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The construction, capture and sharing of human knowledge is one of the fundamental problems of
human-centered computing. Electronic concept maps have proven to be a useful vehicle for building
knowledge models. However, the user has to deal with the difficult task of deciding what information
to include in these models. This article reports the culmination of a multi-year research project aimed
at developing intelligent suggesters designed to aid users of concept mapping tools as they build their
knowledge models. It describes Discerner and EXTENDER, two proactive suggesters that can be incorporated
into the CmapTools concepts mapping system. Discerner applies case-based reasoning techniques to sug-
gest potentially useful propositions mined from other users’ knowledge models, while ExTeNDER mines
search engines to suggest new related areas to model. The article presents experimental results address-
ing two previously open questions for the project: DiscernEr's retrieval accuracy and Extenper's ability to
generate artificial topics with content similar to topics determined by domain experts. Both experiments
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show satisfactory results.
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1. Introduction

Human-centered computing (HCC) (e.g., [21,44,3]) studies
methods for improving the interactions and performance of
combined human/machine systems. A key challenge for human-
centered computing is how to facilitate the construction, capture,
and sharing of human knowledge. The knowledge-based systems
community is well aware of the difficulty and cost of building
knowledge models, which has led to interest in leveraging experi-
ence to aid knowledge modeling. This article presents research on
applying ideas from case-based reasoning (CBR) (e.g., [35]) to the
task of knowledge modeling, supporting users of software tools
for concept mapping. Concept mapping [39] aims to elucidate a
particular individual’s conceptualizations about a domain, putting
them in an explicit form which can be compared. It has proven a
useful approach for constructing and sharing knowledge without
requiring formalization, enabling end users to capture knowledge
with minimal training. However, users faced with the task of
developing a concept map may not always be able to remember
all the most relevant concepts, or may have difficulty deciding
which concepts to add to a concept map under construction
(referred to as extending the concept map). Likewise, it may be
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difficult for users modeling a domain to identify the topics for
which concept maps should be generated. Consequently, there is
need for tools to support the concept mapping process.

The article describes research on the development of “intelli-
gent suggesters” designed to proactively provide information to
aid users of knowledge modeling tools for concept map construc-
tion. It describes Discernr,' an experience-based system which aids
knowledge modelers by drawing on other users’ knowledge models,
presenting suggestions mined from them, and ExTenper,® a system
which complements Discerner’s experience-based approach by draw-
ing on information mined from search engines to help identify novel
connections to consider and new areas to model. Both systems are
optional software components which can be incorporated into the
CmapTools [9] concept mapping system to augment its functionality.
Together they provide context-relevant support both for leveraging
the knowledge in prior concept maps and for going beyond the
knowledge prior maps contain.

This article begins by discussing the task context for this work—
the problem of supporting concept-map-based knowledge model-
ing—and the opportunity for knowledge extension support using
ideas from CBR. It then presents the methods that we have
developed for knowledge extension and topic generation. The
methods developed have been evaluated individually in controlled

1 Decision Index for Searching Category Entries by Reducing NEighborhood Radius.
2 EXtensive Topic Extender from New Data Exploring Relationships.
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experiments, as well as informally tested as robust prototypes
within CmapTools [9], a widely-used knowledge modeling system
developed at the Institute for Human and Machine Cognition
(IHMC), with encouraging results. This paper reports the culmina-
tion of a strand of research begun in 2002 in collaboration with
Alberto Caflas and the CmapTools team (e.g., [26,30,33,29]). As
the first journal publication on our work on DisceRNER and EXTENDER,
the article summarizes key ideas; it also presents new results of
experiments designed to address key open questions remaining
from previous publications: The accuracy of Discerner's indexing
and the ability of ExTenDER to generate topics similar to those gen-
erated by human experts. The article closes with a review of re-
lated work, addressing the ramifications of this work for CBR and
knowledge capture interfaces.

2. Supporting knowledge modeling with concept maps

Concept mapping [39] was first proposed in education, to en-
able students to externalize their knowledge by constructing a
two-dimensional, visually-based representation of concepts and
their relationships. This representation was seen as elucidating
their internal cognitive structures, suitable for assessment or
knowledge sharing. Concept mapping is used worldwide to facili-
tate knowledge examination, construction, comparison, and reuse
by users ranging from elementary school students to scientists
(for a recent sampling of its use, see [11]).

The CmapTools software [9] supports generation, storage of,
and access to concept maps in electronic form. In addition to
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providing basic operations needed to draw and label concept maps,
CmapTools includes extensive capabilities for annotating concept
maps with links to electronic resources such as images, diagrams,
video clips, and other concept maps, enabling the construction of
richly connected concept-map-based knowledge models for particu-
lar domains. It also enables distributed storage and access to con-
cept maps on multiple servers, to support knowledge sharing
across multiple sites. Fig. 1 shows a screen image captured during
a session in which a user was extending a concept map. The bot-
tom left window shows a sample concept map of the Mars explo-
ration domain; the window for the initial concept map is the
starting window for the system. The next window to the right is
the window opened for Discerner and EXTENDER’S suggestions when
the user invokes those systems. The top portion of the suggestion
panel presents a list of propositions suggested by Discerner, and
the bottom of this panel presents topics suggested by EXTENDER.
We describe these windows and their use further in Section 3.
The windows arranged on the border of the image were generated
by the user during the CmapTools session, by clicking on icons
associated with nodes of the concept map in the starting window.
In this instance, the new windows contain (clockwise from the ori-
ginal concept map window) an image, a related concept map, and a
web page.

