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Abstract. Considering poroelastic media containing period-
ically distributed parallel fractures, we numerically quantify
the effects that fractures with variable aperture distributions
have on seismic wave attenuation and velocity dispersion due
to fluid pressure diffusion (FPD). To achieve this, realistic
models of fractures are generated with a stratified percolation
algorithm which provides statistical control over geometrical
fracture properties such as density and distribution of contact
areas. The results are sensitive to both geometrical proper-
ties, showing that an increase in the density of contact areas
as well as a decrease in their correlation length reduce the
effective seismic attenuation and the corresponding veloc-
ity dispersion. Moreover, we demonstrate that if equivalent
physical properties accounting for the effects of contact areas
are employed, simple planar fractures can be used to emulate
the seismic response of fractures with realistic aperture dis-
tributions. The excellent agreement between their seismic re-
sponses was verified for all wave incidence angles and wave
modes.

1 Introduction

Fractures in rocks occur in a wide range of scales (from mi-
croscale to continental), and their identification and charac-
terisation are important tasks for several areas such as oil
and gas exploration and extraction, production of geother-
mal energy, nuclear waste disposal and civil engineering
works, among others (Schoenberg and Sayers, 1995; Metz
et al., 2005; Tester et al., 2007). Given that seismic waves
are known to be significantly affected by the presence of

fractures (e.g. anisotropy, attenuation, dispersion, scattering),
seismic methods are a valuable tool for detecting and char-
acterising fractures. An important cause of seismic attenu-
ation and velocity dispersion occurs when a fluid-saturated
heterogenous rock is deformed by a propagating wave. In
such a case, the compressibility contrast between the het-
erogeneities creates fluid pressure gradients. Then, the fluid
pressure returns to equilibrium through a fluid pressure dif-
fusion (FPD) process during which energy is dissipated due
to viscous friction (e.g. Pride and Berryman, 2003; Gure-
vich et al., 2009; Miiller et al., 2010). In the case that the
rock heterogeneity is a fracture, FPD is generated as a con-
sequence of the compressibility contrast between the frac-
ture and the embedding background. Furthermore, when a
propagating wave deforms a medium having intersecting and
fluid-saturated fractures, a pressure gradient can also arise
between them, resulting in additional energy dissipation due
to FPD but affecting higher wave frequencies than the previ-
ously mentioned phenomenon (Rubino et al., 2013; Quintal
et al., 2014, 2016).

Several authors have studied fracture-related FPD effects
on seismic attenuation and velocity dispersion (Chapman,
2003; Brajanovski et al., 2005; Carcione et al., 2013; Rubino
et al., 2013; Quintal et al., 2014; Caspari et al., 2016, 2019),
as well as on the effective anisotropy (Maultzsch et al., 2003;
Masson and Pride, 2014; Tillotson et al., 2014; Amalokwu
et al., 2015; Rubino et al., 2016, 2017) and scattering (Nak-
agawa and Schoenberg, 2007; Barbosa et al., 2016; Caspari
et al., 2019), based on experimental or theoretical works. A
common approach to study seismic attenuation and veloc-
ity dispersion in fluid-saturated fractured media consists of
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numerically solving Biot’s (Biot, 1941, 1962) poroelastic-
ity equations (Masson and Pride, 2007; Quintal et al., 2011,
2014; Rubino et al., 2013). In such studies, fractures are mod-
elled as very compliant, highly porous and highly permeable
heterogeneities embedded in a much stiffer, less porous and
less permeable homogenous background (Pride et al., 2004).

Fractures can be conceptualised as two uneven surfaces
in contact, which produce variable separation between their
boundaries or walls (e.g. Montemagno and Pyrak-Nolte,
1999; Jaeger et al., 2007; Masson and Pride, 2015). In spite
of this, fractures are often modelled as simple thin layers of
constant thickness. The validity of such representation re-
lies on assumptions such as incident wavelengths larger than
the fracture microstructure, an appropriate selection of the
properties of the material filling the fractures, among others.
Furthermore, analytical solutions are based on simplifica-
tions such as assuming elastic materials, idealised geometries
for the fracture microstructures and/or neglecting hetero-
geneities interactions. In this sense, Hudson and Liu (1999)
obtained equivalent mechanical properties for a constant-
thickness layer by representing a fracture as a plane distri-
bution of circular dry or fluid-filled cracks (i.e. open regions
of fractures). They found that the geometrical properties that
dominate the mechanical behaviour of the fracture are cracks
density and length. Still, their model assumes elastic media
and crack or contact areas interactions are neglected. Also in
an elastic framework, Zhao et al. (2016) have demonstrated
the important role played by cracks’ interaction on the stress
field and, consequently, their effects on the overall rock stiff-
ness. Hudson et al. (1996) proposed an analytical solution
for obtaining the equivalent elastic properties of a constant-
thickness layer by representing a fracture as an aligned distri-
bution of circular cracks, accounting for their interaction and
considering fluid or viscoelastic material filling the cracks.
However, this model is limited to an elastic background and
a single fracture. By considering 2-D models and following a
poroelastic approach based on Biot’s (Biot, 1941) equations,
Rubino et al. (2014) numerically studied seismic attenuation
and dispersion in fluid-saturated fractured media consider-
ing several distributions and densities of fracture contact ar-
eas. They found that contact areas have a strong effect on
the level of seismic wave attenuation and dispersion caused
by FPD between fracture and background, and also that the
distribution of contact areas and material properties plays an
important role on the effective seismic response. Neverthe-
less, they performed 2-D simulations which cannot account
for realistic distributions of fracture aperture and contact ar-
eas. To our knowledge, the analysis of the impact of realistic
aperture distribution of fractures on seismic attenuation and
dispersion due to FPD remains largely unexplored.

