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The critical behavior of a nonlocal scalar field theory is studied. This theory has a nonlocal quartic
interaction term which involves a power −β of the Laplacian. The power −β is tuned so as to make that
interaction marginal for any dimension. This leads to integer or half-integer values for β, depending on the
space dimension. Introducing an auxiliary field, it is shown that the theory can be renormalized by means of
local counterterms in the fields. The lowest order Feynman diagrams corresponding to coupling constant
renormalization, mass renormalization, and field renormalization are computed. In all cases, a nontrivial IR
fixed point is obtained. Remarkably, for dimensions other than 4, field renormalization is required at the
one-loop level. For d ¼ 4, the theory reduces to the usual local ϕ4 field theory, and field renormalization is
required starting at the two-loop level. The critical exponents ν and η are computed for dimensions 2, 3, 4,
and 5. For dimensions greater than 4, the critical exponent η turns out to be negative for ϵ > 0, which
indicates a violation of the unitarity bounds.
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I. INTRODUCTION

The computation of critical exponents for the three-
dimensional Ising model using the ϵ-expansion provides a
concrete example of the relevance of the renormalization
group ideas [1,2]. This is done by considering a self-
interacting ϕ4 theory in d ¼ 4 − ϵ dimensions, where ϵ is
allowed to take real values. This procedure leads to a
qualitative understanding of the three-dimensional Ising
model physics, and to predictions for critical exponents in
reasonable agreement with the exact values.
The renormalization group consists of the study of the

evolution of a system under scale transformations. This
system involves all possible interactions of any range for
all kinds of dynamical variables. Different physical systems
correspond to the study of particular fixed points in this huge
space of couplings. This paper studies a particular example
of a system described near the corresponding fixed point by
a nonlocal field theory. Nonlocal field theories appear in
various aspects of physics. These include proposals for
dealing with quantum gravity [3], field theories based on
noncommutative geometry [4], and critical phenomena.
The use of nonlocal field theories in the description of
critical phenomena is not new [5–9]. Such models appear
in statistical systems with long-range interactions. In a
previous paper [10], the critical behavior of a ϕ4 theory with

a nonlocal kinetic term was studied. That theory has
asymptotic freedom in the UV. In this paper, the critical
behavior of a field theory which includes a nonlocal inter-
action is studied. This interaction consists of a ϕ4 termwhich
involves a power−β of theLaplacian. The parameter β allows
one to tune the dimensions of the corresponding coupling
constant. This is done in such a way that for any space
dimension n the coupling is adimensional, thus reproducing
for any spatial dimension n what happens for the local ϕ4

theory in n ¼ 4 dimensions. This last feature is the main
motivation to consider that interaction in this work. The
theory is formulated using an auxiliary field ρ, which renders
the interaction local, at the cost of having a nonlocal kinetic
term. The renormalization and critical properties of this
theory are studied at the one-loop level. The features and
results of this work are summarized as follows:
(a) The theory to be considered is a scalar field theory

involving a nonlocal ϕ4 interaction term which in-
cludes a power −β of the Laplacian. This power is
chosen so as to make the coupling marginal for any
dimension.

(b) By means of an auxiliary field ρ with a nonstandard
kinetic term, the quartic nonlocal interaction can be
replaced by a local cubic interaction. It is shown that
the effective action for the theory in terms of the two
fields ρ and ϕ can be renormalized by means of local
counterterms in the fields ρ and ϕ. The structure of
these counterterms is described for all values of n.

(c) The theory is dimensionally regularized, and the
contribution of the one-loop Feynman diagrams which
present poles when ϵ → 0 is computed.

(d) These one-loop computations show that mass and
coupling constant renormalization are required at this
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level in order to render the theory finite. In addition,
and contrasting with the local ϕ4 theory, field renorma-
lization is required at this one-loop level for any
dimension other than 4.

(e) The previous calculation allows one to compute the
fixed point value for the coupling constant, and the
critical exponents ν and η. In all cases, a nontrivial IR
fixed point is obtained for ϵ > 0.

(f) For dimensions d ¼ n − ϵ with n less than 4, non-
trivial fixed points are obtained describing consistent
quantum theories.

(g) For dimensions d ¼ n − ϵ with n greater than 4, the
critical exponent η turns out to be negative for ϵ > 0,
which indicates a violation of the unitarity bounds.

The paper is organized as follows. Section II presents the
model and explains how to tune β in order to get an
adimensional coupling. Section III presents the renormaliza-
tion procedure to be employed. Section IV contains the
computations of Feynman diagrams. Section IVA presents
the one-loop corrections to the two-point function, which
involve the contribution of two diagrams. Section IVB
deals with the one-loop corrections to the four-point
function, which involve the contribution of three diagrams.
Section IVCcomputes the critical exponents ν and η for these
theories. Section V deals with the unitarity bounds that are
obtained when assuming that the theory provides a unitary
representation of the conformal group. Finally, Sec. VI
presents some concluding remarks and additional research
motivated by this work. An appendix describing the structure
of counterterms for each n is also included.

II. THE ACTION

The Euclidean action for the field ϕ to be considered is
given by

S̃ ¼ S̃0 þ S̃I; S̃0 ¼
Z

dnx
1

2
ϕð−△þm2

0Þϕ;

S̃I ¼
λ0
4!