Many systems have been developed to facilitate human capture
of knowledge in formal representations suitable for machine rea-
soning; for example, an extensive set of ontology editing tools
has been developed (for reasons of space, we cannot summarize
them here; see Denny [18] for a survey). The CmapTools project
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Fig. 1. The CmapTools interface. The figure illustrates a concept map under construction, associate resources, and suggestions for concept extensions.
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contrasts in taking a human-centered view, aiming to support the
capture of knowledge in a form conducive to human examination
and sharing. Concept maps provide an “informal,” nonstandardized
representation based on structured, simplified natural language.
Electronic concept mapping has been successfully applied to
knowledge capture and sharing for a wide range of tasks such as
maintaining Navy equipment [10], local weather prediction [20],
explaining the design of rocket engines [14], and describing Web
services in Service-Oriented Architectures (SOA) composite appli-
cations [13]. An overview of a number of applications of concept
mapping tools is presented in [37].

Informal studies show that when building concept maps, both
experts and ordinary users often pause for significant amounts of
time wondering what information to include. Frequently, they look
at existing concept map libraries and information on the Web for
concepts or links to include in their maps or for topics to start
new maps for creating rich, comprehensive knowledge models.
Our tools aim to automatically provide suggestions generated from
such sources.

3. Using case-based reasoning to support knowledge modeling

During knowledge modeling, concept maps are constructed
incrementally. At each step, concepts in an in-progress concept
map are “extended” by adding new connections, either to existing
or new concepts. Thus the user chooses a concept of a partial con-
cept map, in context of already-existing concepts and links, and se-
lects an appropriate link or concept/link pair to add to the map,
connected to the chosen concept. If previous users have confronted
similar situations when building concept maps, and have resolved
them with particular choices, that knowledge modeling experience
may be reused. Such reuse fits within the mold of case-based rea-
soning (CBR), which solves new problems by retrieving and adapt-
ing the solutions of similar prior problems (e.g., [35]). DISCERNER’S
task is to propose concept map extensions to the user. Because
the concept mapping process aims to capture the current user’s
conceptualizations, there is no single “right” extension; the system
plays an advisory role.

For example, suppose the user is an astrobiologist building a
knowledge model composed of concept maps on the Mars domain,
as in Fig. 1, and that the user’s current task is to construct a concept
map on “Microbial Fossil Records.” The user may require additional
material to include in the in-progress concept map, as well as sug-
gestions of related topics to begin the construction of new concept
maps for the Mars knowledge model.

The top area of the suggestion panel contains DISCERNER'S sugges-
tions, based on prior concept maps, which may include concepts,
propositions (pairs of linked concepts) and other resources. In
the screenshot these include the proposition “Search for Evidence
of Life, Past or Present, pursues a goal of ASTROBIOLOGY.” When
the user selects this proposition (by clicking), the system opens
the concept map in which it appears, “Search for Evidence of Life”
(shown on the top center of Fig. 1), providing rich related material
to consider for inclusion in the concept map being built.

Simultaneously, Extenper generates suggestions of candidate
topics related to, but distinct from, the concept map under con-
struction; these are potential topics for additional concept maps
to generate. For each topic, it generates a top-level label consisting
of three terms, used to characterize the suggested topic. Any of
these suggestions can be expanded by clicking on the “+” symbol
appearing at the left side of the topic label, to show additional
terms for the topic. In our example, suggestions “sediments, deep,
burial” and “enzyme, breakdown, temperature” have been selected
for expansion and additional terms are displayed. Furthermore, the
user can examine the web pages that were used by EXTENDER as a

starting point for generating its suggested topics, as shown at the
bottom-right of Fig. 1, presenting a list of web pages associated
with the topic “sediments, deep, burial”.

Applying CBR to extending concept maps presents challenges.
First, CBR generally treats cases as being segmented into prob-
lem-solution pairs. The problem part is used to identify relevant
prior cases (those whose problem parts are similar); once a rele-
vant prior case is found, its solution is adapted to solve the new
problem. When cases represent concept maps, there are no static
“problems” and “solutions”; the system must retrieve prior maps
with some subpart relevant to whatever subpart of the user’s
new map on which the user is currently working. Consequently,
it is not possible to pre-define the “problems” and “solutions” for
concept map cases; these parts depend dynamically on the area
of the new concept map being extended.

Second, effective CBR depends on efficient access to stored
cases, which is often achieved by indexing stored cases according
to indices drawn from carefully crafted and standardized “indexing
vocabularies.” Concept maps have nonstandardized representa-
tions—different users may label the same concept or link differ-
ently. Consequently, indexing and retrieval of concept map cases
must be able to find good cases without strong assumptions of rep-
resentational uniformity. Likewise, for scalability (to efficiently re-
trieve prior concept maps from potentially extensive libraries of
concept maps, on any topic the user may propose), tools to aid con-
cept map extension must include domain-independent methods
for automatically generating indices from concept maps. In need-
ing to retrieve prior cases which have not been pre-structured,
and in having to deal with unrestricted vocabularies, the concept
map suggester task faces some of the same issues faced by textual
case-based reasoning [48]. However, concept maps’ explicit links
between concepts provide a valuable additional information
source beyond what is available in text. A major focus of our work
is on developing methods to exploit this information.