Nolte and Pyrak-Nolte (1991) presented a stratified perco-
lation workflow which can be used for generating fractures
with realistic aperture distribution. The proposed methodol-
ogy allows to define the structure of the fractures in terms
of density and distribution of contact areas. Pyrak-Nolte and
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Morris (2000) studied the effects that such geometrical frac-
ture properties have on the fracture stiffness and on the
fluid flow through the fractures under normal stress changes.
Moreover, they established a relation between the hydraulic
and mechanical behaviours of fractures. However, FPD ef-
fects on the seismic response of fractures with realistic aper-
ture distribution were not considered in their work.

In this work, we follow the workflow proposed by Nolte
and Pyrak-Nolte (1991) to generate fracture models and use
them to numerically quantify the effects that fractures with
variable aperture distributions have on seismic wave atten-
uation and stiffness modulus dispersion for a medium con-
taining a periodic distribution of fractures. For normally in-
cident compressional waves, we perform a sensitivity anal-
ysis in terms of density and distribution of contact areas.
Subsequently, we extend the results for all incidence an-
gles and wave modes by computing the stiffness matrix
coefficients. Finally, we numerically show that the same
frequency-dependent seismic attenuation and velocity dis-
persion can be obtained for fractures with intricate aperture
distributions and for fractures with constant aperture, pro-
vided that appropriate fracture properties are used in the lat-
ter case. These equivalent fracture properties must take into
account not only the properties of the fracture-filling material
but also the mechanical effects associated with the aperture
distribution.

2 Numerical upscaling

To study attenuation and dispersion of seismic waves in a
fluid-saturated rock with parallel and periodically distributed
fractures, we model fractures as poroelastic media embedded
in a homogenous poroelastic background. The aperture of the
modelled fractures can be spatially variable. In the present
work, we refer as open regions of the fracture to the zones
where the fracture walls are not in contact (non-zero aper-
ture) and are filled with a highly permeable and porous ma-
terial. Contact areas (zero aperture), on the other hand, are
represented by a porous material having the same properties
as the background medium. We define the density of the con-
tact areas as the ratio between the area of the fracture walls
in contact and the area of the entire fracture. In this work, we
use similar material properties to those employed by Rubino
et al. (2014) but assuming a lower permeability for the back-
ground (Table 1). The material properties of the background
are representative of sandstone (Bourbie et al., 1987).
Assuming that the prevailing wavelengths are much larger
than the fracture aperture and spacing, we can obtain the ef-
fective seismic properties of the fractured medium by per-
forming oscillatory relaxation tests on a representative ele-
mentary volume (REV) of the medium. We solve the quasi-
static poroelastic equations given by Biot (1941) with a finite
element scheme. The equations are written in the u-p (de-
noting solid displacement and fluid pressure, respectively)
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Table 1. Material properties.

Background and  Open regions

contact areas of fractures
Grain bulk modulus (GPa) Ky =37 Ky =37
Grain density (g cm_3) ps = 2.65 ps = 2.65
Porosity ¢ =0.1 ¢»=0.9
Permeability (mD) k=237 k=101
Dry rock bulk modulus (GPa) Kmn =26 Km =0.02
Dry rock shear modulus (GPa)  um =30 um = 0.01
Fluid bulk modulus (GPa) Kf=225 Kf=225
Fluid density (gcm ™) of=1.09 of=1.09
Fluid viscosity (P) 1n=0.01 1n=0.01

formulation, as proposed by Quintal et al. (2011), but in
the space—frequency domain following the approach of Ru-
bino et al. (2009). The effective stiffness moduli are obtained
by applying homogeneous harmonic displacements normal
to a boundary of the model in the case of P waves, or a
shear displacement in the case of S waves. The numerical
model, which consists of one horizontal fracture embedded
in a homogenous background (Fig. 1a, left), is the REV of a
medium containing parallel and periodically distributed frac-
tures. On the right side of Fig. 1a, we provide a sketch of the
described test for the case of normal incidence of a P wave, in
which a vertical displacement is applied to the top boundary
while no normal solid displacements are allowed at the lat-
eral boundaries and at the bottom of the model. Additionally,
the model is fully saturated with water and the test is per-
formed at undrained conditions; that is, no fluid flow across
the model boundaries is permitted.

2.1 Equations of poroelasticity

Biot’s (1941) equations in the space—frequency domain and
in absence of external forces are

V.o=0, (1

K
iww:—(—) Vp, 2)
n

where o is the total stress tensor, w is the relative fluid dis-
placement vector, p is the fluid pressure, w is the angular fre-
quency, and i is the complex unity. The material properties
« and n are the permeability and the fluid viscosity, respec-
tively. Equations (1) and (2), the total balance of forces and
Darcy’s law, respectively, are also known as consolidation
equations. These equations are coupled through the constitu-
tive equations of the porous medium (Biot, 1962):

0 =2ume +1(Ane —ap), 3)
p=—Mae— MV - w, )

where € is the strain tensor, I denotes the identity tensor, and
e is the cubical dilatation given by the trace of the strain ten-
sor. The symbols Ay, and @y, denote Lamé’s parameters of
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the dry frame, and @ and M are Biot’s poroelastic parame-
ters given by

