It is related to the restriction length by Ein-
stein’s expression `2c = 2D0τc [19]. The spectral density
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S(ω) is given by [20, 33, 37, 40, 41]

S(ω) =
D0τ

2
c

π(1 + ω2τ 2
c )
. (3)

Figure 1b shows Ft(ω) = 1
2π

∣∣∣´ t0 dt′G(t′)e−iωt
′
∣∣∣2 and

S(ω) for a typical MGSE sequence displayed in Fig. 1c.
In restricted diffusion, the specific relation between `c and
the geometric size depends on the compartment shape (see
Methods); e.g., for cylinders oriented perpendicular to the
direction of the magnetic field gradient, a good approxi-
mation is `c = 0.37d, where d is the cylinder diameter
[20, 21, 23, 32].

Ultimate error bounds for estimating microstructure
sizes. The central question we pose is: What is the best
MGSE control strategy to infer the restriction length of
the diffusion process? To answer this question we resort
to quantum information tools, in order to determine opti-
mal gradient control strategies for obtaining the best es-
timation of the restriction length of the diffusion process,
and thereby determine microstructure sizes in biological
tissues.

The figure of merit for the estimation of `c, the parame-
ter that determines microstructure sizes, is the relative er-
ror δ`c

`c
. Assuming unbiased single-parameter estimation,

the relative error of the magnetization signal in Eq. (1) is
limited by the Cramer-Rao bound

δ`c
`c
≥ ε(t, `c)√

N
=

1

`c
√
NFQ(t, `c)

, (4)

where ε is the minimal attainable relative error per mea-
surement, which is determined by the quantum Fisher in-
formation (QFI) FQ(t, `c) of `c obtainable from the mea-
sured spin andN is the number of measurements [42–44].
The QFI depends on the magnetization signal in Eq. (1)
[40, 42, 45, 46] (see Methods) with a functional depen-
dence on `c and the total diffusion weighting time t. This
expression implicitly depends on other system parameters,
particularly the diffusion coefficient D0 that we assume to
be known.

The relative error per measurement ε, Eq. (4), can be
minimized by maximizing FQ with respect to the MGSE
control parameters, specifically the gradient strength and
modulation shape [40]. For a given MGSE sequence and a
given gradient strength G, the optimal diffusion weighting
time topt is defined by

FQ(topt, `c) = max
t

(FQ(t, `c)). (5)

This define a minimal error ε(topt, `c) for each MGSE con-
trol.

We can see that by suitably designing an optimal MGSE
control, one can attain the ultimate relative-error bound
for the restriction length of the diffusion process (see Meth-
ods), namely,

ε(t, `c) ≥ ε0. (6)

Remarkably, this precision estimation bound for `c is gen-
eral for all possible MGSE control sequences and inde-
pendent of the particular geometry restricting the diffusion
(see Methods). This ultimate precision is attained by opti-
mally choosing the following length scales (Fig. 1a):

`G = 3

√
2D0

γG
`c =

√
2D0τc `D =

√
2D0t, (7)

where `G the dephasing length, `c the restriction length,
and `D is the the diffusion length.

Attaining the ultimate precision bound. To attain the
ultimate error bound per measurement in Eq. (6), the
MGSE should satisfy the following requirements: (i) The
spectral filter Ft(ω) should overlap with the displacement
power spectrum S(`c, ω) (Eq. (3)) within the spectral re-
gion of the highest power-law dependence on `c at a low
frequency, where S(`c, ω ≈ 0) ∝ `4c , corresponding to
− ln [M(t)/M(0)] ∝ `4c . (ii) The total diffusion weight-
ing time t should be the optimal time topt, Eq. (5), such
that ln [M(topt, `c)/M(0)] = lnMo, where the optimal
magnetization contrast Mo is determined by the expres-
sion − lnMo = 1 +W (−2e−2) ≈ 0.8 (see Methods). A
MGSE sequence producing a narrow low-frequency band-
pass filter would be therefore the most sensitive to the re-
striction size `c. The narrowest low-frequency bandpass
filter for a given diffusion time among typical MGSE se-
quences is an optimized Pulse Gradient Spin Echo (PGSE)
sequence, as it only contains one gradient-sign switch lead-
ing to the longest possible modulation period. The PGSE
sequence [16] is displayed in Figure 1c. The time δ is the
gradient pulse duration and ∆ is the delay between the gra-
dient pulses. The PGSE sequence includes one π rf-pulse
to refocus external magnetic field inhomogeneities. PGSE
is analogous to a gradient echo or a Hahn spin echo [47]
with a constant gradient if δ = ∆ = t

2
, where t is the

sequence duration and therefore the diffusion time (Fig.
1c) and produces the lowest frequency bandpass under this
limit.