4. Mining concept map libraries for cases to support knowledge
extension

Discerner helps a user to create extensions for a concept by
linking it to other concepts in the same map or new concepts
added to the map. For example, consider the scenario in Fig. 1,
for which Discerner is aiding in connecting concepts to “Search
for Evidence of Life, Past or Present.” First, DiscerNER retrieves sim-
ilar prior concept maps that include “Search for Evidence of Life,
Past or Present” or concepts with similar textual descriptions.
After this set of candidate concept maps has been retrieved, the
system extracts the ways “Search for Evidence of Life” was linked
to other concepts in those past contexts and lists them in a side
panel as candidates for potential extensions of a highlighted con-
cept in the map.

Consistent with our observation that any part of the concept
map may be seen as the “problem”—the concept to extend by add-
ing links to other concepts—or the solution—the concepts to be
added to the concept map and/or linked, DiscernNer’s indexing ap-
proach does not pre-define “problems” or “solutions.” Instead, it
classifies concept maps into a hierarchical set of categories provid-
ing a broad characterization of the material in the map, and bases
retrieval on that characterization. For efficient matching/retrieval
it uses a vector space model [42] to describe the content of each
category and each concept map. Terms in the vector correspond
to terms appearing in the concept and link labels in the map. Be-
cause structural information plays an important role in determin-
ing the topic of a concept map, one of the challenges for this work
has been to reflect structural information in the vector space
representation.
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4.1. Reflecting structure in a vector space model

Clustering of concept maps requires a similarity measure to
approximate the semantic similarity between concept maps. For
weighting terms in the vector space model, the term-frequency-
inverse document frequency (TF-IDF) [42] approach is often used.
TF-IDF adjusts the frequency of a term in a document by an inverse
frequency of the same term’s occurrence in the document library,
and constructs term vectors in which each term is weighted by
its TF-IDF value. The resulting vector can then be used for docu-
ment comparison. In principle, TF-IDF could be applied to the
terms appearing in concept and link labels of a concept map to de-
velop a term vector representation for it, simply treating the terms
in the concept map labels as text. However, that approach is
inadequate for two reasons. First, it ignores valuable information
contained in the concept map’s structure. Second, term frequencies
are not useful for concept maps: in a well-designed concept map,
terms are seldom repeated, regardless of their importance.
Discerner’s approach is based on assessing the importance of con-
cepts—and hence, of the terms in the concepts’ labels—based on
the topological structure of a concept map, and weighting them
according to that importance. The method for assessing impor-
tance is based on human-subjects studies of how concept map
structure affects human judgments of concept importance, as de-
scribed below.

Modeling structure-based influences on human concept impor-
tance judgments. In order to present users with suggestions that re-
flect the concepts they tend to find most important in concept
maps, DIscERNER’S concept weightings are designed to reflect human
concept importance judgments. We developed three candidate
models of how structural factors affect concept importance ratings,
and then performed human-subjects experiments to fit them to
human concept importance judgments [28]. Some of the factors
they consider are inspired by general guidelines for constructing
“good” concept maps, taken from the concept mapping literature
[39], e.g., reflecting the importance of concept maps’ hierarchical
structure by weighing upper and lower concepts differently. Oth-
ers are inspired by methods for analyzing the topology of hyper-
linked network structures [25], e.g., that nodes in a graph may be
characterized based on the number of outgoing and incoming con-
nections as either “hubs” or “authorities.” A node in a graph struc-
ture is a hub node if it has many outgoing links, and an authority
node if it has many incoming links, relative to other nodes in the
graph. Outgoing and incoming links refer to the direction by which
nodes are connected in a directed graph; we consider concepts as
the nodes and connecting linking phrases as the links in a graph.
Thus, “hub” concepts are concepts with many outgoing connec-
tions to other concepts (in the form of the links of propositions);
in contrast, “authority” concepts have many incoming connections
from other concepts. Hub concepts tend to appear at the beginning
of propositions, while authority concepts tend to appear at the end
of propositions. We hypothesized that hub and authority charac-
teristics of concepts might play a significant role in describing a
map’s content, while abstracting away from low-level structural
detail.

The models are summarized in Table 1. The structural influ-
ences that they consider include (1) distance of a concept to a root
concept, measured in terms of the number of links on the shortest
path to the root concept in the concept map graph, (2) connectivity
of a concept measured in terms of the number of incoming and
outgoing connections, and (3) the concept’s global connectivity
to the root concept measured by a “path frequency” (PF) measure.
In addition, models that consider multiple influences have param-
eters to weight the different influences.

For the “connectivity root-distance” (CRD) measure, the model
parameters o, B, and ¢ adjust the effect of the number of incoming

Table 1
Models for assessing concept importance.

Connectivity Root
Distance (CRD)

Hub Authority Root
Distance (HARD)
Path Frequency (PF)

w(c) = (- o(c) + B -i(c)) - (1/(d(c) + 1)'”°,
o, f>=0,0>=1

w(c) = (a-a(c) + B-h(c)+7-u(c), & 7 >=0

connections (i(c)), the number of outgoing connections (o(c)) and
the distance to the root concept (d(c)) of a concept c. For the
“hub-authority-root-distance” (HARD) measure, the model param-
eters o, B, and y adjust the effect of the authority (a(c)), hub (h(c))
and upper concept (u(c)) (concepts appearing near the top of the
concept map) value of c. These values correspond to the concept’s
role as an authority, hub, and upper concept, while the upper
weight reflects proximity of a concept to the root concept (for full
details, see [27]). PF counts the number of distinct paths that reach
a given concept c, traversing the paths of the concept map graph
starting from the root concept (n(c)), and requires no parameters.