Km
a:l__Ks’ (5)
_(e=9¢ o\
M—( X. +E) , (6)

where Kp,, K5 and Ky are the bulk modulus of the dry frame,
the solid grains composing the rock frame and the fluid, re-
spectively, and (¢) is the porosity. Combining Egs. (2) and
(4), the following expression can be obtained:

( K ) . iwp
V- {l—=Vpl)+aioV-u+—=0, 7
n M
where u is the solid displacement vector. Finally, Egs. (1)
and (7), with the total stress tensor given by Eq. (3), can be
used to express the consolidation equations in terms of the
unknowns u and p. In 3-D, the solid displacement vector u
has three directional components and the fluid pressure is a
scalar.

2.2 Effective properties

We solve the system of Egs. (1) and (7) employing Eq. (3)
and using the finite element method. Considering auxil-
iary functions to represent the variables between nodes, the
“weak” formulation is obtained by combining the differential
equations (“strong” form) with natural (undrained) bound-
ary conditions in an integral form, which allows for reduc-
ing the order of the spatial derivatives (Quintal et al., 2011).
We input directly the weak formulation in the finite element
software, COMSOL Multiphysics, where the boundary con-
ditions corresponding to the described relaxation tests are
imposed. The numerical model is discretised in tetrahedral
elements (Fig. 1b), where quadratic interpolation is applied.
The unknowns u and p are calculated for each considered fre-
quency, from which the stress and strain fields are obtained
in each element of the numerical model. For the case of a
compressional wave propagating normal to the fractures (z
direction), the complex effective P-wave modulus (H) and
the P-wave attenuation, estimated as the inverse of the qual-
ity factor (O’Connell and Budiansky, 1978), are computed
according to the following expressions:

_ oz (w))
H) =@y ®
L (Im[H@)])
Q@) = RelH@)) ©

where (0;;(w)) and (€;;(w)) represent the volumetric aver-
ages of o;; and €., over the whole numerical model for each
frequency (e.g. Masson and Pride, 2007; Rubino et al., 2009;
Jénicke et al., 2014), and Re and Im correspond to the real
and imaginary parts of a complex number.
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Figure 1. (a) REV (left) and oscillatory relaxation test, in which no normal solid displacements are allowed at the laterals and bottom of the
numerical model and a vertical displacement is applied at the top of the model (right). (b) Tetrahedral meshing of the numerical model.

3 Results

In order to numerically analyse the general impact that frac-
tures with variable aperture produce on seismic attenuation
and velocity dispersion, we first consider fractures with sim-
ple geometries and distributions of contact areas. Then, we
extend the investigation to fractures having realistic aperture
distributions and perform a sensitivity analysis of the effec-
tive seismic response of the fractured medium in terms of
density and correlation length of contact areas.

3.1 Fractures with simple aperture distributions

We first consider simple fracture models for illustrating gen-
eral effects of contact areas distributions on the P-wave mod-
ulus normal to the fractures and the associated seismic atten-
uation. The numerical model is a cube of 4 cm sides having
a horizontal fracture crossing its centre, that is, normal to the
vertical (z) direction. This model is an REV of a medium
containing a periodic distribution of parallel fractures with
4 cm separation between the central planes of two consecu-
tive fractures. Figure 2 shows a representation of the central
plane of a fracture with regular distribution of contact areas
and another one with pseudo-random distribution. The aper-
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ture of the open regions of the fracture is constant and equal
to 0.4mm (blue regions), whereas the white square zones
correspond to contact areas (i.e. aperture equal to zero). In
both cases, the contact area density is 20 %.

The numerical results for the real part of the effective P-
wave modulus and seismic attenuation normal to the frac-
ture are presented in Fig. 3. When the P wave compresses
the fractured medium, it creates a fluid pressure gradient be-
tween the fracture and the background due to their compress-
ibility contrast. Consequently, a FPD process tends to equili-
brate the pressures resulting in energy dissipation because of
viscous friction in the pore fluid. Both models exhibit signif-
icant P-wave modulus dispersion and attenuation due to FPD
between the fracture and the background. Although the re-
sponses presented in Fig. 3 are similar, the highest dispersion
and attenuation is observed for the pseudo-random distribu-
tion of contact areas. The largest difference in their P-wave
modulus responses occurs at the low-frequency limit. We
compare these results with the analytical solution of White
et al. (1975) for a fracture represented as a thin layer of con-
stant thickness filled with the same soft material but with-
out contact areas. Two models having fractures of constant
thickness are considered, one of a thin layer having constant
aperture of 0.4 mm and another one having equal total vol-
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ume of open regions (that is, removing the volume occupied
by the contact areas) as in the models shown in Fig. 2. We
observe that the presence of contact areas reduces seismic
attenuation as they increase the fracture stiffness. For a thin
layer with the same volume as the open regions of fractures
of Fig. 2 (i.e. a constant thickness of 0.32 mm), we observe
minor changes in the seismic response with respect to the thin
layer having 0.4 mm aperture. This means that the effects of
contact areas on the mechanical behaviour of the fracture are
more significant than the effects of reducing the volume of
the open regions.