If t� τc, the condition (i) to attain the bound is satisfied
resulting in (see Methods)

− ln

(
Mδ=∆= t

2 ,t�τc(t, `c)

M(0)

)
≈ γ2G2D0τ

2
c t ∝ `4c .(8)

From requirement (ii) and Eqs. (8), the optimal diffusion
time is found to satisfy

topt =
− lnMo

γ2G2D0τ 2
c

≈ 0.8

γ2G2D0τ 2
c

. (9)

Figure 2a shows typical signal decay for different
γ2G2D0τ

3
c values and the corresponding optimal diffusion

times topt. Both requirements (i) and (ii) are therefore ful-
filled when t = topt � τc, meaning that the diffusion
length should be much larger than the correlation length,
`D � `c (Eq. 7). Together with Eq. (9), this require-
ment amounts to the condition γ2G2D0τ

3
c � 1 which
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Figure 2. Attaining the ultimate precision bound of the re-
striction length `c from diffusion-weighted magnetization de-
cay. (a) The decay of the normalized signal corresponding to
the Hahn MGSE control M(t)/M(0) as a function of the dif-
fusion time in units of the square of the normalized diffusion
length `2D/`

2
G, with `2D = 2D0t. Dark to light green lines de-

note increasing renormalized correlation times in units of the
renormalized restriction lengths `2c/`2G =

(
γ2G2D0

)1/3
τc =

0.1, 0.15, 0.25, 0.4, 1. The circles denote the optimal diffusion
times

(
γ2G2D0

)1/3
topt. (b) Relative minimum error ε2

ε20
in the

estimation of `c per measurement, i.e. N = 1, as a function of
the renormalized restriction length `2c/`2G (colored circles). The
ultimate error bound in the estimation of `c, ε0 in Eq. (6), is set
at unity. The colored scale for the circles gives the normalized
diffusion length `2D/`

2
G. The bound is attained when `2c/`2G � 1

and `2D/`
2
G � 1, and `4c

`4G

`2D
`2G

= − lnM0 as described in Eq. (9),

implying
(
γ2G2D0

)1/3
τc � 1. The quantity ε2

ε20
yields directly

the number of measurementsN needed to attain the ultimate pre-
cision bound per measurement.

means that the diffusion correlation length should be much
smaller than the dephasing length, `c � `G (see Fig. 1a).
Indeed, the optimal diffusion-weighted length `D/`G that
corresponds to the highest precision per measurement for
determining the restriction length, is seen from Fig. 2b to
require

`6c
`6G

= γ2G2D0τ
3
c � 1. (10)

Therefore, under the idealized relaxation-free condition
discussed here, increasing `G, i.e. reducing the gradient
strength, always improves the precision up to the point al-
lowing to attain the bound (Eq. 6). Since the optimal time
must fulfill Eq. (9), it must satisfy the power-law depen-
dence topt

τc
= `2D

`2G

`2G
`2c
≈ (γ2G2D0τ

3
c )
−1

= `6G
`6c
� 1. By

contrast, when topt
τc

. 1, topt saturates at a diffusion time
value where the signal decays below M/M(0) ≈ 1/e
(Fig. 2a). The larger τc, the shorter is topt in Eq. (9),

and the restricted diffusion regime t � τc can no longer
be achieved.

Figure 2b shows the minimal relative squared error ε2

scaled to ε2
0 per measurement, ε2

ε20
. This scaled squared

error determines the number of measurements N needed
to attain an error equivalent to the ultimate precision per
measurement (see Eq. (4)). For `c

`G
> 1, the restricted dif-

fusion regime is no longer achieved and the relative error
linearly increases with `c

`G
.

Precision bounds with transverse relaxation. Under
the idealized relaxation-free conditions discussed so far,
by reducing the gradient we may always increase the op-
timal diffusion time so as to achieve the ultimate precision
bound for `c estimation. However, this approach may fail,
as the intrinsic nuclear-spin T2-relaxation limits the acces-
sible diffusion probing time. The T2-relaxation contributes
a global attenuation factor to the signal decay, which is in-
dependent of the MGSE sequence and the corresponding
diffusion weighting. The echo signal of Eq. (1) is then
MT2

(t, `c) = e−
t
T2M(t, `c), where M(t, `c) accounts for

the diffusion weighted spins’ magnetization of Eq. (1). We
can see that the relative error including the T2-relaxation
effects is bounded by