Z
ddxϕ2ð−△þM2Þ−βϕ2: ð2:1Þ

In what follows, bare mass and coupling will be indicated
by m0 and λ0, and the corresponding renormalized quan-
tities will be m and λ. Using an auxiliary field ρ, the action
S̃ can be replaced by the following equivalent action,

S ¼ S0 þ SI;

S0 ¼
Z

dnx

�
1

2
ϕð−△þm2

0Þϕ −
1

2
ρð−△þM2Þβρ

�
;

SI ¼ −
Z

dnx

ffiffiffiffiffi
λ0
12

r
ρϕ2: ð2:2Þ

Functionally integrating over ρ leads back to the action S̃,
i.e., Z

Dρe−S ∝ e−S̃:

The free energy is given by

F ¼ − logZ; Z ¼
Z

DϕDρe−S:

The Fourier transforms of the free ρ and ϕ two-point
functions are therefore given by

hρρiðpÞ ¼ −
1

ðp2 þM2Þβ ; hϕϕiðpÞ ¼ 1

ðp2 þm2
0Þ
;

the mass M has been included in order to regulate infrared
divergencies.
It is noted that the dimensions of the field ϕ and coupling

½λ0� are

½ϕ� ¼ d − 2

2
; ½λ0� ¼ d − 4½ϕ� þ 2β ¼ 4 − dþ 2β:

For d ¼ n − ϵ, choosing

β ¼ n
2
− 2 ð2:3Þ

makes the coupling dimension equal to ϵ, i.e., ½λ0� ¼ ϵ.
This choice will be adopted from now on. This is exactly
what happens for the coupling of the local ϕ4 theory in
d ¼ 4 − ϵ. Thus the nonlocal coupling parametrized by β
in S̃I can be considered as a device to reproduce the
same situation in other dimensions.1 It is also noted that if
n > 4, then β > 0, which for M → 0 produces infrared
divergencies in these cases. This motivates the choice
M ¼ Mn, where

Mn ¼
�
0 n ≤ 4

M n > 4
: ð2:4Þ

III. RENORMALIZATION PROCEDURE

A. Degree of divergence

The degree of divergence for a proper or 1PI graph G
with Eϕ external ϕ lines and Eρ external ρ lines is given by

ωðGÞ ¼ n − Eϕ

�
n − 2

2

�
− 2Eρ: ð3:1Þ

There is no dependence on the number of vertices because
the coupling λ is adimensional for any n, thanks to the
choice of Eq. (2.3). Requiring the quantum theory to res-
pect the symmetry of the classical action under ϕ → −ϕ
implies that a graph with Eϕ odd should vanish. Thus Eϕ is

1Marginality can also be attained by changing the power in the
interaction and the number of derivatives in the kinetic term. This
can be done without considering nonlocal terms, see [11] and the
references therein.
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taken to be even. Therefore ωðGÞ is always a integer.
Thus taking a derivative respect to a external momenta
of a given proper graph would lower its degree of
divergence by 1. This implies that when ωðGÞ ≥ 0, the
divergent part of the proper diagrams will be given by
polynomials in the external momenta of order ωðGÞ, if
ωðGÞ < 0, there is no divergent part. Thus only local
counterterms in the fields ϕ and ρ and its derivatives are
required to renormalize any proper graph for the theory
described by the action (2.2). The explicit computations
appearing in the next section are examples of this fact. The
explicit form of counterterms depending on the dimension
n is given in the Appendix.

B. Effective theory for the ϕ field

This effective theory is described by the effective action
Γϕ derived from the functional integral, which involves
the action (2.1)—that is, without a dependence on the
auxiliary field ρ. In terms of the diagrams obtained from the
perturbative expansion of the functional integral written
using the action (2.2) which involves ρ lines, the diagrams
contributing to the effective action Γϕ are obtained from
the former ones by collapsing ρ lines and including the
nonlocal four leg vertex described by S̃I. Therefore the
relevant diagrams for Γϕ include diagrams which are not
1PI for the ρ lines, i.e., that can be divided into two
disconnected parts by cutting a ρ line. The diagrams
appearing in subsections 4.2.1 and 4.2.2 are Figs. 2 and
3 are examples of graphs that are not 1PI for the ρ lines but
instead 1PI for the ϕ lines. It is clear that since, as shown in
the previous section, the theory described by SI can be
renormalized by means of local counterterms in the fields ϕ
and ρ and its derivatives, then the theory described by S̃I
can also be renormalized. However, since the ρ lines are, in
general, nonlocal, then the counterterms required for
renormalizing the effective action Γϕ, can be nonlocal.
This nonlocality is harmless since it is totally under control
at the level of the effective action involving the two fields ϕ
and ρ, from which the effective action involving only the ϕ
field can be derived.

IV. EFFECTIVE COUPLINGS

A. One-loop correction to the two-point function

The one-loop corrections to the two-point function are
given by the following diagrams.
It is noted that the internal ρ line in the first diagram

carries zero momentum. Thus, taking into account the
relation (2.3), this line gives a factor

−1
M2β

n
¼ −1

Mn−4
n

;

which, recalling Eq. (2.4), shows that this line vanishes for
n < 4, gives −1 for n ¼ 4, and is nonvanishing for n > 4.

Indeed, the motivation for introducing the mass Mn for the
ρ field was to regulate the infrared divergence appearing
from this propagator at zero momentum for n > 4, i.e.,
β > 0. The contribution of the first diagram without
external legs is

aTðd; βÞ ¼ μT
−λ0
2!12

M4−n
n ITðdÞ ¼

−λ0
6

M4−n
n ITðdÞ;

ITðdÞ ¼
ddq
ð2πÞd

1

ðq2 þm2
0Þ
; ð4:1Þ

the quantity μT ¼ 4 is the multiplicity of this diagram.
Introducing the Feynman parametrization and integrating
over the momenta q leads to

ITðdÞ ¼
Γð1 − d

2
Þ

ð4πÞd2 m
2ðd

2
−1Þ

0 :

Substituting in Eq. (4.1) gives

aTðd; βÞ ¼ −
λ0
6
M4−n

n
Γð1 − d

2
Þ

ð4πÞd2 m
2ðd

2
−1Þ

0

¼ −
g0
6
μ2ðβþ2Þ−dM4−n

n
Γð1 − d

2
Þ

ð4πÞd2 m
2ðd

2
−1Þ

0 ;

where in the second equality the result has been expressed
in terms of the adimensional coupling g0 ¼ μd−2ðβþ2Þλ0. For
n odd, this contribution presents no divergence for ϵ → 0.
For d ¼ n − ϵ, with n being a positive even integer, the
gamma function can be expanded as follows,

Γ
�
1 −

d
2

�
¼ Γ

�
1 −

d
2

�
¼ ð−1Þn2−1

ðn
2
− 1Þ!