For better understanding the impact of contact area distri-
butions on the seismic responses shown in Fig. 3, we plot the
real part of the vertical component of the total stress field
at the low- and high-frequency limits at the centre of the
fracture (Fig. 4). The interaction between contact areas in
the pseudo-random case results in a stress shielding, which
means that the proximity of the contact areas caused a reduc-
tion of the stresses on them (Zhao et al., 2016). From Eq. (8),
and given that the overall strain in the sample is the same
in both cases, it follows that a reduction in the overall stress
of the sample translates into a decrease of the effective P-
wave modulus, in comparison with the regular distribution.
At the low-frequency limit, as there is enough time for FPD
between the fracture and the background, the stiffening ef-
fect of the fluid in the fractures is minimal. Therefore, given
that the magnitude of the interaction effects depends on the
compressibility contrast between contact areas and regions
of open fracture, these are maximal at low frequencies. Fur-
ther, Fig. 3 shows that the real part of the P-wave modulus
for both models converges to a similar value at the high-
frequency limit. This occurs because there is no time for fluid
pressure exchange between the fracture and the background
during a half-wave period, and therefore the stiffening effect
of the fluid saturating the fracture is maximal. Hence, the ef-
fects of the interaction of the contact areas on the stress field
are minimal, since the compressibility contrast between the
background and the fracture is reduced (Fig. 4).

3.2 Fractures with realistic aperture distributions

In order to analyse the seismic response of realistic fractures,
we perform numerical simulations considering fractures with
variable aperture distributions generated following the strat-
ified percolation approach of Nolte and Pyrak-Nolte (1991).
Using this approach, a realistic spatial distribution of frac-
ture contact areas can be generated with controlled statistical
properties such as correlation length and density. Moreover,
it allows us to produce variable aperture distributions of the
open regions. A description of how the fracture models are
generated is given in Appendix A. The consideration of such
aperture distributions as realistic is based on their compari-
son with the imaging of the aperture distribution of a natu-
ral fracture network presented by Montemagno and Pyrak-
Nolte (1999). The aperture of the fractures is given by the
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distance between the walls which are perfectly symmetrical
with respect to the centre of the fracture (Fig. 1). After gen-
eration of fractures, the correlation length of contact areas
is calculated following the approach of Blair et al. (1993),
also used by Pyrak-Nolte and Morris (2000), which repre-
sents an approximation to their mean length. Consequently,
for a given contact area density, as the correlation length de-
creases, the fracture exhibits more contact areas with smaller
sizes and a narrower distribution of distances between them.
Thus, increasing the correlation length of contact areas pro-
duces an increase in the mean distance between contact ar-
eas, that is, the mean length of the open regions. Using these
kinds of fracture models, Pyrak-Nolte and Morris (2000) dis-
cussed the effects that contact area distributions produce on
the mechanical properties of a fracture (i.e. specific stiffness),
and they showed that uncorrelated distributions of contact ar-
eas produce stiffer fractures than correlated ones. This is in
agreement with the results presented in Fig. 3, since a regular
distribution of contact areas is analogous to an uncorrelated
distribution considering that both have a narrow distribution
of distances between contact areas.

Figure 5 shows four fracture aperture distributions chosen
for analysing the effects of density and correlation length of
contact area on the seismic response of a fractured medium.
To do so, we consider four REVs as the one presented in
Fig. 1 with a different distribution of apertures for the hori-
zontal fracture given by the models A, B, C and D of Fig. 5.
The real part of the P-wave modulus and attenuation for a
normally incident wave are shown in Fig. 6. We observe that
a higher contact area density as well as a lower correlation
length (model C) produce a stiffer fracture, as it can be seen
from the relatively high and non-dispersive real part of the
P-wave modulus. These observations can be understood by
looking at Fig. 4 as, in this case, a regular distribution of
contact areas is equivalent to an uncorrelated distribution.
Moreover, these results are in agreement with analytical so-
lutions, considering that an increase in the correlation length
represents also an increase in the mean crack (or open re-
gion) length (Hudson and Liu, 1999; Zimmerman and Main,
2004). In such solutions, the excess compliance of a frac-
ture increases with a larger crack length and decreases with
a greater contact area density. Fracture B has the lowest den-
sity and the highest correlation length of contact areas. As
expected, it is effectively the most compliant as can be seen
in Fig. 6, given that it exhibits the lowest P-wave modulus
and highest dispersion and attenuation. Interestingly, frac-
tures A and D show comparable seismic responses despite
their different aperture distributions. This is related to the
fact that increasing the correlation length compensates for
the increase in contact area density, resulting in fractures with
similar effective compliances. Lastly, note that although the
effect of the distribution of contact areas is maximal at the
low-frequency limit, it also plays an important role for the
effective compliance of the rock at the high-frequency limit
(Fig. 6).

Solid Earth, 10, 1321-1336, 2019



1326
(a) distr of contact areas h [mm]
0.4
Contact
areas
0.2

Y [cm]

0 2 4
X [em]

S. Lissa et al.: Attenuation in fractured media

(b) Pseudo-rand

distrik

h [mm]
4 0.4
2 0.2

0
0 2 4

X [cm]

Figure 2. Fracture apertures with regular (a) and pseudo-random (b) distributions of contact areas. Blue zones represent open regions of the
fracture with 0.4 mm aperture. Each contact area size is 0.9 x 0.9 cm, and the contact area density is 20 %.
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Figure 3. Real part of P-wave modulus (H) and attenuation as a
function of frequency for wave propagation normal to the fracture
models illustrated in Fig. 2. We also include White’s solutions for
two thin layer models having equal aperture and equal volume, re-
spectively, of the open region of the fractures in Fig. 2.