ε ≥ e
t
T2 ε0 (11)

and thus exponentially increases with t
T2

(See Methods).
The conditions for attaining the ultimate error bound

are now more restrictive, since the diffusion time t cannot
be larger than T2. This condition implies specific values
for the optimal diffusion time topt and the efficiency pa-
rameter γ2G2D0τ

3
c that can attain the best precision limit

in the estimation of `c. This is in contrast to the limit
T2 → ∞, where a semi-infinite range of topt values exists
for γ2G2D0τ

3
c � 1, that allow the ultimate error bound to

be attained (see Fig. 2).
Yet, upon shortening T2, while keeping topt � T2

(`D � `T2
=
√

2D0T2 as Eq. (7)), we still find a finite
region where ε(topt, `c) ≈ ε0. This region is defined by
the condition `6c

`6G
� 1, Eq. (10), which has been imposed

to satisfy the requirements for achieving the ultimate error
bound. These two conditions imply that the ultimate er-
ror bound can be approached only if `G

`T2

� 1. Therefore
the range of restriction lengths `c that can be determined
efficiently with DWI must obey

(`G/`T2
) `2G � `2c � `2G, (12)

which are limited by the achievable gradient strengths and
the T2-relaxation time. For a given `c, these conditions
define the optimal gradients for estimating `c

1

γ`2c

√
2D0

T2

� G� 2D0

γ`3c
. (13)

The minimum relative error for different values of G and
`c is shown in Fig. 3, highlighting the optimal values of G
for estimating the allowed range of restriction lengths.
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Figure 3. Attaining the precision bounds of the restric-
tion length `c with transverse relaxation. (a) Effects of T2-
relaxation on the inverse of the estimation error ε0

ε in the es-
timation of `c per measurement, i.e. N = 1, highlighting the
optimal time and gradient strength for a cylindrical compartment
diameter of d = 10µm. This geometrical shape is representa-
tive of axons or microfibers in general. The diffusion coefficient
D0 = 1 × 10−5 cm2

s and the relaxation time T2 = 0.1 s are
typical of gray/white matter in the brain. The correlation length
is `c = 0.37d. The top inset shows the inverse of the estima-
tion error ε0ε as a function of the gradient G for a diffusion time
t = 43ms, shown by the white dashed line in the main panel. (b)
The optimal squared relative error in the estimation of d is nor-
malized to the squared minimal error bound per measurement,
ε2/ε20, is plotted as a function of the gradient G and diameter d.
The optimal gradient strengths are shown by brighter colors for a
given diameter d. The relaxation time T2 and the diffusion coef-
ficient D0 are considered as in a. The top inset shows the ε2/ε20
for d = 1, 5, 10, 20µm. The number of measurements required
to attain ε0 under the optimal conditions grows as the diameter d
increases or T2 decreases. Equivalently, the range of optimal G
values is reduced as τc = 1

2 `
2
c/D0 approaches T2 (Eq. 13).

Conclusions. Precise measurements of the size of mi-
croscopic tissue compartment, such as the diameter of neu-
ronal axons is an ongoing endeavor that promises improved
diagnostic value for many medical conditions. Diffusion
of water molecules in these tissues provides a built-in tool
that can be accessed by diffusion-weighted magnetic reso-
nance techniques. The present analysis, which uses tools
developed in quantum information science, reveals a uni-
versal, ultimate precision limit for estimating microstruc-
ture sizes by DWI. This limit is attainable by current MRI
techniques available in many clinical settings, provided the
relevant control parameters are properly chosen. We have
shown here how the optimal parameters depend on the dif-
fusion coefficient of the probe molecules (typically water),
the relaxation time T2, and the expected restriction length.
The results of the present analysis are very encouraging
as they show that optimal estimation of microstructure de-
tail, e.g. axon diameters (∼ 0.1 − 20µm) is achievable
by present technologies, given that modern clinical mag-
nets can apply gradients of hundreds Gauss/cm [48], and
preclinical micro-imaging magnet can apply thousands of

Gauss/cm. Even smaller microstructure sizes can, in prin-
ciple, be determined with high precision, but this may de-
mand higher field gradients that are currently unavailable
in clinical magnets. The present results advance towards
designing quantitative and precision imaging approaches
opening new avenues for characterizing tissue microstruc-
tures in the shortest time possible, which is imperative to
find useful biomarkers for medical diagnosis.
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METHODS

Quantum Fisher Information on the microstructure
size `c. The quantum Fisher information (QFI) is given by
[40, 42, 45, 46]

FQ(t, `c) =

[
M(t,`c)

M(0)

]2

1−
[
M(t,`c)

M(0)

]2

∂ ln
[
M(t,`c)

M(0)

]
∂`c

2

,(14)

with explicit functional dependence on `c and the total dif-
fusion weighting time t, but implicitly depends on the dif-
fusion coefficient D0 that we assume to be known, deter-
mined by monitoring the free diffusion time scale.