2

ϵ
þ R;

where R denotes terms that present no singularities when
ϵ → 0. This leads to

aTðn−ϵ;βÞ¼−
g0
6
μ2ðβþ2Þ−nþϵM4−n

n
m

2ðn
2
−1−ϵ

2
Þ

0

ð4πÞd2
ð−1Þn2−1
ðn
2
−1Þ!

2

ϵ
þR0

for n ¼ 2 and 3. Because of the remarks at the beginning of
this subsection, this diagram gives no contribution, which is
also the case for any odd n. Thus, for n < 6, the singular
part of aT is given by

FIG. 1. Lowest order diagrams contributing to renormalization
of the ϕ two-point function.
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aSPT
�
n − ϵ;

n
2
− 2

	
¼

8>>>>><
>>>>>:

0 n ¼ 2

0 n ¼ 3

g0
3

m2
0

ð4πÞ2
1
ϵ n ¼ 4

0 n ¼ 5

:

The integral corresponding to the second diagram is

Πðp;m0; d; βÞ ¼ −μΠ
λ0
2!12

IFðp;m0; d; βÞ

¼ −
λ0
3
IFðp;m0; d; βÞ;

IFðp;m0; d; βÞ ¼
Z

ddq
ð2πÞd

1

ðq2 þm2
0Þððp − qÞ2 þM2

nÞβ
;

the quantity μΠ ¼ 8 is the multiplicity of this diagram. The
degree of divergence of this integral is

ωðIFÞ ¼ d − 2 − 2β:

For the cases considered in this work (d ¼ n − ϵ,
β ¼ n

2
− 2), this gives ωðIFÞ ¼ 2 − ϵ. This implies that

there is a divergent term proportional to p2, i.e., that this
diagram requires a field renormalization. Below it is shown
that the coefficient of p2 vanishes for d ¼ 4. This should be
so because, for n ¼ 4, β ¼ 0 and the theory coincides with
the usual local ϕ4 field theory, which requires no field
renormalization at the one-loop level. Introducing the
Feynman parametrization and integrating over the momenta
q leads to

IFðp;m0; d; βÞ ¼
μ2ð−βþd

2
−1Þ

ð4πÞd2
Γð− d

2
þ β þ 1Þ
ΓðβÞ

Z
1

0

dxð1 − xÞβ−1
�
M2

n

μ2
ð1 − xÞ þm2

0

μ2
xþ p2

μ2
ð1 − xÞx

�
−βþd

2
−1
:

The power of the parenthesis in the integrand is −β þ d
2
− 1 ¼ 1 − ϵ

2
, which therefore presents no singularities in the

integration region. Thus ϵ ¼ 0 is taken in this power. The integral can be evaluated, leading to

IFðp;m0; d; βÞ ¼
μ−ϵ

ð4πÞd2
Γð− d

2
þ β þ 1Þ
ΓðβÞ

ðβððβ þ 2ÞM2
n þ p2Þ þ ðβ þ 2Þm2

0Þ
βðβ þ 1Þðβ þ 2Þ ;

which leads to the following expression for its singular part:

ISPF ðp;m0; d; βÞ ¼ −
22−nπ−n=2ðM2n2 − 4M2nþ 2m2

0nþ 2np2 − 8p2Þ
ðn − 4Þðn − 2ÞnΓðn

2
− 2Þϵ : ð4:2Þ

This leads to

ΠSPðp;m0; d; βÞ ¼ −
g0
3
ISPF ðp;m0; d; βÞ ¼

8>>>>>>>><
>>>>>>>>:

g0
4π

1
3

�
2
ϵ

	
ðm2

0 − p2Þ n ¼ 2

g0
8π2

1
9

�
2
ϵ

	
ð6m2

0 − 2p2Þ n ¼ 3

g0
ð4πÞ2

1
3

�
2
ϵ

	
m2

0 n ¼ 4

g0
π3

ð5M2þ2ð5m2
0
þp2ÞÞ

360
1
ϵ n ¼ 5

:

This result is quite remarkable because it shows that, for
n ≠ 4 ⇒ β ≠ 0, field renormalization is required at the
one-loop level to absorb the divergences. It is recalled that
for the n ¼ 4 local ϕ4 theory, field renormalization is first
required at two loops. The diagram contributing to field
renormalization is the second one in Fig. 1, and it requires
field renormalization because of the nonzero momentum
carried by the auxiliary field ρ line. Alternatively this can
be seen from the fact that the nonlocal interaction intro-
duces momentum at each nonlocal vertex. It is remarked
that the general result (4.2) shows that, starting from n ¼ 5,
the sign of the term proportional to p2 changes. This sign
change will affect the sign of the critical exponent η,
leading to a violation of the unitarity bounds for n ≥ 5.

The effective two-point function to one-loop order is2

Γ2ðpÞ ¼ p2 þm2
0 − ðaSPT þ ΠSPÞ

¼ p2Z−1
ϕ þm2

0Z
−1
m2 ¼ Z−1

ϕ

�
p2 þm2

0

Zϕ

Zm2

�
; ð4:3Þ

2The free energy is

F ¼ − logZ; Z ¼
Z

DϕDρe−S;

therefore the order 0 free energy goes as S0, and the corrections
carry a minus sign in front.