A common assumption in analytical models is that fracture
compliance depends on the fracture volume and the distribu-
tion of the fracture microstructure, such as mean crack radius
(e.g. Guo et al., 2017). For analysing the effect of the vari-
able aperture in the open regions of the fractures, we consider
simpler fracture models having the same contact area distri-
butions of those shown in Fig. 5 but setting constant the aper-
ture in the open fracture regions. The aperture is fixed to their
mean value (i.e. 0.4 mm) (Fig. 7). We refer to this process as
binarisation of the fractures, since it results in two values for
the fracture aperture: zero in the contact areas and 0.4 mm in

Solid Earth, 10, 1321-1336, 2019

Figure 4. Real part of the vertical (z) component of the total stress
field at the centre of the fractures illustrated in Fig. 2 at 1 Hz (a, b)
and at 100kHz (c, d).

the open regions. During this process, the volume of the open
regions, that is, the volume of the most compliant poroelastic
material, remains unchanged. The seismic responses are also
shown in Fig. 6, and we observe good agreement between
results from fractures with binarised aperture (dashed lines)
and those from the previous fractures with variable aperture
in the open regions (solid lines). From this analysis of Fig. 6,
the volume of the open regions of the fractures and the dis-
tribution of contact areas are the main characteristics con-
trolling the fracture seismic response, which is in agreement
with analytical models.

In the analysis presented above, each fracture is one re-
alisation of a pseudo-random generation process with given

www.solid-earth.net/10/1321/2019/
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Correlation length 2.8 mm
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Figure 5. Fracture aperture distributions generated using a stratified percolation workflow (Nolte and Pyrak-Nolte, 1991). Upper models
have 5 % of contact area density, while lower models have 20 %. Left models have a small correlation length and right models have a bigger
correlation length. All models have a mean aperture of 0.4 mm and they are referred to in the text as models A to D (panels a—d, respectively).

contact area density and correlation length. In order to anal-
yse the variability of the results, we generated several frac-
ture models with the same characteristics as model B (Fig. 5),
which are referred to as realisations. We choose model B be-
cause it exhibits the highest attenuation (Fig. 6), and hence
the variability of the results is expected to be higher than
for uncorrelated distributions of contact areas (such as mod-
els A and C). For numerical convenience and supported by
the comparison shown in Fig. 6, we consider binarised frac-
ture models as in Fig. 7. The fracture models illustrated in
Fig. 8a have equal contact area density (5 %) and correlation
length (2.8 mm) to fracture B. In Fig. 8b, the correspond-
ing real part of the P-wave modulus and attenuation are dis-
played as black circles for frequencies representative of the
relaxed and unrelaxed limits (1 and 100 kHz, respectively)
and at the attenuation peak frequency (~ 100 Hz). The seis-
mic response for model B of Fig. 5 is plotted as a solid red
line for reference. The standard deviations of the real part
of the P-wave modulus normal to the fractures are presented
in Fig. 8c as a function of the number of realisations. We ob-
serve larger variability for low frequencies. As we previously

www.solid-earth.net/10/1321/2019/

illustrated in Fig. 4, this occurs because at the low-frequency
limit, pore fluid pressure opposition to compression is min-
imal, and therefore the compressibility contrast between the
background and the open regions of the fractures reaches the
maximal value. As a consequence, the effects of the inter-
action between contact areas are more important and then a
change in contact areas geometry, as the one taking place in
each realisation, produces a slightly different fracture com-
pliance. As frequency increases, there is less time for fluid
pressure equilibration between fracture and background, the
stiffening effect of the fluid saturating the fractures increases,
and the effects of the interaction between contact areas are
less significant, resulting in a smaller variability of the P-
wave modulus. For the three analysed frequencies, the vari-
ability of the standard deviation became approximately sta-
ble after 15 realisations, and it is lower than 1 GPa. In other
words, it is always lower than 2 % of the real-valued P-wave
modulus.

Solid Earth, 10, 1321-1336, 2019
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Figure 6. Real part of P-wave modulus (H) and attenuation for
wave propagation normal to the fractures as a function of frequency.
Solid lines correspond to fractures A, B, C and D with spatially
variable aperture in the open regions (Fig. 5), while dashed lines
correspond to fractures A, B, C and D with binary aperture (Fig. 7).

3.3 Comparison between realistic and simplified
equivalent fracture models

In studies on the effective seismic response of fractured me-
dia, a fracture is frequently represented as a thin compliant
layer of constant thickness (e.g. Schoenberg, 1980; Gurevich,
2003; Brajanovski et al., 2006; Nakagawa and Schoenberg,
2007; Barbosa et al., 2016). To analyse the validity of such
simple approaches, we estimate equivalent elastic properties
of a fracture from the excess compliance computed for real-
istic fracture models (Fig. 5). We then compare the seismic
response of simple fracture models, using the derived equiv-
alent properties, with the numerical results for realistic frac-
tures presented in Fig. 6.