To our knowledge, no previous studies had explored the role of
such factors in human judgments of concept importance. We con-
ducted a set of experiments involving 20 participants selected from
students and staff at Indiana University, using concept maps spe-
cifically designed to investigate structural influences by varying
factors such as the degree of connectivity or the distance to the
root concept of certain concepts in the map. The maps’ concept
and link labels were replaced with random letter combinations,
to observe structural influences independently of map content.
Participants were presented with pairs of concepts and asked to se-
lect the more important one, or to indicate that both were equally
important. We then fitted the models to the participants’ prefer-
ences by adjusting the models’ parameters using a hill-climbing
algorithm. The results revealed two trends in structural effects
on concept importance: (1) both authority concepts and concepts
with incoming connections are considered more important than
hub concepts or concepts with outgoing connections, and (2) con-
cepts close to the root concept are considered more important than
concepts more distant from the root concept [28]. These results en-
able us to model structural influences on concept importance and
to choose appropriate model parameters for CRD and HARD to
weigh the terms occurring in the concept labels.

Using structure-based weightings in similarity assessment. Given a
selected model from Table 1 and a concept map C, the term-vector
representation of the concept map is derived by extracting terms k
from the concepts in the map and assigning each term a weight de-
fined as the sum of the weights w(c;) for all concepts c; in the con-
cept map in which k occurs, according to the selected model,
normalized by the largest term weight in the concept map C. Sim-
ilarity assessment between concept maps is then done by cosine
similarity.

We note that our vector-space model takes the links between
concepts into consideration for concept weighting, but that the
linking phrases are not included in the representation of a concept
map for constructing an index. We have conducted experiments
whose results support the hypothesis that concepts are generally
more valuable than linking phrases when building a representation
for indexing concept maps [31]. The experiments involved generat-
ing Web queries from selected concepts and links in a concept
map, submitting them to a search engine and comparing matching
Web documents to the map, to determine which keywords are bet-
ter search terms and therefore better indexing terms. While que-
ries constructed from one or more concepts yield good results,
those constructed from linking phrases returned documents with
little similarity to the concept map from which they came. This
indicates that concepts are generally more useful than linking
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phrases when building a representation for indexing concept maps.
A detailed discussion of the experimental method and results can
be found in Leake et al. [31].

4.2. Building an index from concept maps

In the context of Web search, indexing is often done by comput-
ing sets of hierarchical categories such that documents within a
category are more closely related than the documents from differ-
ent categories. We have developed domain-independent methods
to automatically create such an index from the vector space
representation of concept maps [27], aimed at being useful in
any domain the user may choose. In contrast to the knowledge-
rich—and often hand-generated—indices of many CBR systems,
Discerner’s index is generated automatically with no background
knowledge.

The index organizes concept maps into a hierarchical tree struc-
ture of clusters, each containing a set of concept maps involving
correlated concepts. More tightly coupled clusters of concept maps
appear towards the bottom of the tree structure, and more loosely
coupled clusters towards the top. For each cluster, the index main-
tains references to the original concept maps and keeps a cluster
representative, to serve as a prototype for comparing clusters
and to determine if a concept map is related to a set of clustered
maps. The cluster representative is computed from the maps in
the cluster as described below.

At the bottom of the hierarchical structure are the leaf nodes of
the tree, each organizing a cluster of maps. This cluster forms the
most specific category of maps in the library. Each leaf node in
the tree may be subsumed by several parent nodes, that form lar-
ger clusters representing more generic categories. When a concept
map library is indexed, each concept map is assigned to a single
leaf node; all leaf nodes together form a partition of the concept
map library. Each element of the partition can be seen as corre-
sponding to a topic, as defined by shared vocabulary among the
maps in a category. These do not resemble human-derived classifi-
cations of maps, but are useful in searching for related concept
maps that serve as candidates for possible extensions to a map,
as shown in the experiment in Section 4.5. The search process for

related concept maps starts from the top of the tree with the most
generic category of maps and continues downward in the tree. To
identify similarity between a map and a category of maps, key-
words from the cluster representative are compared against the
concept map. Fig. 2 illustrates Discerner's process for finding con-
cept maps similar in content to an input concept map.

4.3. Discerner'’s index generation algorithm

DiscernerR Uses an agglomerative algorithm to compile concept
maps into a hierarchical, tree-like structure, as described in Algo-
rithm PROCEDURE GENERATE-INDEX. The algorithm starts from a
set of initial clusters each containing a single concept map, and
then repeatedly merges the clusters whose cluster representatives
are most similar to each other (by the metric described in Sec-
tion 4.1), making each merged cluster the parent of the clusters
that were merged. Initially, when each cluster contains only a sin-
gle map, that map is chosen as cluster representative. Subse-
quently, when two clusters are merged, a weighted sum of the
cluster representatives from the clusters being merged becomes
the cluster representative of the merged cluster. If r; and r, are
the representatives of clusters 1 and 2, with cluster sizes n; and
ny, the sum is (ny = rq1 +ny * r2)/(M + ny). The merge process is
continued until all clusters have been merged or the similarities
between the cluster representatives fall below a pre-set threshold,
suggesting that the concept maps from different clusters have little
in common and should remain distinct.

During the merging process, the algorithm derives a new tree
structure by creating categories from merged clusters and linking
them to each other, with categories created according to three
rules: The first rule creates a category from any cluster that has
reached a pre-set minimum size. The second rule creates a cate-
gory from any cluster that is the product of a merge of two clusters
above the minimum size. For this rule, categories are generated
from the individual clusters and from the merged cluster, with
the categories of the individual clusters becoming a subcategory
of the merged cluster. The third rule creates a category from a clus-
ter if the corresponding subcategory and the new category are suf-
ficiently different. The rules affect the depth and the width of the
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Fig. 2. Generating extensions for a selected concept from a library of concept maps.
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category index’s hierarchical structure, creating categories from
clusters that are sufficiently different from each other and ulti-
mately reducing the storage requirements, as well as reducing
the number of comparisons needed during retrieval to find the cat-
egory of a new concept map.