R. TRINCHERO PHYS. REV. D 100, 116004 (2019)

116004-4



where

Zϕ ¼ 1 −
g0

ð4πÞn2
1

ϵ
cϕðnÞ; Zm2 ¼ 1þ g0

ð4πÞn2
1

ϵ
cm2ðnÞ;

with

cϕðnÞ ¼

8>>>>><
>>>>>:

2
3

n ¼ 2

4
9

1ffiffi
π

p n ¼ 3

0 n ¼ 4

− 32
180

1ffiffi
π

p n ¼ 5

;

cm2ðnÞ ¼

8>>>>><
>>>>>:

2
3

n ¼ 2

4
3
ffiffi
π

p n ¼ 3

1 n ¼ 4

32
36

ffiffi
π

p
�
1þ M2

n
2m2

0

	
n ¼ 5

:

The effective mass is therefore given by3

m2 ¼ m2
0

Zϕ

Zm2

:

The gamma function is given by

γðgÞ ¼ μ
∂
∂μ logZ

1
2

ϕ






λ fixed

¼ 1

2

∂
∂ log μ log

�
1 −

λ0μ
−ϵ

ð4πÞn2
1

ϵ
cϕðnÞ

�

¼ 1

2Zϕ

�
g0

ð4πÞn2 cϕðnÞ
�

¼ 1

2

g0
ð4πÞn2 cϕðnÞ:

Thus

γðgÞ ¼

8>>>>>><
>>>>>>:

1
3
g0
4π n ¼ 2

2
9

1ffiffi
π

p g0

ð4πÞ32
n ¼ 3

0 n ¼ 4

− 16
180

ffiffi
π

p g0

ð4πÞ52
n ¼ 5

:

B. One-loop correction to the four-point function

1. Vertex correction

The diagram to be considered is given by Fig. 2.
Removing external legs, the integral to be computed is

IVðr;t;m0;Mn;d;βÞ

¼μV
4!

�
λ0
12

�
2

ðr2þM2
nÞ−βAVðr;t;m0;Mn;d;βÞ

¼2

3
λ20ðr2þM2

nÞ−βAVðr;t;m0;Mn;d;βÞ;
AVðr;t;m0;Mn;d;βÞ

¼
Z

ddq
ð2πÞd

1

ðq2þm2
0Þððq−rÞ2þm2

0Þððq−r− tÞ2þM2
nÞβ

;

the quantity μV ¼ 964! is the multiplicity of this diagram.
The overall factor 2

3
in front of this contribution comes from

μV
4!122

¼ 2

3
:

The degree of divergence of this integral is

ωðAVÞ ¼ d − 4 − 2β:

For the cases considered in this work (d ¼ n − ϵ,
β ¼ n

2
− 2), this gives ωðAVÞ ¼ d − 4 − 2β ¼ −ϵ. There-

fore taking derivatives with respect to M2
n makes the

integral convergent. Thus, making a series expansion in
powers ofM2

n, only the first term can produce a divergence
when ϵ → 0; i.e.,Mn ¼ 0 is taken in the calculation below.
The same reasoning applies for the dependence of AVðr; t;
m0;Mn; d; βÞ on the external momenta r and t, thus only
zero external momenta is relevant for the singular part of
this contribution. This leads to

AVð0; 0; m0; 0; d; βÞ ¼
Z

ddq
ð2πÞd

1

ðq2 þm2
0Þðq2 þm2

0Þðq2Þβ
:

Introducing the Feynman parametrization and integrating
over the moment q leads to

FIG. 2. ρϕ2 vertex correction contributing to the four-point ϕ
function.

3It is noted that, for d ¼ 4 − ϵ, the expression for the effective
mass is

m2 ¼ m2
0 −

g0m2
0

ð4πÞ2
1

ϵ

�
1

3
þ 2

3

�
¼ m2

0 −
g0m2

0

ð4πÞ2
1

ϵ
;

which is the well-known result for the local ϕ4 theory.
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AVð0;0;m0;0;d;βÞ

¼Γð−d
2
þβþ2Þ

ð4πÞd2ΓðβÞ

Z
1

0

dyyβ−1ð1−yÞðm2
0ð1−yÞÞ12ðd−2ðβþ2ÞÞ

¼Γð−d
2
þβþ2Þ

ð4πÞd2ΓðβÞ

Z
1

0

dyyβ−1ð1−yÞ1þ1
2
ðd−2ðβþ2ÞÞmd−2ðβþ2Þ

0

¼Γðd
2
−βÞΓð−d

2
þβþ2Þ

ð4πÞd2Γðd
2
Þ μd−2ðβþ2Þ

�
m0

μ

�
d−2ðβþ2Þ

¼d¼n−ϵ;β¼n
2
−2Γð2− ϵ

2
ÞΓðϵ

2
Þ

ð4πÞd2Γðn−ϵ
2
Þ μ

−ϵ
�
m0

μ

�
−ϵ
;

whose pole term in ϵ is

AVð0; 0; m0; 0; d; βÞ ¼
μ−ϵ

ð4πÞd2
2

Γðn
2
Þ
1

ϵ
;

leading to

IVðr; t; m0;M; d; βÞ ¼ 2

3
λ20ðr2 þM2Þ−β μ−ϵ

ð4πÞd2
2

Γðn
2
Þ
1

ϵ
:

2. ρ self-energy correction

The diagram to be considered is shown in Fig. 3.
The integral to be computed is

Iρðp;m0; dÞ ¼
μρ
4!