For estimating the equivalent properties of the fractures,
we follow the linear slip theory (Schoenberg and Douma,
1988), where the compliance of a dry rock can be split into
the contributions from the background and from the presence
of fractures, and compliance is defined as the inverse of the
stiffness. In this case,

S=S,+AS, (10)

where S is the total compliance matrix with coefficients S;;
and Sy, is the compliance matrix of the dry background. The
matrix AS is the excess compliance of the rock due to the
presence of fractures which, in turn, is approximated as

Solid Earth, 10, 1321-1336, 2019

S. Lissa et al.: Attenuation in fractured media

00 0 0 0 0
00 0 0 0 0
oo zv o o o
AS=100 0 zr 0 o0 (D
00 0 0 Zr 0
00 0 0 0 0

Using Eqgs. (10) and (11), and the fact that the effective stift-
ness matrix is the inverse of the compliance matrix, that is
C =S~!, the normal and shear excess compliances (Zy and
Z7), respectively, can be obtained as

dry
7o Lin—Cy3 (12)
N - dry ’
Cs3 L
dry
Um—C
Zr = —“‘dry 44 (13)
Cyy Hm

where Ly, and u, are the P-wave and shear moduli of the
dry background based on properties given in Table 1. Cg,r(y
values (k = 3,4) are numerically computed from applying
corresponding compressional and shear oscillatory tests to
the dry fractured models. Finally, we calculate the equiva-
lent elastic properties from the excess compliances as (Bra-
janovski et al., 2005)

eqv Je
=t 14
Mgy Zr (14)
eqv Je 4 eqv
K =~ 3 as)

where /L?rqv and Klgrqv represent the dry shear and bulk mod-
uli, respectively, of an equivalent fracture of constant thick-
ness, and f. is the fracture volume fraction of the models,
given by the ratio between the fracture volume and the vol-
ume of the numerical volume. In this case, as the area in
the plane xy of the numerical model is equal to that of the
fracture (Fig. 1), f. is given by the ratio between the frac-
ture mean aperture and the height of the model (i.e. f. =
hmean/H). In order to keep the pore volume of the fractures
the same for the equivalent planar fractures, we also calculate
the weighted average of the fractures porosities (i.e. fracture
equivalent porosity ¢ferqv) for the models shown in Fig. 5 ac-
counting for the effect of contact areas. That is,

Or = popea + b1 — pea), (16)

where ¢y, is the background porosity (which is the same as
for the contact areas), ¢ is the porosity of the open regions
of the fracture, p¢, is the contact area density, with pcy =
0.05 for models A and B, and p.;, = 0.2 for models C and D
(Fig. 5). Also, ¢, = 0.1 and ¢ = 0.9 as presented in Table 1.
Values obtained from Eqs. (12)—(16) are shown in Table 2.
To support the consideration of our models as realistic,
the fracture compliances presented in Table 2 are in reason-
able agreement with estimated values observed in field and
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Figure 7. Fracture with binary aperture distributions derived from fracture models A to D in Fig. 5. The aperture in the open fracture regions
is set equal to the mean value (0.4 mm) of the aperture distribution shown in Fig. 5.

laboratory experiments for fractured rocks (Worthington and
Lubbe, 2007; Hobday and Worthington, 2012; Barbosa et al.,
2019). According to the linear trend proposed by Worthing-
ton and Lubbe (2007), our models are representative of frac-
tures with lengths ranging from a few metres to tens of me-
tres. Furthermore, fixing a similar value for both the normal
and shear compliances is usually assumed (Liu et al., 2000;
Sayers, 2002); that is Zy/Z7 = 1. Lubbe et al. (2008) used
rock samples with artificial fractures to calculate normal and
shear compliances from laboratory measurements and they
found fracture compliance ratios approaching 0.5. In agree-
ment with their results, the fractures presented in this work
exhibit compliance ratios between 0.5 and 1, but closer to 0.5
(Table 2).

3.3.1 P-wave modulus analysis

After computing the equivalent dry bulk and shear moduli
and porosity for each fracture (Eqgs. 12-16), as well as the
mean aperture, we employ the analytical solution of White
et al. (1975) to quantify the P-wave modulus normal to a peri-
odic distribution of constant-thickness fractures having these

www.solid-earth.net/10/1321/2019/

equivalent fracture properties (14g 5 Kp ' ¢p and hmean).

Figure 9 shows excellent agreement of the real part of the P-
wave modulus and attenuation between fractures with vari-
able aperture distributions (Fig. 5) and equivalent constant-
thickness fractures. These results show that a very simple
fracture geometry, such as a thin layer of constant thick-
ness, can approximate much more complicated fracture ge-
ometries if appropriate equivalent properties (accounting for
contact area distributions) are used.

3.3.2 Stiffness matrix generalisation

To further verify and generalise the validity of the equiva-
lent fracture model of constant thickness, we extended the
methodology presented by Rubino et al. (2016) to numeri-
cally compute the effective stiffness matrix from 3-D simu-
lations for the realistic fracture models of Fig. 5. To do so, we
numerically performed oscillatory relaxation tests following
the methodology described in Sect. 2 but considering three
normal relaxation tests (one for each direction: x, y and z)
and three shear relaxation tests (shearing in the xy, xz and
vz planes). We compare the results with those of the ana-

Solid Earth, 10, 1321-1336, 2019
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Figure 8. (a) Realisations generated with constrains of density and correlation length of contact areas equal to those of model B. The mean
aperture value of all fractures is 0.4 mm. (b) Real part of the P-wave modulus and seismic attenuation normal to the fractures as a function of
frequency. The solid red lines show seismic responses of fracture B and the black circles correspond to each realisation shown in panel (a) at
considered frequencies after being binarised. (¢) Standard deviation of the real part of the P-wave modulus as a function of total number of

realisations.