Algorithm 1. PROCEDURE GENERATE-INDEX

INPUT:

L: a library of concept maps.

ming minimum cluster size

maxs maximum cluster size

ming,gr: Minimum cosine similarity between two cluster
representatives

Mingmre: Minimum cosine similarity between a cluster
representative

and the representative of the corresponding subcategories

OUTPUT:

A tree-based category index for searching related concept
maps.

BEGIN

/| compute initial clusters

For each concept map ¢; in L do:

(1) Use the concept map vector-space model of c¢; as the

cluster representative r;.

(2) Make r; the single element in a new cluster.

/| merge clusters agglomeratively and generate categories
Repeat the following steps:

(1) Find cluster representatives r; and r; closest to each

other using cosine similarity.

(2) If distance of r; and rj < Mingpygg do:

(2a) Unless existing, construct a category for each cluster

corresponding to r; and r;.

(2b) Exit the loop.

(3) Merge clusters corresponding to r; and r;.

(4) Compute a new cluster representative r,ergeq for the

merged cluster.

(5) Generate a new category for the merged cluster if:
(5a) The merged cluster rpergeq €xceeds a threshold mins.
(5b) The merged cluster is a product of two large clusters

whose size is greater

than maxs; generate categories for r; and r; if not
existing and

make them a subcategory of the new category.

(5¢) The merged cluster is sufficiently different from the

corresponding subcategories

using Mingiy,pe as criteria applied to r'pergeq and the
cluster representative

of the subcategories.

END

Parameters were chosen based on experiments with sample
concept maps, to minimize classification errors. Details are given
in the experimental section below.

The vector-space model, the cosine-coefficient measure, and the
agglomerative clustering algorithm ensure that maps similar in
content are grouped together forming an increasingly more general
group of concept maps, starting from the base of the hierarchy tree
up to the root.

We envision that, for an application of this approach in Cmap-
Tools, indices and case libraries would be compiled periodically
by the individual concept map servers and then uploaded to a des-
ignated index server. This server would be responsible for merging

the different indices into a combined index and responding to que-
ries from clients for relevant suggestions. The combined index
could include several disjoint category hierarchies if the individual
hierarchies are dissimilar.

4.4, Retrieving and ranking suggestions

DISCERNER’S users can actively initiate search for suggestions by
selecting the concepts they seek to extend, or can have the system
monitor the concepts being added to the concept map and proac-
tively make suggestions related to the most recent additions.
Whether in user-driven or proactive mode, DisCERNER generates sug-
gestions by generating a term vector representation of the current
concept map and extracting keywords from the concepts selected
by the user or the suggester. Together, the keywords in the labels
of the selected concepts and the vector representation form a
query, processed locally by the client and remotely by a designated
index server for concept maps published by other users. The retrie-
val algorithm uses the vector to perform a binary search for the
best-fitting category, down the hierarchies in the combined index.
By adjusting a slider, users can control how far the retrieval algo-
rithm descends in the hierarchy tree to search for related concept
maps. The further it descends, the fewer maps it finds, but those
found are more closely related to the map in progress. Once a con-
cept map has been selected for retrieval, the keywords from the se-
lected concept labels are used to look up specific cases within the
concept map. Within concept maps, propositions are generally rep-
resented by concept-link-concept triples (in rare cases, proposi-
tions extend over more than two concepts, requiring additional
link-concept pairs). Propositions from the retrieved map whose
initial concept labels have high keyword similarity with the labels
of selected concepts are suitable candidate suggestions.

Retrieved concept maps are ranked based on a comparison of
their keyword correlations to the target map, using a correlation
metric described in [27]. Fig. 2 summarizes the entire process of
generating suggestions.

4.5. Evaluation of indexing performance

An open question from previous work on this project was the
quality of retrievals based on DiscerneR’s indexing process. This sec-
tion presents new results addressing that question.

The effectiveness of retrieval methods depends on finding a suf-
ficient portion of the relevant information, which is commonly
measured by recall and precision, with recall measuring the frac-
tion of relevant documents that have been retrieved and precision
measuring the fraction of retrieved documents that are relevant. To
assess the algorithms for generating category indices and compil-
ing case libraries, several tests were conducted on two data sets.
The first set contained three knowledge models on overlapping
topics, respectively comprising 93 concept maps from the Mars
2001 library [6], 9 concept maps on the NASA Centaur Rocket Sys-
tem [14], and 14 maps on a meteorology project [20]. The second
data set contained two knowledge models on dissimilar topics,
with 14 maps on Al topics and 17 concept maps on water and gla-
ciers. The experiment was designed to investigate, (1) whether
similar topics are merged into a single hierarchy of categories
while dissimilar topics would be kept separate, and (2) whether
the generated index places the indexed maps in their assigned
category, so that the recall of related maps and the precision of
the retrieved maps are high (this testing strategy is related to the
leave-one-in tests of [1]).

Table 2 summarizes the results from the experiment. For both
data sets, we tested different input parameters of DISCERNER'S
category index algorithm, resulting in different index structures.
The second column of the table shows the resulting number of leaf
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categories (i.e., partitions) of the concept map library. The third
column shows a classification error, which is computed as the per-
centage of maps that could not be located by the retrieval process
after the maps have been fully indexed.