�
λ0
12

�
2 1

ðp2 þM2Þ2β Aðp;m0; dÞ

¼ 2

3
λ20ðp2 þM2Þ−2βAðp;m0; dÞ;

Aðp;m0; dÞ ¼
Z

ddq
ð2πÞd

1

ðq2 þm2
0Þððp − qÞ2 þm2

0Þ
:

For this diagram, μρ ¼ 96 4!, leading to the same overall
factor, 2

3
, as in the previous diagram. Introducing the

Feynman parametrization and integrating over q leads to

Aðp;m0; dÞ ¼
Γð2 − d

2
Þ

ð4πÞn2
Z

1

0

dx
1

ðm2
0 þ p2xð1 − xÞÞ2−d

2

:

The integral over x gives a finite result for any n since the
integrand is well behaved in the entire integration region.
Therefore Γð2 − d

2
Þ is the one that can produce a pole for

ϵ → 0; this does not happen for d ¼ n − ϵ with n odd, nor
for n ¼ 2. Thus only even values of n with n ≥ 4 produce

poles. For n ¼ 4, the original integral is logarithmically
divergent, and therefore, in getting the pole term, only
the value of the integral for p2 ¼ 0 should be computed.
This gives

Aðp;m0; 4 − ϵÞ ¼ Γðϵ
2
Þ

ð4πÞn2 ðm
2
0Þ−

ϵ
2 þ C00 ¼ ðm2

0Þ−
ϵ
2

ð4πÞn2
2

ϵ
þ C000:

For n ≥ 6 even, the integral Aðp;m0; dÞ has a degree of
divergence greater than zero, given by ωðAÞ ¼ n − ϵ − 4.
This means that the derivatives of Aðp;m0; dÞ with respect
to p2 have divergent coefficients when ϵ → 0 up to order
ωðAÞ=2. The number of these divergent coefficients
matches the number of parameters needed to specify the
ρ free field action. Indeed, for n ¼ 6, β ¼ 1, which means
that the coefficient of ρ2 and the coefficient of ρ△ρ get
renormalized in this case. The cases with n ≥ 6 even will
not be further studied in this work.
Thus for n < 6, the following result for the pole term of

Iρðp;m0; dÞ is obtained,

Iρðp;m0; dÞ ¼ δn;4
2

3
λ20

μ−ϵ

ð4πÞn2
2

ϵ
:

3. Box

The diagram to be considered is shown in Fig. 4.
The integral to be computed is

IBðp;m0; dÞ ¼
μB
4!

�
λ0
12

�
2

ABðp; k; l; m0; dÞ

¼ 1

6
λ20ABðp; k; l; m0; dÞ;

where μB ¼ 24 4! denotes the multiplicity of this contri-
bution leading to the overall factor 1

6
. The quantity

ABðp; k; l; m0; dÞ is

ABðp;k;l;m0;dÞ¼
Z

ddq
ð2πÞd

1

ððk−qÞ2þm2
0Þðq2þM2Þβ

×
1

ððqþpÞ2þm2
0Þððqþp− lÞ2þM2Þβ :

The degree of divergence of this integral is

FIG. 3. ρ self-energy correction contributing to the four-point ϕ
function. FIG. 4. Contributions to the 4 and 6 point four-point ϕ function.
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ωB ¼ d − 4 − 4β;

which, for the cases considered in this work (d ¼ n − ϵ, β ¼ n
2
− 2), is

ωB ¼ 4 − n − ϵ:

This shows that, for n > 4, there is no divergence for ϵ → 0. Introducing the Feynman parametrization leads to

ABðp; k; l; m0; dÞ ¼
Z

1

0

dxdydz
ð1 − xÞβ−1yβ−1ðð1 − zÞzÞβΓð2þ 2βÞ

ð4πÞd2ΓðβÞ2 μ4−n−ϵPðk; p; l; x; y; zÞ; ð4:4Þ

where

Pðk; p; l; x; y; zÞ ¼
Z

ddq
ð2πÞd ðð1 − zÞðð1 − yÞððk − qÞ2 þm2

0Þ þ ðð1 − zÞðyððqþ p − lÞ2 þM2ÞÞÞ

þ zðxððqþ pÞ2 þm2
0Þ − ðx − 1ÞðqþM2Þ2ÞÞ2−n

is positive definite in the x, y, z integration region. The integral in the last expression can be done, leading to

Pðk; p; l; x; y; zÞ ¼ Γð− d
2
þ 2β þ 2Þ

Γð2þ 2βÞ ðk2ðy − 1Þðz − 1Þ − ðkðyð1 − zÞ þ z − 1Þ þM2ð1 − xÞzþ pðxzþ yð1 − zÞÞ

þ qyz − qyÞ2 þM4ð1 − xÞz −M2yzþM2yþm2
0ððx − 1Þzþ yðz − 1Þ þ 1Þ þ p2xzþ p2yð1 − zÞ

þ 2pqyz − 2pqyþ q2yð1 − zÞÞ12ðd−4ðβþ1ÞÞ:

It is noted that, for n ≤ 4, the power appearing in Pðk; p; l; x; y; zÞ is positive or goes to zero for ϵ → 0. In addition,
Pðk; p; l; x; y; zÞ is well defined and positive in the x, y, z integration region. Thus the integral in Eq. (4.4) is bounded from
above by the integral of Pðk; p; l; x; y; zÞ multiplied by the following positive integral:

μ4−n−ϵ
Z

1

0

dxdydz
ð1 − xÞβ−1yβ−1ð−ðz − 1ÞzÞβ

ð4πÞd2ΓðβÞ2 ¼ μ4−n−ϵ

ð4πÞd2Γð2β þ 2Þ ¼d¼n−ϵ;β¼n
2
−2 μ4−n−ϵ

ð4πÞd2Γðn − 2Þ :