Table 2. Fracture normal and shear excess compliances and equivalent properties of a fracture represented as a poroelastic thin layer.

Model  Zy(mPa~')x 10712 ZymPa~!) x 10712 K "(GPa) g (GPa) ¢ hmean(mm) Zy/Z7
A 7.98 125 0.189 0.798  0.86 0.4 0.637
B 39 55.2 0.015 0.181  0.86 0.4 0.705
C 1.69 2.88 1.289 3474 0.74 0.4 0.587
D 9.67 13.1 0.015 0.764  0.74 0.4 0.739

lytical solution for transverse isotropy (TI) media proposed
by Krzikalla and Miiller (2011). This analytical solution is
based on the relaxed and unrelaxed poroelastic Backus av-
erages of a layered porous medium consisting of a periodic
distribution of a stiff background and a soft thin layer. More-
over, they showed that a single relaxation function can be
used to link the relaxed and unrelaxed limits of all compo-
nents of the stiffness matrix. The corresponding frequency
dependence is derived from the P-wave modulus predicted
by White et al. (1975). We use such soft layer to approx-
imate a fracture of constant thickness having the equivalent
properties ( ,u?rqv, K frqv, ¢frqv and /pmean) Obtained as described
above.

Figure 10 illustrates the real part of the five independent
coefficients C;; for a medium with TI and Cgg, given by
Ce6 = 0.5(C11 — C132). The circles in the plots correspond
to fractures with variable aperture distribution (Fig. 5), and
the solid lines correspond to the analytical solution consid-
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ering fractures of constant thickness with equivalent proper-
ties (Table 2). For brevity, fracture C was omitted due to its
negligible P-wave modulus (C33) dispersion. The stiffness
matrix coefficients C;; and C33 dominate the stress in the
medium as a response to a horizontal and vertical compres-
sion, respectively (x and z directions). C44 and Cgg, On the
other hand, dominate the stress as a response to a vertical
and a horizontal shear deformation, respectively (yz and xy
directions). The coupling coefficients C1 and Cy3 are also
shown. The effective anisotropy of all the models is vertical
transverse isotropy (VTI), although models D and B, due to
their high correlation lengths, present a subtle discrepancy
between Cy4q and Css, which is below 0.7 GPa (omitted in
the figure for brevity). Furthermore, all the stiffness coeffi-
cients of fracture models A and D are similar, which extends
the conclusion about the counteracting effects of the corre-
lation length and density of the contact areas observed for
the normal P-wave modulus to the overall anisotropy of the

www.solid-earth.net/10/1321/2019/



S. Lissa et al.: Attenuation in fractured media

10_40 YT ‘”2”‘”‘3 o s
10 10 10 10 10 10
Frequency [Hz]

Figure 9. Real part of P-wave modulus (H) and attenuation for
wave propagation normal to the fractures as functions of frequency.
Solid lines correspond to fracture models A, B, C and D from
Fig. 5 with variable aperture distributions. Dashed lines correspond
to fracture models of constant thickness using equivalent fracture
properties (Table 2).

models (Sect. 3.2). Finally, the excellent agreement between
the results for models with realistic and simple geometries
for all the stiffness matrix coefficients generalises our results
of Sect. 3.3.1 to all incidence angles and wave modes.

4 Discussion

Obtaining information on the hydraulic and mechanical be-
haviours of fractures by means of their seismic responses
is an ultimate goal in fracture characterisation. Pyrak-Nolte
and Morris (2000) showed that in response to an increase
in normal stress applied to a fracture, new contact areas
would be created, affecting the fluid flow path through the
fracture. In this work, we used similar fracture models to
study the relationship between fracture microstructure and
their corresponding seismic response. We showed that the
effective seismic attenuation and velocity dispersion due to
FPD between the fracture and the background are sensitive
to changes in the correlation length and the density of con-
tact areas. This suggests that the effects of FPD on the seis-
mic response of fractures are potentially affected by normal
stress variations and thus represent an opportunity for indi-
rectly monitoring the associated fluid flow changes.

Milani et al. (2016) showed that in the case of aligned pe-
riodically distributed fractures having constant aperture, the
models are essentially unidimensional, and no boundary ef-
fects would play a role given that the stress fields are con-
stant within the sample as a consequence of Eq. (1). How-
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ever, the distribution of the fracture apertures that we con-
sidered imply a departure from the unidimensional solution,
suggesting that boundary effects may affect the results. To
study these possible effects, we plotted the normalised verti-
cal stress field in the case of the binarised model B (i) for a
single repeating unit cell (RUC) and (ii) for four RUCs (not
shown here). Since we found both normalised stress fields to
be equal, this analysis supports the fact that no boundary ef-
fects or undesired interaction between fractures are affecting
the results of the numerical relaxation tests. Moreover, this
represents an extension of the results shown by Milani et al.
(2016) for fractured media with 2-D geometries to 3-D.