The error of classification occurs because the retrieval process
compares vector-representations of the map to the cluster repre-
sentative that captures the theme of the maps in a cluster and
not the individual maps. If a map is only marginally represented
by the representative of a category an error may occur. Regardless
of the different parameter settings for clustering, the algorithm
computed a single category hierarchy for the first data set, and
two separate hierarchies for the second. Thus the algorithm cor-
rectly determined that the models of the first set share common
concepts, while the models of the second set have nothing or little
in common.

For the maps of the first set that could not be located in the in-
dex, resulting in an erroneous classification, we examined the sim-
ilarity of the maps with the maps they retrieved, and determined
that the maps still related to the maps in the selected category.
The similarity value ranged from .14 to .38 using the cosine
measure when comparing a map with its best matching map in
the category selected by the retrieval process (for identical repre-
sentations, the value is 1.00). We also determined that the closest
shared parent category in the hierarchy, subsuming both the incor-
rectly selected category and the correct category, is—except for one
case—at most one step distant in the tree, meaning that the wrong
category was selected in the final step of the lookup process. This is
encouraging for the performance of the retrieval system, because
this means that (in our tests) the original category would always
be found if the user broadened the search to include a single addi-
tional level.

5. Mining search engines for additional information

Suggestions from previous concept maps are useful for elabo-
rating new maps, but cannot help to extend the knowledge model
beyond information that has already been captured in the concept
map libraries. Users who are oblivious to having overlooked a topic
may not realize when they need to seek information or what infor-
mation to seek. Consequently, it may be useful for a suggester to go
beyond known user desires, automatically forming queries seeking
novel information that might be of interest to the user. EXTENDER'S
goal is to serve as a memory augmentation aid for users, generating
cues for topics that they may have overlooked. These topic sugges-
tions, in conjunction with the context of the current concept map,
may prompt remindings of relevant concept extensions or new
concept maps to add to the knowledge model. Extenper [29], serves
this goal by mining search engines to identify novel topics that go
beyond previously captured information. Extenber currently draws
on the World Wide Web, but it could also be applied, for example,
to documents shared within an organizational intranet, to aid shar-
ing of knowledge resources on individual machines.

Because retrieving and processing large numbers of Web pages
is costly, EXTENDER begins its process with an inexpensive distillation
phase, in which a series of queries is submitted to a search engine

Table 2
Results from an automatic categorization.

Tests # Partitions Classification error (%)
First data set 1 12 2.57

2 6 0.86

3 5 1.72
Second data set 1 9 0

2 4 0

and only the information that is readily available from the search
results (e.g., title, “snippet” of text, URL) is used to identify useful
terms. To identify such terms in the context of a concept map,
we have developed a framework for analyzing terms’ importance
as descriptors and discriminators of a topic [34,32]. A term is a
good document descriptor if it occurs often in the document, while
a term is a good discriminator of a document if it occurs in the doc-
ument but rarely occurs in other documents of the corpus. This for-
mulation of term descriptive and discriminating power is in the
spirit of traditional IR schemes. However, searching the Web to
identify topics requires addressing new questions for the formula-
tion of descriptors and discriminators.

A first question is what should be considered to be a “topic”.
One way to represent topics is implicitly, as sets of similar docu-
ments. The similarity between documents can be computed using
the cosine measure. Then it is possible to determine if a term is a
good topic descriptor by analyzing if it occurs often in the context
of a topic. In other words, the terms that occur more frequently
in documents similar to the concept map under analysis will be
considered good descriptors of the concept map’s topic. On the
other hand, a term is a good discriminator of a topic if it tends to oc-
cur only in documents similar to the given topic. Therefore, terms
with high discriminating power are expected to occur in some doc-
uments similar to the concept map under analysis but they should
seldom occur in other documents.

The higher-level notions of topic descriptors and discriminators,
as opposed to document descriptors and discriminators, help to
identify important terms at the higher-level of topic. Topic descrip-
tors and discriminators are extracted dynamically, by mining
search engines. Once the best topic descriptors and discriminators
are identified, they are used as query terms in a search phase to
search for additional material on the Web. To achieve coverage,
novelty, and diversity EXTeENDER generates queries at incremental
distances from the set of terms that originated the request. The
system uses a curiosity mechanism to diversify during initial stages
and focus towards the end. This approach is in the spirit of tech-
niques such as simulated annealing and reinforcement learning,
in which a temperature factor is set initially to favor exploration,
and then adjusted to favor exploitation. In ExTeNper’s process for
extending a topic T, new terms are collected during each iteration.
To control growth in the number of terms, whether new terms are
added to T is regulated by a curiosity decay parameter.

ExTENDER’S strategy for preserving global coherence is to use a
search context for filtering irrelevant information and to identify
good topic descriptors and discriminators for guiding query forma-
tion and subsequent retrievals. The collected material is clustered
to identify topics in the collection, and unimportant material is dis-
carded. This process is repeated a number of times, with the stop-
ping criterion depending on a user-selected limit on iterations.

5.1. Evaluating EXTENDER'’s topic generation

To judge Extenper’s performance against an objective standard,
we performed an experiment to evaluate the similarity of its arti-
ficial topics to the content of “gold standard” topics in experts’
hand-crafted concept maps. As the gold standard topics, we used
the set of concept maps in the Mars 2001 knowledge model. This
knowledge model was created by experts from NASA and contains
more than a hundred concept maps, presenting an extensive cover-
age of topics in the field.