Therefore the singularities of ABðp; k; l; m0; dÞ for ϵ → 0 arise only from the factor

Γð− d
2
þ 2β þ 2Þ

Γðn − 2Þ ¼ Γðn
2
þ ϵ

2
− 2Þ

Γðn − 2Þ :

This produces singularities only for n ¼ 4. For this value of n and in the limit ϵ → 0, Pðk; p; l; x; y; zÞ=Γð− d
2
þ 2β þ 2Þ can

be replaced by 1, leading to

ABðm0; n − ϵÞ ¼ μ4−n−ϵ
Z

1

0

dxdydz
ð1 − xÞβ−1yβ−1ð−ðz − 1ÞzÞβΓð− d

2
þ 2β þ 2Þ

ð4πÞd2ΓðβÞ2

¼ μ4−n−ϵ
Γð− d

2
þ 2β þ 2Þ

ð4πÞd2Γð2β þ 2Þ ¼d¼n−ϵ;β¼n
2
−2
μ4−n−ϵ

Γðn
2
þ ϵ

2
− 2Þ

ð4πÞd2Γðn − 2Þ ;

which presents a pole term in ϵ only for n ¼ 4, given by

APT
B ðp; k; l; m0; 4 − ϵÞ ¼ 1

8π2ϵ
:
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Thus

IPTB ðp;m0; dÞ ¼
1

6
λ20

μ−ϵ

ð4πÞ2
2

ϵ
δn;4:

4. Effective quartic coupling and its β function

Summing up the contributions from the ρϕ2 vertex
correction, the ρ self-energy correction, and the box and
including the field renormalization in Eq. (4.3) leads to

λ ¼ λ0Z2
ϕ

Zg
;

where

Zϕ ¼ 1 −
g0

ð4πÞn2
1

ϵ
cϕðnÞ;

Zg ¼ 1þ g0
ð4πÞn2

1

ϵ
cgðnÞ;

where

cgðnÞ ¼
4

3

1

Γðn
2
Þ þ δn;4

4

3
þ δn;4

1

3
;

the beta function corresponding to the adimensional cou-
pling g, is

βðgÞ ¼ μ
d
dμ

g ¼ μ
d
dμ

�
λ0Z2

ϕ

Zg
μ−ϵ

�

¼ −ϵgþ 2gZ−1
ϕ μ

d
dμ

Zϕ − gZ−1
g μ

d
dμ

Zg

¼ −ϵgþ 4gγ −
cgðnÞ
ð4πÞn2ϵ gβðgÞ;

which leads to

βðgÞ ¼ −ϵgþ 4gγ þ g2
cgðnÞ
ð4πÞn2

¼ −ϵgþ g2

ð4πÞn2 ð2cϕðnÞ þ cgðnÞÞ: ð4:5Þ

The fixed points defined by βðg⋆Þ ¼ 0 are given by

g⋆0 ¼ 0; g⋆1 ¼ ϵð4πÞn2−ϵ
2

2cϕðnÞ þ cgðnÞ
:

For n ¼ 2, 3, 4, 5, CðnÞ > 0, so that for ϵ > 0, g⋆1 is
positive and corresponds to an IR fixed point. Also, for
ϵ > 0, g⋆0 corresponds to an UV fixed point. The Fig. 5
show these β functions.

C. The critical exponents η and ν

The γmðnÞ function is given by

γmðnÞ ¼ γ −
cm2ðnÞ
ð4πÞn2

βðgÞ
2ϵ

¼ 1

2

g
ð4πÞn2 cϕðnÞ þ

cm2ðnÞ
ð4πÞn2

g
2

¼ 1

2

g
ð4πÞn2 ðcϕðnÞ þ cm2ðnÞÞ;

where Eq. (4.5) was employed. The critical exponents are
related to the fixed point values γ⋆ and γ⋆m of the functions γ
and γm. They are given by

νðnÞ ¼ 1

2 − 2γ⋆mðnÞ
; ηðnÞ ¼ 2γ⋆ðnÞ:

The nontrivial fixed point is given by

g⋆1ðnÞ ¼
ϵð4πÞn2

2cϕðnÞ þ cgðnÞ
;

and the fixed point values γ⋆mðnÞ and γ⋆ðnÞ are therefore
given by

FIG. 5. Beta functions for ϵ ¼ 0.01 and dimensions 2, 3, 4, and 5.
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γ⋆mðnÞ ¼
1

2

g⋆1ðnÞ
ð4πÞn2 ðcϕðnÞ þ cm2ðnÞÞ ¼ ϵ

2

�
cϕðnÞ þ cm2ðnÞ
2cϕðnÞ þ cgðnÞ

�
;

γ⋆ðnÞ ¼ 1

2

g⋆1ðnÞ
ð4πÞn2 cϕðnÞ ¼

ϵ

2ð2þ cgðnÞ
cϕðnÞÞ

:

This leads to

γ⋆mðnÞ ¼

8>>>>><
>>>>>:

ϵ
4

n ¼ 2

ϵ
4

n ¼ 3
ϵ
6

n ¼ 4

1
32
ϵ
�
5M2

m02
þ 8

	
n ¼ 5

;

γ⋆ðnÞ ¼

8>>><
>>>:

ϵ
8

n ¼ 2

ϵ
16

n ¼ 3

0 n ¼ 4

− ϵ
16

n ¼ 5

;

νðnÞ ¼

8>>>>><
>>>>>:

1
2
þ ϵ

8
þOðϵ2Þ n ¼ 2

1
2
þ ϵ

8
þOðϵ2Þ n ¼ 3

1
2
þ ϵ

12
þOðϵ2Þ n ¼ 4

1
2
þ ϵ

�
5M2

64m02
þ 1

8

	
þOðϵ2Þ n ¼ 5

;

ηðnÞ ¼

8>>><
>>>:

ϵ
4

n ¼ 2
ϵ
8

n ¼ 3

0 n ¼ 4

− ϵ
8

n ¼ 5

:

It is noted that, for n ¼ 5, the critical exponent η is negative.
This violates the unitarity bound η > 0, whose origin is
explained in the next section.