We also showed that the density and correlation length of
contact areas control the normal and shear fracture compli-
ances (Fig. 6), and thus first-order analytical solutions based
on these properties, such as the model proposed by Hud-
son and Liu (1999), could represent a good approximation to
the mechanical behaviour of realistic fractures. However, as
shown in Fig. 4, the effects of the mechanical interactions be-
tween contact areas must be considered for accurately obtain-
ing the equivalent properties of the material filling the frac-
tures. In this sense, we showed in Fig. 10 that a simple layer
of constant thickness can successfully reproduce the seismic
response of fractures with intricate aperture distributions pro-
vided that appropriate elastic moduli, porosity and aperture
are used. In this work, such equivalent properties are calcu-
lated from the excess compliances of the realistic fractures,
and therefore they account for the effects of distribution and
interaction of contact areas. Furthermore, since the linear slip
model can be interpreted as an approximation of the seismic
response of a constant-thickness fracture (Schoenberg and
Douma, 1988; Brajanovski et al., 2005; Guo et al., 2017), our
results suggest that this model can also satisfactorily approx-
imate the seismic response of the realistic fracture models
considered in Fig. 5.

5 Conclusions

The aim of the present contribution was to analyse the effects
of variable aperture distributions of 3-D fracture models on
FPD between fractures and background. To do so, we nu-
merically quantified the effective frequency-dependent stift-
ness matrix coefficients and seismic attenuation for realistic
fracture models representing REVs of media containing pe-
riodically distributed parallel fractures. Our fracture models
were characterised by aperture distributions generated using
a stratified percolation algorithm and accounting for different
densities and correlation lengths of contact areas. We showed
that for a given density of contact areas, fractures with cor-
related distributions of contact areas (i.e. highest correlation
length) exhibit higher P-wave modulus dispersion and seis-
mic attenuation than those with a low correlation. Further-
more, lower P-wave modulus dispersion and seismic atten-
uation were observed when increasing contact area density

Solid Earth, 10, 1321-1336, 2019
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Figure 10. Real part of the components of the effective stiffness matrix as functions of frequency. Circles correspond to numerical simulation
for fracture models A, B and D with variable aperture (VA) distributions shown in Fig. 5 (fracture model C was omitted due to its negligible
P-wave modulus dispersion). Solid lines correspond to the analytical solution of Krzikalla and Miiller (2011) for planar fracture (PF) models

using equivalent fracture properties (Table 2).

for a given correlation length. This compensatory effect al-
lows fractures with highly different aperture distributions to
produce similar seismic responses. Moreover, although the
effects of distribution of contact areas on the P-wave mod-
ulus are maximal at the low-frequency limit, these distribu-
tions also play an important role at the high-frequency limit.
We also observed that, if the distribution of contact areas is
fixed, fracture mean aperture (which controls fracture vol-
ume) dominates the seismic response due to FPD effects,
while the variable aperture in the open regions of the frac-
ture has a negligible influence.

Finally, we demonstrated that a simple fracture geometry
such as thin layers with constant aperture and appropriate
equivalent physical properties produces the same effective
anisotropic seismic response of fractures with a much more
intricate geometry. The equivalent elastic properties can be
obtained from the excess fracture compliances, determined
according to the linear slip theory, as long as the effects of

Solid Earth, 10, 1321-1336, 2019

contact areas are accounted for. Our results validate the use
of simple models of fractures having constant thickness for
numerically simulating the effects of fractures with realistic
geometries which, in turn, can significantly reduce computa-
tional cost and overcome meshing limitations.

Data availability. All numerical results are reproducible by solving
the equations and boundary conditions described in this work and
using the fracture models provided in the Supplement. Numerical
results can also be shared by contacting the first author.
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Appendix A: Realistic fracture model generation

To generate the fracture models shown in Fig. 5, we follow
the stratified percolation approach described by Nolte and
Pyrak-Nolte (1991). To do so, we define a matrix initialised
with zeros in all its cells, which represents the initial aperture
distribution (aperture equal to zero) of a square fracture. The
first step consists of stochastically selecting a number (x) of
matrix cells. Then, each of those x cells becomes the centre
of a new stochastic distribution of x cells confined to a square
area around them. The squares are defined by a certain num-
ber of cells of the matrix. This process is repeated n times,
called tiers, by reducing the size of the squares from one tier
to the next one. It means that, if a fix number of cells (x)
are stochastically located inside each of the squares corre-
sponding to the previous tier, this finally results in selecting
x™ cells inside the matrix. In the last tier, which is number
n (corresponding to the minimum square size), a value 1 is
assigned to each of the x" selected cells. Moreover, as there
could be overlap between the areas of the squares in all the
tiers, and this is a cumulative process, at each time a value 1
is added to a cell of the matrix, the aperture of the fracture at
that cell is increased. After the values of the (x) cells of the
last tier (n) have been added with a 1, the contact areas are
given by the matrix cells remaining with the initial zeros as
values. The correlation length of the contact areas is calcu-
lated after the generation process following the methodology
proposed by (Blair et al., 1993). In general, a high number
of tiers (n) with a low number of cells (x) creates a corre-
lated distribution of contact areas. On the other hand, a low
number of tiers (n) with a big number of cells (x) builds a
non-correlated distribution of contact areas (Pyrak-Nolte and
Morris, 2000).

www.solid-earth.net/10/1321/2019/
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The workflow for building up our models consists of im-
porting the matrix, generated using the above-described al-
gorithm, into COMSOL Multiphysics by using an .stl for-
mat. The matrix, representing the aperture distribution of the
fracture, is converted into a surface and a fracture volume is
generated by symmetrically duplicating the fracture surface
with respect to the horizontal middle plane. As a result of this
process, we obtain a fracture volume with symmetrical walls.
Finally, the obtained fracture volume is vertically scaled to
yield the desired mean fracture aperture and embedded in a
cubic model (Fig. 1a).

Solid Earth, 10, 1321-1336, 2019
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