Ultimate error bound on `c. The QFI is maxi-
mized at topt which provides the best tradeoff between the
amplitude contrast of the diffusion-weighted echo-signal
(M2 (M2(0)−M2)

−1) and its parametric-sensitivity to

`c,
∣∣∣∂ ln(M/M(0))

∂`c

∣∣∣2. This parametric-sensitivity depends on
∂S
∂`c

since the correlation length `c only appears in the dis-
placement power spectrum, Eq. (3). It is bounded by∣∣∣ ∂S∂`c ∣∣∣ ≤ 4S

`c
. This bound is only reached when low frequen-

cies are probed by the MGSE filter function. The spectrum
in Eq. (3) then becomes an homogeneous function of `c of
order 4, i.e. S(`c, ω ≈ 0) ∝ `4c . This dependence leads to
the bound∣∣∣∣∂ ln (M/M(0))

∂`c

∣∣∣∣ ≤ 4(− ln (M/M(0)))

`c
, (15)

which is attained when the MGSE control is such that it
generates a narrow low-frequency bandpass filter. This
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analysis determines a tight lower bound for the relative er-
ror in Eq. (4)

ε(t, `c) ≥

√
[M(0)]

2 − [M(t, `c)]
2

4(− ln [M(t, `c)/M(0)])M(t, `c)
, (16)

which is minimized when the condition

− ln

[
M(t, `c)

M(0)

]
= − lnMo = 1 +

W (−2e−2)

2
≈ 0.8

(17)
is fulfilled, with W (z) being the Lambert function.
This demonstrate the existence of an attainable ultimate-
relative-error bound for the restriction length of the diffu-
sion process

ε(t, `c) ≥
√

1−M2
o

4(− lnMo)Mo

= ε0 ≈ 0.62, (18)

where ε0 =
(− 1

2W (−2e−2)(1+ 1
2W (−2e−2))

− 1
2

4
≈ 2.48

4
≈0.62.

The T2 attenuation factor e−
t
T2 of the signal decay, in-

troduces a crucial constraint for attaining the optimal dif-
fusion time that leads to the ultimate precision bound of
Eq. (6) in the estimation of `c. The relative error is now
bounded by

ε ≥

√
M2(0)− e−

2t
T2M2

4(− ln [M/M(0)])e−
t
T2M

≥ e
t
T2

√
M2(0)−M2

4(− ln [M/M(0)])M
, (19)

which leads to Eq. (11).
Optimized PGSE: Hahn Spin-Echo Filter. The nar-

rowest low-frequency bandpass filter from typical MGSE
sequences is an optimized version of the PGSE sequence,
as it only contains one gradient sign switch, producing the
lowest frequency bandpass. The frequency filter of PGSE
is

FPGSE
δ,∆ (ω) =

∣∣∣∣∣4ie−
iω(δ+∆)

2 sin
(
ωδ
2

)
sin
(
ω∆
2

)
ω

∣∣∣∣∣
2

. (20)

For δ = ∆ = t
2
, which correspond to the well known

gradient- or Hahn spin-echo refocusing sequences over the
total diffusion time t (Fig. 1), the magnetization signal is

Mδ= t
2 ,∆= t

2
= e

−γ2G2Dτ2
c t

[
1− t

τc

(
3+e

− t
τc −4e

− t
2τc

)]
M(0).

(21)
Under this conditions, the sequence produces a low-
frequency narrow bandpass filter if t � τc, resulting in
Eq. (8).

Estimating restriction lengths in general geometries.
Remarkably, the precision estimation bound for `c is gen-
eral for all possible MGSE control sequences and indepen-
dent of the particular geometry restricting the diffusion.
The spectral density is the Fourier Transform of the diffu-
sion correlation function derived from the solution to the
Einstein-Fick diffusion equation for a corresponding re-
stricting geometry [20, 31]. The spectral density is there-
fore given by

S(ω) =
∑
k

D0bkτ
2
k

π(1 + ω2τ 2
k )
,

where the coefficients bk and correlation times τk depend
on the geometry of the compartments and can be found in
Ref. [20] for cylinders, spheres and planar layers. When
the MGSE filter overlaps with the displacement power
spectrum S(ω) within the spectral region of low frequency
S(`c, ω ≈ 0) =

∑
k
D0bkτ

2
k

π
∝ `4c . Here the restriction

length is determined by the root mean squared correlation
time `2c = 2D0

√∑
k bkτ

2
k .
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