V. UNITARITY BOUNDS

A. The conformal algebra in n dimensions

At the critical point, i.e., for m ¼ M ¼ 0, the actions
(2.1) and (2.2) are invariant under conformal transforma-
tions. It is assumed that there exist conserved charges
implementing these transformations at the level of the
quantum field. The conformal algebra for dimensions n ≥ 3
is given by

½D;Pμ� ¼ iPμ;

½Pρ; Lμν� ¼ iðηρμPν − ηρνPμÞ;
½D;Kμ� ¼ −iKμ;

½Kμ; Pν� ¼ 2iðημνD − LμνÞ;
½Kρ; Lμν� ¼ iðηρμKν − ηρνKμÞ;
½Lμν; Lρσ� ¼ iðηνρLμσ þ ημσLνρ − ημρLνσ − ηνσLμρÞ;

where Pμ are the generators of translations, Lμν the
generators of rotations in the μ − ν plane, D the generator
of dilatations, and Kμ the generators of special conformal
transformations. In cylindrical coordinates, the hermiticity
properties of operators are such that [12]

P†
μ ¼ Kμ:

B. Positive definite inner products and bounds for η

For a spinless primary state jΔi, the commutation
relation between Pμ and Kν can be used to show that

jPμjΔij2 > 0 ⇒ Δ > 0;

jPμPνjΔij2 > 0 ⇒ Δ >
n − 2

2
ð5:1Þ

for a space of dimension n. Taking into account the one-
loop corrections computed in the previous sections, the
dimension of the field is

½ϕ� ¼ n − 2

2
þ η

2
;

thus the unitarity bound implies

η

2
> 0:

This is violated for n ≥ 5.
This violation could be avoided by taking ϵ < 0 for

n ¼ 5, but that would make the nontrivial fixed point g⋆1
negative, which corresponds to an unstable theory. The
same situation happens for any n ≥ 5. This is a consequ-
ence of the sign change mentioned at the end of Sec. III A.
This can also be traced back to the appearance of inverse
powers of the Laplacian in the interaction term (β > 0).

VI. CONCLUSIONS AND OUTLOOK

Conclusions and further research motivated by this work
are summarized in the series of remarks given below:
(a) The critical behavior of a nonlocal scalar field theory is

studied. This theory has a nonlocal quartic interaction
term which involves a real power −β of the Laplacian.
The parameter β can be tuned so as to make that
interaction marginal for any dimension.

(b) As explained in Sec. III, only local counterterms in the
fields ρ and ϕ are required to renormalize this theory.
In this respect, it is stressed that, in spite of the integer
or half-integer powers of the Laplacian that appear in
the action (2.2), the degree of divergence of any
diagram is given by an integer. This fact is the crucial
one that allows one to renormalize the theory employ-
ing only local counterterms in the fields, which
are described in the Appendix. This property is not
exclusive to this particular model. It would interesting
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to study the renormalization of other models involving
these kind of “mild” nonlocalities.

(c) From the Wilson renormalization group point of view,
there is no restriction on the range of interactions.
Therefore it makes sense to study the renormalization
of a nonlocal field theory. In this work, this has been
done using the field theoretic version of this pro-
cedure. This was done for the first corrections to the
two- and four-point functions. It was shown that the
resulting critical theories are consistent, and for
dimensions d < 5, they give a unitary representation
of the conformal group.

(d) For dimensions d ≥ 5, the theories have a critical
index η < 0 which implies a violation of the unitarity
bounds. These unitarity bounds are a consequence of
requiring that the theory gives a unitary representation
of the conformal group. Of course, the fact that this
requirement is not fulfilled by these theories does not
mean that they cannot be used to describe the physics
of statistical models.

(e) It would be interesting to identify concrete statistical
models whose criticality is described by these fixed
points and critical exponents.

Summarizing, it is believed that the study of nonlocal field
theories can enlarge our knowledge about the fixed points
and renormalization group flows in the space of all possible
couplings mentioned in the Introduction. In particular, the
study presented in this work shows the existence of new
nontrivial fixed points.
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APPENDIX: COUNTERTERMS

When looking for an effective field theory at large
distances, the important coupling constants are those
related to relevant and marginal operators. These corre-
spond to coupling constants with positive or vanishing
dimensions in units of mass.4 The structure of the coupling
constants that change under the scaling of distances and
could survive in the infrared depends on n, i.e., on the
dimension of space.5 A list of the terms T in the Lagrangian
corresponding to these coupling constants for each value of
n is given below:

(a) n ¼ 4. This case corresponds to the usual local
ϕ4 field theory. In the table below, the degree of
divergence ω ¼ 4 − Eϕ − 2Eρ and the corresponding
terms are given as a function of the numbers Eρ, Eϕ of
external ρ and ϕ lines, respectively,

Eρ 0 0 1 1 2

Eϕ 2 4 0 2 0

ω 2 0 2 0 0

T ϕ2; ð∂ϕÞ2 ϕ4 ρ ρϕ2 ρ2

:

To one-loop order, all of the coupling constants corre-
sponding to these terms change under scaling except
for the second one; the kinetic term ð∂ϕÞ2 for the
ϕ field does not change at one-loop order6 under
scaling. In this case and in all cases appearing below,
the one-point function for the ρ field gives a momen-
tum independent contribution to the expectation value
of this field. These contributions can always be
absorbed by means of a field ρ redefinition.