In our tests the top-level concept map from the knowledge
model was used as the starting point (corresponding to the map
under construction) and EXTENDER'S topic extension algorithm was
used to produce a collection of artificial topics, without access to
any of the other maps in the knowledge model. As a baseline
method for comparison we implemented a simple algorithm which
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constructs queries using all the concepts from the same concept
map ExTenper used as a starting point, submits them as queries to
Google, and clusters the results to generate topics. For comparison
purposes we implemented another algorithm based on the SMART
pseudo-relevance feedback (PRF) method [7]. This method con-
structs the initial queries in the same way as the other two meth-
ods, but refines them based on the pseudo-relevance feedback
provided by the top 10 retrieved results. Results are also clustered
to generate topics. We used the Google Web API with special per-
mission from Google to carry out our evaluations; non-commercial
search engines, such as Faroo (http://www.faroo.com) or Yacy
(http://yacy.net), could serve as effective alternatives.

We expected ExTenDer’'s mechanism to provide results with
superior global coherence, novelty, and coverage than the other
two methods for equal number of Web queries. An evaluation
based on global coherence and coverage requires an operational
definition of topic relevance. Here, we consider the expert-gener-
ated Mars 2001 topics as target topics, with the relevance of a sys-
tem-generated topic measured by the accuracy with which a
system-generated topic replicates an expert-generated topic. Note
that the accuracy measure also provides an indication of topic
quality, because its results depend on the similarity between
EXTENDER'S topics and the expert-generated set, which we expect
to be of good quality for the domain.

Because novelty is one of our desiderata for topic generation,
we want to favor strategies that produce relevant topics with a
high number of novel terms. Assume that R = {ry,...,rn,} is a tar-
get set of relevant topics and A = {a,...,a,} is a set of topics gen-
erated by the topic-generation strategy under evaluation. Consider
the set o, containing the terms of the originating topic, i.e., the
knowledge model that is used as a starting point to search for top-
ics. We propose a similarity measure reflecting the proportion of
novel terms (terms not in the starting knowledge model) in a sys-
tem-generated topic g; that are also part of an r; from a set of rel-
evant topics:

Similarity” (a;, 17,0 _l(anr) - o
Va0 = g )~

The accuracy function can be written in terms of this similarity
function, to measure the precision with which a given topic repli-
cates some topic in the given set, disregarding those terms that are
in the starting knowledge model:

Accuracy” (a;,0,R) = max Similarity" (a;, 1;,0).
rjE

We use this accuracy function to define a measure of global
coherence that accounts for novelty:

_ YyesAccuracy”(a;,0,R)
; Al ’

The coverage measure can be stated as

Global_Coherence" (0,A, R)

N
Coverage" (0,A,R) = ET‘GRA““T;‘CY (ri O’A).

Parameter Settings. Extenber’'s methods depend on parameters
such as the number of iterations (generations of topics), the num-
ber of queries submitted from the source concept map and from
each generated topic, the maximum number of topic descendants
for each topic, the starting and stopping thresholds for curiosity
mechanisms and the similarity threshold for merging topics. This
results in a large parameter space. In practice, however, pragmatic
concerns for the interface, such as the desire for rapid response and
low memory use, suggest constraining some parameters.

Accordingly, our tests limited the number of generations to 4, the
number of queries from each topic to 20 for distillation and 10
for search, and the number of topic descendants at each stage to 8.

Experimental Results. We first analyzed the performance of
ExTENDER as a function of the number of iterations. The test was per-
formed for 1, 2, 3 and 4 iterations. For each number of iterations
our evaluation involved 48 trials, with different settings for ExTenp-
ER’S parameters. We observed that in general three iterations were
sufficient to generate a rich variety of topics, with the system re-
sponse time kept below 20 s. A smaller number of iterations signif-
icantly decreases coverage of novel material, while it usually
increases global coherence.

When comparing the performance of ExTenper against the other
two methods, we set the number of iterations for ExTenper and the
pseudo-relevance feedback method to 3 and the number of queries
for the baseline to the total number of queries submitted by the
other two methods. For each trial, the three method used the same
similarity threshold and method for merging topics.

Fig. 3 presents a comparison of the performance of EXTENDER’S to-
pic generation algorithm to the other methods in terms of global
coherence and coverage. A particular setting corresponds to a trial
and is represented by a point. The point’s x-coordinate corresponds
to the performance of the baseline method for that case, the
y-coordinate corresponds to the performance of the pseudo-rele-
vance feedback method, while the z-coordinate corresponds to
the performance of Extenper. In Table 3 we present the mean con-
fidence intervals resulting from computing the performance crite-
rion functions for the three compared methods. ExtenDer’s results
show statistically significant improvements over the other two
methods.

6. Related work

Discerner and Extenper’s methods relate to a number of threads in
CBR research. Discerner’s extraction of cases from concept maps is
in the spirit of previous systems which do data mining to extract
cases from databases (e.g., [16,41]); however, it contrasts in
extracting cases on the fly, as needed, rather than in advance. This
relates to research on dynamically extracting cases from domain
knowledge [38], but because DiscernEr selects portions of prede-
fined concept maps, its task is more constrained.

DiscerNER also contributes to the problem of assessing similarity
of structured cases. Structural similarity assessment is an active re-
search area in the process-oriented CBR community, which has fo-
cused primarily on making true structure matching more efficient
(e.g., [4,24]). In contrast, DiscERNER'S approach uses an approximate
structural summary. In domains for which automated reasoning
will be applied to retrieved cases, full structural similarity is more
important than in Discerner’s support domain, for which the pri-
mary goal is to provide suggestions to jog a human user’s memory,
which can be done based on a subpart of a concept map.

A key issue for CBR-supported concept mapping is how to per-
form similarity assessment for non-standardized representations.
Labels on concept map nodes provide names for the concepts that
they represent, but not in the more formal, standardized represen-
tations assumed in much Al research (e.g., [47]). Node and link la-
bels may be ambiguous or inconsistent with the names used in
other concept maps. Such issues are a focus of research in textual
CBR [48]. Our work focuses on methods for exploiting the addi-
tional structure provided by concept maps, and must also be robust
to structural variations caused by non-standardized structures.

Similarity assessment is a core issue for case-based reasoning,
with numerous approaches [15]. The primary contribution of
DiscerNER’S approach to similarity assessment is its use of structural
summarization to enable highly efficient retrieval based on
approximate structure, without costly structure mapping. EXTENDER
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Fig. 3. A comparison based on global coherence (left) and based on coverage (right).

Table 3
Confidence intervals for the mean global coherence (left) and mean coverage (right) of
the three methods considering novel material only.

Method N MEAN 95% C.L.

EXTENDER 48 0.267 (0.253,0.281)
PRF 48 0.168 (0.149,0.186)
Baseline 48 0.101 (0.077,0.125)
EXTENDER 48 0.116 (0.099,0.132)
PRF 48 0.029 (0.023,0.035)
Baseline 48 0.019 (0.017,0.022)

replaces the standard task of “similarity assessment” with two-
part retrieval criteria directly considering usefulness, which for
ExteNpEr depends on relevance and novelty, rather than similarity
per se. Because a useful topic suggestion must go beyond the initial
knowledge model, it must be dissimilar to the initial topic to some
extent, though also related. The problem of measuring text-based
diversity has also been studied [2]. However, Extenper not only ad-
dresses the problem of topic variety but also attempts to preserve
coverage and global coherence.

The replacement of strict similarity with pragmatic consider-
ations is in the spirit of adaptation-guided retrieval [45], and the
need to span a set of alternatives relates to recent research on pre-
serving case diversity during retrieval [46]. However, rather than
focusing on how to select diverse alternatives, as in that work,
ExTeNDER focuses on how to construct a diverse set by incrementally
searching similar items and tracing their divergent strands. The
problem of extracting topics from streams of heterogeneous data
has mostly been addressed in the context of social platforms [36].

Beyond CBR, the promise of the Semantic Web has prompted
considerable interest in tools to aid the collaborative construction
of ontologies (e.g., [17,40]). For example, EXPECT [5] and SHAKEN
[12], like CmapTools, aim to enable flexible knowledge acquisition
without the mediation of knowledge engineers; SHAKEN is also
based on a graphical interface. However, in contrast to concept-
map-based approaches which retain informal knowledge, these

systems’ internal representations are based on formal languages.
Other tools are aimed at reducing the bottleneck of knowledge
acquisition in the construction of domain ontologies by applying
text mining techniques. For example, Hsieh et al. [22] have used
text mining techniques to support the extraction of concepts, in-
stances, and relationships from a handbook of a specific domain
to quickly construct a basic domain ontology. Reasons of space
preclude an exhaustive summary, but other examples of semi-
automatic construction of knowledge representation in the form
of ontologies from existing data include work by Santos et al.
[43] and by Gil and Martin-Bautista [19]. The systems described
in this article are aimed at aiding the human reasoning process,
based solely on knowledge captured in a human-friendly form.
However, the methods described here could also be used to aid
construction of formal representations. The Institute for Human
and Machine Cognition is developing software tools to support
rendering and editing Web ontologies, using concept maps to rep-
resent ontologies, with drawing conventions and transformations
specifying precisely how an OWL (Web Ontology Language) ontol-
ogy is mapped onto a concept-link graph structure and vice versa
[8]. Once an ontology is represented as a concept map, the Cmap-
Tools interface and its suggesters can be applied to support ontol-
ogy generation and extension.

The growing set of predefined standardized ontologies can help
users to rapidly build their own ontologies by using existing and
agreed-upon definitions of concepts, and we see opportunities for
applying the suggesters to supporting ontology extension, by
retrieving new concepts and statements about concepts in the
map from prior ontologies, and for suggesting new topics.

7. Conclusion

Electronic concept mapping tools provide a flexible framework
for aiding knowledge capture and sharing, helping to empower ex-
perts to play an active role in the knowledge modeling process.
Fully exploiting this framework requires supporting users as they
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perform the hardest part of concept map generation—selecting and
relating the content to include. Because of the potential to reuse
portions of prior knowledge models, representing others’ con-
cept-mapping experiences, CBR is a natural paradigm for providing
such support. However, applying CBR ideas to concept mapping
tools presents new challenges in areas such as efficiently assessing
similarity of structured information and extracting cases from lar-
ger structures on the fly. Likewise, when prior knowledge models
are insufficient, it may be necessary to complement CBR by going
beyond captured experiences, and to draw on the Web as a whole,
to mine cues to help the user’s own process of remembering rele-
vant information to add to the case library.

This article has presented research on methods for performing
these tasks, implemented in DiscernerR and EXTENDER, including new
experimental results on each system. These illustrate the promise
of case-based approaches and web knowledge discovery to aug-
ment existing cases for human-centered knowledge modeling. In
particular we have shown that the proposed tools are effective in
retrieving suggestions from related knowledge models and that
they significantly outperform other methods at recovering topics
similar to those handcoded by an expert.
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