(b) n ¼ 5, ω ¼ 5 − 3
2
Eϕ − 2Eρ:

Eρ 0 1 1 2

Eϕ 2 0 2 0

ω 2 3 0 1

T ϕ2; ð∂ϕÞ2 ρ ρϕ2 ρ2

:

To one-loop order, all of the coupling constants
corresponding to these terms change under scaling.

(c) n ¼ 6, ω ¼ 6 − 2Eϕ − 2Eρ:

Eρ 0 1 1 2 3

Eϕ 2 0 2 0 0

ω 2 4 0 2 0

T ϕ2; ð∂ϕÞ2 ρ ρϕ2 ρ2; ð∂ρÞ2 ρ3

:

In contrast to the previous cases, the term ρ3, which
was not in the original Lagrangian, appears. Recalling
that ½ρ� ¼ 2, it is noted that the dimension of this term
is 6, which implies that the corresponding coupling
constant is dimensionless, therefore corresponding to a
marginal term. This term should therefore be included
in the starting Lagrangian, which can contribute at
one-loop order to the scaling of other couplings. For
example, the diagram in Fig. 6 can, in principle,
contribute to the ϕ4 term.

This is a general situation for the cases n > 5. Additional
terms which were not in the original Lagrangian are
generated at longer distances. These terms include addi-
tional kinetic terms for the field ρ with higher powers of the
Laplacian and powers of the field ρ. All of these terms

4In field theoretic terms, these are the interactions correspond-
ing, respectively, to super-renormalizable and renormalizable
field theories.

5In field theoretic terms, these coupling constants correspond
to the counterterms required to make the effective action finite.

6There is no field renormalization at one-loop order for the ϕ4

field theory in four dimensions.
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correspond to relevant or marginal couplings and the
number of them is finite. This is so because, as shown
in the table above and as argued in the previous subsection,
the theory is renormalizable. In other words, it is a fact for
these theories that the number of divergent types of
diagrams does not increase with the perturbative order.
Although this is not done in this work, it is noted that the
inclusion of these terms presents, apart from the compu-
tation of additional diagrams, no conceptual difficulty.
In this respect, it is worth noting that when going to higher
dimensions, nontrivial coupling mixing can appear. For
example, at n ¼ 8, apart from the kinetic terms, there are
four couplings corresponding to interacting terms of
dimension 8 that could, in principle, mix among them-
selves. This situation is similar to the one that appears in
the models considered in [11].
(d) n ¼ 3, ω ¼ 3 − 1

2
Eϕ − 2Eρ:

Eρ 0 0 0 1 1

Eϕ 2 4 6 0 2

ω 2 1 0 1 0

T ϕ2; ð∂ϕÞ2 ϕ4 ϕ6 ρ ρϕ2

:

In this case, the additional terms ϕ4 and ϕ6 appear.
Neither vertex appears in the singular contribution to
one-loop order. In Fig. 7, diagrams that involve these
vertices and could, in principle, contribute at one-loop
order are shown. However, they do not contribute
because the self-contraction diagram and the fish
diagram, shown in Fig. 8, both converge for n ¼ 3.
The last diagram in Fig. 6 is also convergent for n ¼ 3.

(e) n ¼ 2, ω ¼ 2 − 2Eρ:

Eρ 0 1

Eϕ N N0

ω 2 0

T ϕN ρϕN0

:

This case is rather peculiar. There are infinite terms
with marginal couplings; these correspond to all
possible positive even integer values for N and N0
above (N0 can also be zero). This is so because the ϕ
field is dimensionless for n ¼ 2. This situation also
appears for the usual local scalar theory at n ¼ 2,
which is the same theory as the one considered here
but with β ¼ 0 and n ¼ 2. In that case, all of the
divergent diagrams can be made finite by normal
ordering (see Appendix A10.2 of [13]). In the present
case, however, the situation is more involved because
the Laplacian appearing in the interaction term
ϕ2ð−△Þϕ2 introduces momentum, equivalently, be-
cause the ρ field has a nontrivial “kinetic” term. No
general results for this model are presented in this
work. However, in some specific examples appearing
in Fig. 9, a situation similar to the one of the box
diagram arises for these other diagrams. That is, an
explicit calculation of these diagrams shows that the
contributions are proportional to a quotient of gamma
functions of the form

ΓðaðϵÞÞ
Γðjþ jβÞ ;

where j is a positive integer andaðϵÞ is positive and finite
for ϵ ≠ 0. Recalling that β ¼ −1 for n ¼ 2 shows that
these diagrams give vanishing contributions because the
gamma function in the denominator diverges when
β ¼ −1. The key ingredient producing this vanishing
is the fact that, in all of these diagrams, the propagators
for the ϕ field and the ρ field can be paired, giving a
power of momenta squared that is −ð1þ βÞ. Other
diagrams contributing to the terms with (Eρ ¼ 0,
Eϕ ¼ N) and (Eρ ¼ 1, Eϕ ¼ N0) either converge or
have the one-loop diagrams as subdiagrams. Therefore it
is expected that only the cases (Eρ ¼ 0, Eϕ ¼ 2) and
(Eρ ¼ 1,Eϕ ¼ 0 or 2) get nonvanishing contributions. It
would be interesting to have a general proof or a
counterexample of this assertion. It would also be
interesting to consider this theory from the point of
view of conformal field theories.

FIG. 6. Contribution to the four-point ϕ function originating
from the ρ3 term.

FIG. 7. Contributions to the four- and six-point ϕ functions
originating from the ϕ4 and ϕ6 terms which vanish for n ¼ 3.

FIG. 8. Self-contraction and fish diagrams.

FIG. 9. Diagrams that vanish for n ¼ 2.
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